1
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. Biomater Sci 2024; 12:5728-5741. [PMID: 39403853 PMCID: PMC11474809 DOI: 10.1039/d4bm00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
Affiliation(s)
- James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Courtney Khong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Fäs L, Chen M, Tong W, Wenz F, Hewitt NJ, Tu M, Sanchez K, Zapiórkowska-Blumer N, Varga H, Kaczmarska K, Colombo MV, Filippi BGH. Physiological liver microtissue 384-well microplate system for preclinical hepatotoxicity assessment of therapeutic small molecule drugs. Toxicol Sci 2024:kfae123. [PMID: 39397666 DOI: 10.1093/toxsci/kfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Hepatotoxicity can lead to the discontinuation of approved or investigational drugs. The evaluation of the potential hepatoxicity of drugs in development is challenging because current models assessing this adverse effect are not always predictive of the outcome in human beings. Cell lines are routinely used for early hepatotoxicity screening, but to improve the detection of potential hepatotoxicity, in vitro models that better reflect liver morphology and function are needed. One such promising model is human liver microtissues. These are spheroids made of primary human parenchymal and nonparenchymal liver cells, which are amenable to high throughput screening. To test the predictivity of this model, the cytotoxicity of 152 FDA (US Food & Drug Administration)-approved small molecule drugs was measured as per changes in ATP content in human liver microtissues incubated in 384-well microplates. The results were analyzed with respect to drug label information, drug-induced liver injury (DILI) concern class, and drug class. The threshold IC50ATP-to-Cmax ratio of 176 was used to discriminate between safe and hepatotoxic drugs. "vMost-DILI-concern" drugs were detected with a sensitivity of 72% and a specificity of 89%, and "vMost-DILI-concern" drugs affecting the nervous system were detected with a sensitivity of 92% and a specificity of 91%. The robustness and relevance of this evaluation were assessed using a 5-fold cross-validation. The good predictivity, together with the in vivo-like morphology of the liver microtissues and scalability to a 384-well microplate, makes this method a promising and practical in vitro alternative to 2D cell line cultures for the early hepatotoxicity screening of drug candidates.
Collapse
Affiliation(s)
- Lola Fäs
- InSphero AG, CH-8952 Schlieren, Switzerland
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | | | | | - Monika Tu
- InSphero AG, CH-8952 Schlieren, Switzerland
| | | | | | | | | | | | | |
Collapse
|
3
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
4
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589114. [PMID: 38659930 PMCID: PMC11042190 DOI: 10.1101/2024.04.12.589114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
|
5
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
6
|
Schweinitzer S, Kadousaraei MJ, Aydin MS, Mustafa K, Rashad A. Measuring cell proliferation in bioprinting research. Biomed Mater 2024; 19:031001. [PMID: 38518363 DOI: 10.1088/1748-605x/ad3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Tissue-like constructs, intended for application in tissue engineering and regenerative medicine, can be produced by three-dimensional (3D) bioprinting of cells in hydrogels. It is essential that the viability and proliferation of the encapsulated cells can be reliably determined. Methods currently used to evaluate cell proliferation, such as quantification of DNA and measurement of metabolic activity, have been developed for application in 2D cultures and might not be suitable for bioinks. In this study, human fibroblasts were either cast or printed in gelatin methacryloyl (GelMA) or sodium alginate hydrogels and cell proliferation was assessed by AlamarBlue, PicoGreen and visual cell counts. Comparison of data extrapolated from standard curves generated from 2D cultures and 3D hydrogels showed potential inaccuracies. Moreover, there were pronounced discrepancies in cell numbers obtained from these assays; the different bioinks strongly influenced the outcomes. Overall, the results indicate that more than one method should be applied for better assessment of cell proliferation in bioinks.
Collapse
Affiliation(s)
- Sophie Schweinitzer
- Department of Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Center of Translational Oral Research, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Masoumeh Jahani Kadousaraei
- Center of Translational Oral Research, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Mehmet Serhat Aydin
- Center of Translational Oral Research, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Center of Translational Oral Research, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
8
|
Trettner KJ, Hsieh J, Xiao W, Lee JSH, Armani AM. Nondestructive, quantitative viability analysis of 3D tissue cultures using machine learning image segmentation. APL Bioeng 2024; 8:016121. [PMID: 38566822 PMCID: PMC10985731 DOI: 10.1063/5.0189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.
Collapse
Affiliation(s)
| | - Jeremy Hsieh
- Pasadena Polytechnic High School, Pasadena, California 91106, USA
| | - Weikun Xiao
- Ellison Institute of Technology, Los Angeles, California 90064, USA
| | | | | |
Collapse
|
9
|
Budka J, Debowski D, Mai S, Narajczyk M, Hac S, Rolka K, Vrettos EI, Tzakos AG, Inkielewicz-Stepniak I. Design, Synthesis, and Antitumor Evaluation of an Opioid Growth Factor Bioconjugate Targeting Pancreatic Ductal Adenocarcinoma. Pharmaceutics 2024; 16:283. [PMID: 38399336 PMCID: PMC10892429 DOI: 10.3390/pharmaceutics16020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a formidable challenge with high lethality and limited effective drug treatments. Its heightened metastatic potential further complicates the prognosis. Owing to the significant toxicity of current chemotherapeutics, compounds like [Met5]-enkephalin, known as opioid growth factor (OGF), have emerged in oncology clinical trials. OGF, an endogenous peptide interacting with the OGF receptor (OGFr), plays a crucial role in inhibiting cell proliferation across various cancer types. This in vitro study explores the potential anticancer efficacy of a newly synthesized OGF bioconjugate in synergy with the classic chemotherapeutic agent, gemcitabine (OGF-Gem). The study delves into assessing the impact of the OGF-Gem conjugate on cell proliferation inhibition, cell cycle regulation, the induction of cellular senescence, and apoptosis. Furthermore, the antimetastatic potential of the OGF-Gem conjugate was demonstrated through evaluations using blood platelets and AsPC-1 cells with a light aggregometer. In summary, this article demonstrates the cytotoxic impact of the innovative OGF-Gem conjugate on pancreatic cancer cells in both 2D and 3D models. We highlight the potential of both the OGF-Gem conjugate and OGF alone in effectively inhibiting the ex vivo pancreatic tumor cell-induced platelet aggregation (TCIPA) process, a phenomenon not observed with Gem alone. Furthermore, the confirmed hemocompatibility of OGF-Gem with platelets reinforces its promising potential. We anticipate that this conjugation strategy will open avenues for the development of potent anticancer agents.
Collapse
Affiliation(s)
- Justyna Budka
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Dawid Debowski
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland
| | - Stanislaw Hac
- Department of General Endocrine and Transplant Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, University of Gdansk, 80-309 Gdansk, Poland
| | | | - Andreas G. Tzakos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
- University Research Center of Ioannina, Institute of Materials Science and Computing, 45110 Ioannina, Greece
| | | |
Collapse
|
10
|
Chen Z, Han S, Kim S, Lee C, Sanny A, Tan AHM, Park S. A 3D hanging spheroid-filter plate for high-throughput drug testing and CAR T cell cytotoxicity assay. Analyst 2024; 149:475-481. [PMID: 38050728 DOI: 10.1039/d3an01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Tumour spheroids are widely used in immune cell cytotoxicity assays and anticancer drug testing, providing a physiologically relevant model replicating the tumour microenvironment. However, co-culture of immune and tumour cells complicates quantification of immune cell killing efficiency. We present a novel 3D hanging spheroid-filter plate that efficiently facilitates spheroid formation and separates unbound/dead cells during cytotoxicity assays. Optical imaging directly measures the cytotoxic effects of anti-cancer drugs on tumour spheroids, eliminating the need for live/dead fluorescent staining. This approach enables cost-effective evaluation of T-cell cytotoxicity with specific chimeric antigen receptors (CARs), enhancing immune cell-based assays and drug testing in three-dimensional tumour models.
Collapse
Affiliation(s)
- Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Seokgyu Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sein Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Chanyang Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Arleen Sanny
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Andy Hee-Meng Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros, Singapore 138668, Republic of Singapore
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
11
|
Sullivan MR, White RP, Dashnamoorthy Ravi, Kanetkar N, Fridman IB, Ekenseair A, Evens AM, Konry T. Characterizing influence of rCHOP treatment on diffuse large B-cell lymphoma microenvironment through in vitro microfluidic spheroid model. Cell Death Dis 2024; 15:18. [PMID: 38195589 PMCID: PMC10776622 DOI: 10.1038/s41419-023-06299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches. Improved methods of early drug screening are essential for expediting the development of the therapeutic approaches most likely to help patients. Microfluidic devices provide a powerful tool for drug testing with enhanced biological relevance, along with multi-parameter data outputs. Here, we describe a hydrogel spheroid-based microfluidic model for screening lymphoma treatments. We utilized primary patient DLBCL cells in combination with NK cells and rCHOP treatment to determine the biological relevance of this approach. We observed cellular viability in response to treatment, rheological properties, and cell surface marker expression levels correlated well with expected in vivo characteristics. In addition, we explored secretory and transcriptomic changes in response to treatment. Our results showed complex changes in phenotype and transcriptomic response to treatment stimuli, including numerous metabolic and immunogenic changes. These findings support this model as an optimal platform for the comparative screening of novel treatments.
Collapse
Affiliation(s)
- Matthew R Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Rachel P White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Ninad Kanetkar
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | - Ilana Berger Fridman
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Avram and Stella Goldstein-Goren Department of Biotechnology and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adam Ekenseair
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | | | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
12
|
Zlotver I, Sosnik A. Glucosylated Hybrid TiO 2 /Polymer Nanomaterials for Actively Targeted Sonodynamic Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305475. [PMID: 37715267 DOI: 10.1002/smll.202305475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Sonodynamic therapy (SDT) is an anti-cancer therapeutic strategy based on the generation of reactive oxygen species (ROS) upon local ultrasound (US) irradiation of sono-responsive molecules or nanomaterials that accumulate in the tumor. In this work, the sonodynamic efficiency of sono-responsive hybrid nanomaterials composed of amorphous titanium dioxide and an amphiphilic poly(ethylene oxide)-b-poly(propylene oxide) block copolymer is synthesized, fully characterized, and investigated both in vitro and in vivo. The modular and versatile synthetic pathway enables the control of the nanoparticle size between 30 and 300 nm (dynamic light scattering) and glucosylation of the surface for active targeting of tumors overexpressing glucose transporters. Studies on 2D and 3D rhabdomyosarcoma cell cultures reveal a statistically significant increase in the sonodynamic efficiency of glucosylated hybrid nanoparticles with respect to unmodified ones. Using a xenograft rhabdomyosarcoma murine model, it is demonstrated that by tuning the nanoparticle size and surface features, the tumor accumulation is increased by ten times compared to main off-target clearance organs such as the liver. Finally, the SDT of rhabdomyosarcoma-bearing mice is investigated with 50-nm glucosylated nanoparticles. Findings evidence a dramatic prolongation of the animal survival and tumor volumes 100 times smaller than those treated only with ultrasound or nanoparticles.
Collapse
Affiliation(s)
- Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
13
|
Wang J, Qin W, Zhong Y, Hu H, Yang J, Huang H, Huang N, Liu S, Li J, Zheng L, Qin A, Lu Z. Injectable collagen hydrogel combines human umbilical cord mesenchymal stem cells to promote endometrial regeneration in rats with thin endometrium. Int J Biol Macromol 2024; 254:127591. [PMID: 37884246 DOI: 10.1016/j.ijbiomac.2023.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The regeneration of thin endometrium still remains as a great challenge in the field of reproductive medicine. Stem cells-based therapy has been considered as a promising strategy for the restoration of thin endometrium. However, the low transplantation and retention rate of stem cells and loss of stemness due to in vitro expansion limits the therapeutic efficacy. In our study, we combined collagen hydrogel and human umbilical cord mesenchymal stem cells (uMSCs) for improving the regeneration of thin endometrium, by using the potent pluripotency and low immunogenicity of uMSCs and collagen hydrogel that promotes the anchorage and proliferation of stem cells. Results showed that collagen hydrogel has favorable biocompatibility and the capacity to enhance the cell viability and expression of stemness-associated genes (including organic cation/carnitine transporter4 (Oct-4), Nanog homeobox (Nanog) and SRY-box transcription factor 2 (SOX2)) of uMSCs. The combination of collagen hydrogel and uMSCs prolonged the retention time of the constructs in the uterine cavity and improved endometrial thickness compared with uMSCs alone, leading to increase the fertility of the rats with thin endometrium. These highlighted therapeutic prospects of collagen hydrogel combined with uMSCs for the minimally invasive therapy of thin endometrium in the clinic.
Collapse
Affiliation(s)
- Jiawei Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weili Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanping Zhong
- Institute of Life Science, Guangxi Medical University, Nanning 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Nanchang Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shuhan Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiaxu Li
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Institute of Life Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
14
|
Brandl S, Reindl M. Blood-Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int J Mol Sci 2023; 24:12699. [PMID: 37628879 PMCID: PMC10454051 DOI: 10.3390/ijms241612699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The blood-brain barrier, which is formed by tightly interconnected microvascular endothelial cells, separates the brain from the peripheral circulation. Together with other central nervous system-resident cell types, including pericytes and astrocytes, the blood-brain barrier forms the neurovascular unit. Upon neuroinflammation, this barrier becomes leaky, allowing molecules and cells to enter the brain and to potentially harm the tissue of the central nervous system. Despite the significance of animal models in research, they may not always adequately reflect human pathophysiology. Therefore, human models are needed. This review will provide an overview of the blood-brain barrier in terms of both health and disease. It will describe all key elements of the in vitro models and will explore how different compositions can be utilized to effectively model a variety of neuroinflammatory conditions. Furthermore, it will explore the existing types of models that are used in basic research to study the respective pathologies thus far.
Collapse
Affiliation(s)
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
15
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
16
|
Leach T, Gandhi U, Reeves KD, Stumpf K, Okuda K, Marini FC, Walker SJ, Boucher R, Chan J, Cox LA, Atala A, Murphy SV. Development of a novel air-liquid interface airway tissue equivalent model for in vitro respiratory modeling studies. Sci Rep 2023; 13:10137. [PMID: 37349353 PMCID: PMC10287689 DOI: 10.1038/s41598-023-36863-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
The human airways are complex structures with important interactions between cells, extracellular matrix (ECM) proteins and the biomechanical microenvironment. A robust, well-differentiated in vitro culture system that accurately models these interactions would provide a useful tool for studying normal and pathological airway biology. Here, we report the development and characterization of a physiologically relevant air-liquid interface (ALI) 3D airway 'organ tissue equivalent' (OTE) model with three novel features: native pulmonary fibroblasts, solubilized lung ECM, and hydrogel substrate with tunable stiffness and porosity. We demonstrate the versatility of the OTE model by evaluating the impact of these features on human bronchial epithelial (HBE) cell phenotype. Variations of this model were analyzed during 28 days of ALI culture by evaluating epithelial confluence, trans-epithelial electrical resistance, and epithelial phenotype via multispectral immuno-histochemistry and next-generation sequencing. Cultures that included both solubilized lung ECM and native pulmonary fibroblasts within the hydrogel substrate formed well-differentiated ALI cultures that maintained a barrier function and expressed mature epithelial markers relating to goblet, club, and ciliated cells. Modulation of hydrogel stiffness did not negatively impact HBE differentiation and could be a valuable variable to alter epithelial phenotype. This study highlights the feasibility and versatility of a 3D airway OTE model to model the multiple components of the human airway 3D microenvironment.
Collapse
Affiliation(s)
- Timothy Leach
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA
| | - Uma Gandhi
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Kimberly D Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristina Stumpf
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Frank C Marini
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Stephen J Walker
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Richard Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA
| | - Sean V Murphy
- Wake Forest School of Medicine, Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
- Wake Forest School of Medicine, Medical Center Boulevard, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
17
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Aoyama J, Nojima Y, Sano D, Hirai Y, Kijima N, Aizawa Y, Takada K, Hatano T, Takahashi H, Nishimura G, Oridate N. Effect of HER2-targeted therapy on PDX and PDX-derived organoids generated from HER2-positive salivary duct carcinoma. Head Neck 2023. [PMID: 37184432 DOI: 10.1002/hed.27395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND We previously established a patient-derived xenograft (PDX) model, patient-derived organoids (PDOs), and PDX-derived organoids (PDXOs) for salivary duct carcinoma (SDC). Using these models, this study examined the therapeutic effect of human epidermal growth factor receptor 2 (HER2) blockade on HER2-positive SDC. METHODS The therapeutic effect of lapatinib was assessed in SDC PDXOs with regards to cell growth, receptor/downstream signaling molecule expression, phosphorylation levels, and apoptosis. Effect of lapatinib treatment was evaluated in vivo in SDC PDX mice. RESULTS The siRNA knockdown of HER2 and lapatinib suppressed cell proliferation in SDC PDXOs. Lapatinib inhibited the phosphorylation of HER2 and its downstream targets, and induced apoptosis in SDC PDXOs. Lapatinib also significantly reduced tumor volumes compared with that of the control in SDC PDX mice. CONCLUSION For the first time, we demonstrated the efficacy of anti-HER2 therapy in HER2-positive SDC using preclinical models of SDC PDX and PDXO.
Collapse
Affiliation(s)
- Jun Aoyama
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yusuke Nojima
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Sano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Yuri Hirai
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Natsumi Kijima
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihiro Aizawa
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Takada
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Hatano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Takahashi
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Goshi Nishimura
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhiko Oridate
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| |
Collapse
|
19
|
Kim J. Characterization of Biocompatibility of Functional Bioinks for 3D Bioprinting. Bioengineering (Basel) 2023; 10:bioengineering10040457. [PMID: 37106644 PMCID: PMC10135811 DOI: 10.3390/bioengineering10040457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Three-dimensional (3D) bioprinting with suitable bioinks has become a critical tool for fabricating 3D biomimetic complex structures mimicking physiological functions. While enormous efforts have been devoted to developing functional bioinks for 3D bioprinting, widely accepted bioinks have not yet been developed because they have to fulfill stringent requirements such as biocompatibility and printability simultaneously. To further advance our knowledge of the biocompatibility of bioinks, this review presents the evolving concept of the biocompatibility of bioinks and standardization efforts for biocompatibility characterization. This work also briefly reviews recent methodological advances in image analyses to characterize the biocompatibility of bioinks with regard to cell viability and cell-material interactions within 3D constructs. Finally, this review highlights a number of updated contemporary characterization technologies and future perspectives to further advance our understanding of the biocompatibility of functional bioinks for successful 3D bioprinting.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
20
|
Che J, DePalma TJ, Sivakumar H, Mezache LS, Tallman MM, Venere M, Swindle-Reilly K, Veeraraghavan R, Skardal A. αCT1 peptide sensitizes glioma cells to temozolomide in a glioblastoma organoid platform. Biotechnol Bioeng 2023; 120:1108-1119. [PMID: 36544242 DOI: 10.1002/bit.28313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common form of brain cancer. Even with aggressive treatment, tumor recurrence is almost universal and patient prognosis is poor because many GBM cell subpopulations, especially the mesenchymal and glioma stem cell populations, are resistant to temozolomide (TMZ), the most commonly used chemotherapeutic in GBM. For this reason, there is an urgent need for the development of new therapies that can more effectively treat GBM. Several recent studies have indicated that high expression of connexin 43 (Cx43) in GBM is associated with poor patient outcomes. It has been hypothesized that inhibition of the Cx43 hemichannels could prevent TMZ efflux and sensitize otherwise resistance cells to the treatment. In this study, we use a three-dimensional organoid model of GBM to demonstrate that combinatorial treatment with TMZ and αCT1, a Cx43 mimetic peptide, significantly improves treatment efficacy in certain populations of GBM. Confocal imaging was used to visualize changes in Cx43 expression in response to combinatorial treatment. These results indicate that Cx43 inhibition should be pursued further as an improved treatment for GBM.
Collapse
Affiliation(s)
- Jingru Che
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Louisa S Mezache
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Miranda M Tallman
- Dorothy M. Davis Hearth and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Monica Venere
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Katelyn Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
22
|
Chinabut P, Sawangkla N, Wattano S, Thavorasak T, Bootsongkorn W, Tungtrongchitr A, Ruenchit P. Formalin Inactivation of Virus for Safe Downstream Processing of Routine Stool Parasite Examination during the COVID-19 Pandemic. Diagnostics (Basel) 2023; 13:diagnostics13030466. [PMID: 36766571 PMCID: PMC9914773 DOI: 10.3390/diagnostics13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
During the COVID-19 pandemic, the parasitology laboratories dealing with fecal samples for the diagnosis of gastrointestinal parasitic infections are confronting the unsaved virus-containing samples. To allow for safe downstream processing of the fecal samples, a protocol for preparing a fecal smear is urgently needed. Formalin was tested with or without isotonic forms for virus inactivation using porcine epidemic diarrhea virus (PEDV) as a representative, as it belongs to the Coronaviridae family. The results revealed complete inactivation activity of 10% formalin and 10% isotonic formalin on coronavirus after 5 min of treatment at room temperature. Both also inhibited Naegleria fowleri growth after 5 min of treatment at 37 °C without disruption of the structure. In addition to these key findings, it was also found that isotonic formalin could stabilize both red and white blood cells when used as a solution to prepare fecal smears comparable to the standard method, highlighting its value for use instead of 0.9% normal saline solution for the quantification of blood cells without active virus. The 10% isotonic formalin is useful to safely prepare a fecal smear for the diagnosis of parasites and other infections of the gastrointestinal tract during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Pisith Chinabut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntiya Sawangkla
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphaluck Wattano
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weluga Bootsongkorn
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-24196484
| |
Collapse
|
23
|
Giczewska A, Pastuszak K, Houweling M, Abdul KU, Faaij N, Wedekind L, Noske D, Wurdinger T, Supernat A, Westerman BA. Longitudinal drug synergy assessment using convolutional neural network image-decoding of glioblastoma single-spheroid cultures. Neurooncol Adv 2023; 5:vdad134. [PMID: 38047207 PMCID: PMC10691443 DOI: 10.1093/noajnl/vdad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Background In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly performed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible through combined endpoint assays. Methods We provide a method for massive parallel monitoring of drug interactions for 16 drug combinations in 3 glioblastoma models over a time frame of 18 days. In our assay, viabilities of single neurospheres are to be estimated based on image information taken at different time points. Neurosphere images taken on the final day (day 18) were matched to the respective viability measured by CellTiter-Glo 3D on the same day. This allowed to use of machine learning to decode image information to viability values on day 18 as well as for the earlier time points (on days 8, 11, and 15). Results Our study shows that neurosphere images allow us to predict cell viability from extrapolated viabilities. This enables to assess of the drug interactions in a time window of 18 days. Our results show a clear and persistent synergistic interaction for several drug combinations over time. Conclusions Our method facilitates longitudinal drug-interaction assessment, providing new insights into the temporal-dynamic effects of drug combinations in 3D neurospheres which can help to identify more effective therapies against glioblastoma.
Collapse
Affiliation(s)
- Anna Giczewska
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Pastuszak
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Algorithms and System Modeling, Gdansk University of Technology, Gdańsk, Poland
| | - Megan Houweling
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Kulsoom U Abdul
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Noa Faaij
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laurine Wedekind
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - David Noske
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| | - Anna Supernat
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Center of Biostatistics and Bioinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- The WINDOW Consortium (www.window-consortium.org)
| |
Collapse
|
24
|
Congress Z, Brovold M, Soker S. Cell Viability Assays for 3D Cellular Constructs. Methods Mol Biol 2023; 2644:387-402. [PMID: 37142936 DOI: 10.1007/978-1-0716-3052-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro models fall short of replicating the complex in vivo processes including cell growth and differentiation. For many years, molecular biology research and drug development have relied on the use of cells grown within tissue culture dishes. These traditional in vitro two-dimensional (2D) cultures fail to recapitulate the 3D microenvironment of in vivo tissues. Due to inadequate surface topography, surface stiffness, cell-to-cell, and cell-to-ECM matrices, 2D cell culture systems are incapable of mimicking cell physiology seen in living healthy tissues. These factors can also place selective pressure on cells that substantially alter their molecular and phenotypic properties. With these disadvantages in mind, new and adaptive cell culture systems are necessary to recapitulate the cellular microenvironment in a more accurate manner for drug development, toxicity studies, drug delivery, and much more. Newly developed biofabrication technologies capable of creating 3D tissue constructs can open new opportunities for cell growth and developmental modeling. These constructs show great promise in representing an environment that allows cells to interact with other cells and their microenvironment in a much more physiologically accurate manner. When transitioning from 2D to 3D systems, there is the need to translate common cell viability analysis techniques from that of 2D cell culture to these 3D tissue constructs. Cell viability assays are critical in evaluating the health of cells in response to drug treatment or other stimuli to better understand how these factors effect the tissue constructs. As 3D cellular systems become the new standard in biomedical engineering, this chapter provides different assays used to assess cell viability qualitatively and quantitatively in 3D environments.
Collapse
Affiliation(s)
- Zachary Congress
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
25
|
Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication 2022; 14:10.1088/1758-5090/ac8768. [PMID: 35931060 PMCID: PMC9633045 DOI: 10.1088/1758-5090/ac8768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
Collapse
Affiliation(s)
| | | | - Katie J. Hogan
- Department of Bioengineering, Rice University, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX
- NIBIB/NIH Center for Engineering Complex Tissues, USA
| |
Collapse
|
26
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|