1
|
Grąźlewska W, Holec-Gąsior L. Antibody Cross-Reactivity in Serodiagnosis of Lyme Disease. Antibodies (Basel) 2023; 12:63. [PMID: 37873860 PMCID: PMC10594444 DOI: 10.3390/antib12040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease is a tick-borne disease caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. The disease is characterized by a varied course; therefore, the basis for diagnosis is laboratory methods. Currently, a two-tiered serological test is recommended, using an ELISA as a screening test and a Western blot as a confirmatory test. This approach was introduced due to the relatively high number of false-positive results obtained when using an ELISA alone. However, even this approach has not entirely solved the problem of false-positive results caused by cross-reactive antibodies. Many highly immunogenic B. burgdorferi s.l. proteins are recognized nonspecifically by antibodies directed against other pathogens. This also applies to antigens, such as OspC, BmpA, VlsE, and FlaB, i.e., those commonly used in serodiagnostic assays. Cross-reactions can be caused by both bacterial (relapsing fever Borrelia, Treponema pallidum) and viral (Epstein-Baar virus, Cytomegalovirus) infections. Additionally, a rheumatoid factor has also been shown to nonspecifically recognize B. burgdorferi s.l. proteins, resulting in false-positive results. Therefore, it is necessary to carefully interpret the results of serodiagnostic tests so as to avoid overdiagnosis of Lyme disease, which causes unnecessary implementations of strong antibiotic therapies and delays in the correct diagnosis.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| |
Collapse
|
2
|
Quarsten H, Henningsson A, Krogfelt K, Strube C, Wennerås C, Mavin S. Tick-borne diseases under the radar in the North Sea Region. Ticks Tick Borne Dis 2023; 14:102185. [PMID: 37116420 DOI: 10.1016/j.ttbdis.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
The impact of tick-borne diseases caused by pathogens such as Anaplasma phagocytophilum, Neoehrlichia mikurensis, Borrelia miyamotoi, Rickettsia helvetica and Babesia species on public health is largely unknown. Data on the prevalence of these pathogens in Ixodes ricinus ticks from seven countries within the North Sea Region in Europe as well as the types and availability of diagnostic tests and the main clinical features of their corresponding diseases is reported and discussed. Raised awareness is needed to discover cases of these under-recognized types of tick-borne disease, which should provide valuable insights into these diseases and their clinical significance.
Collapse
Affiliation(s)
- Hanne Quarsten
- Department of Medical Microbiology, Sørlandet Hospital, Kristiansand 4615, Norway.
| | - Anna Henningsson
- Department of Clinical Microbiology in Jönköping, County Hospital Ryhov, Jönköping 55185, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping 58183, Sweden
| | - Karen Krogfelt
- Department of Science and Environment, University of Roskilde, Roskilde 4000, Denmark
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover 30559, Germany
| | - Christine Wennerås
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg 413 46, Sweden
| | - Sally Mavin
- Scottish Lyme Disease and Tick-Borne Infections Reference Laboratory, Raigmore Hospital, Inverness IV2 3BW, United Kingdom
| |
Collapse
|
3
|
15-year Borrelia prevalence and species distribution monitoring in Ixodes ricinus/inopinatus populations in the city of Hanover, Germany. Ticks Tick Borne Dis 2023; 14:102074. [PMID: 36335680 DOI: 10.1016/j.ttbdis.2022.102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato (s.l.) spirochaetes, is the most common tick-borne disease (TBD) in the Northern Hemisphere. Rising incidences indicate that its epidemiology may be affected by global changes. Therefore, the current study aimed to assess changes in tick infection rates with Borrelia spp. over a 15-year monitoring period in the city of Hanover, Germany, as a follow-up to previous prevalence studies (years 2005, 2010 and 2015). To assess the epidemiological risk, ticks of the Ixodes ricinus/inopinatus-complex were sampled from April to October 2020 by the flagging method at 10 frequently visited recreation areas in Hanover. Analysis by quantitative real-time PCR of 2100 individual ticks revealed an overall Borrelia prevalence of 25.5% (535/2100). Regarding different tick developmental stages, nymphs showed a significantly lower Borrelia prevalence (18.4% [193/1050]) than adult ticks (32.6% [342/1050]). Comparison with previous years revealed a stable total Borrelia prevalence along with consistent infection rates in the different developmental stages over the 15-year monitoring period. Borrelia species differentiation by Reverse Line Blot was successful in 67.3% of positive ticks collected in 2020, with B. afzelii being the dominating species (59.2% of the differentiated infections), besides B. burgdorferi sensu stricto (s.s.), B. garinii, B. valaisiana, B. spielmanii, B. bavariensis and B. bissettiae and the relapsing fever spirochaete B. miyamotoi. Additionally, the proportion of infections attributed to B. afzelii showed a significant increase in 2020 compared to 2005 and 2015 (59.2% vs. 37.6% and 32.0% of successfully differentiated infections, respectively). Coinfections with Anaplasma phagocytophilum and Rickettsia spp. stayed stable comparing 2020 with previous years. Therefore, although changes in the Borrelia prevalence in questing ticks were not observed throughout the 15-year monitoring period, shifts in Borrelia species distribution may alter the epidemiological risk.
Collapse
|
4
|
Glass A, Springer A, Strube C. A 15-year monitoring of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in questing ticks in the city of Hanover, Germany. Ticks Tick Borne Dis 2022; 13:101975. [DOI: 10.1016/j.ttbdis.2022.101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 01/29/2023]
|
5
|
Răileanu C, Silaghi C, Fingerle V, Margos G, Thiel C, Pfister K, Overzier E. Borrelia burgdorferi Sensu Lato in Questing and Engorged Ticks from Different Habitat Types in Southern Germany. Microorganisms 2021; 9:microorganisms9061266. [PMID: 34200876 PMCID: PMC8230558 DOI: 10.3390/microorganisms9061266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Borrelia burgdorferi sensu lato (s.l.) causes the most common tick-borne infection in Europe, with Germany being amongst the countries with the highest incidences in humans. This study aimed at (1) comparing infection rates of B. burgdorferi s.l. in questing Ixodes ricinus ticks from different habitat types in Southern Germany, (2) analysing genospecies distribution by habitat type, and (3) testing tissue and ticks from hosts for B. burgdorferi s.l. Questing ticks from urban, pasture, and natural habitats together with feeding ticks from cattle (pasture) and ticks and tissue samples from wild boars and roe deer (natural site) were tested by PCR and RFLP for species differentiation. B. burgdorferi s.l. was found in 29.8% questing adults and 15% nymphs. Prevalence was lower at the urban sites with occurrence of roe deer than where these were absent. Borrelia burgdorferi s.l. DNA was found in 4.8% ticks from roe deer, 6.3% from wild boar, and 7.8% from cattle. Six genospecies were identified in unfed ticks: Borrelia afzelii (48.6%), Borrelia burgdorferi sensu stricto (16%), Borrelia garinii (13.2%), Borrelia valaisiana (7.5%), Borrelia spielmanii (6.2%), and Borrelia bavariensis (0.9%). This study shows high infection levels and a great diversity of Borrelia in questing ticks. The presence of roe deer seems to reduce B. burgdorferi s.l. infection rates in tick populations.
Collapse
Affiliation(s)
- Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
- Correspondence:
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleißheim, Germany; (V.F.); (G.M.)
| | - Claudia Thiel
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Kurt Pfister
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| | - Evelyn Overzier
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, 80805 Munich, Germany; (C.T.); (K.P.); (E.O.)
| |
Collapse
|
6
|
Knoll S, Springer A, Hauck D, Schunack B, Pachnicke S, Strube C. Regional, seasonal, biennial and landscape-associated distribution of Anaplasma phagocytophilum and Rickettsia spp. infections in Ixodes ticks in northern Germany and implications for risk assessment at larger spatial scales. Ticks Tick Borne Dis 2021; 12:101657. [PMID: 33524939 DOI: 10.1016/j.ttbdis.2021.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Tick-associated Rickettsiales are important pathogens with relevance for public and animal health; therefore, knowledge regarding their distribution is essential for risk assessment and disease prevention. To investigate the prevalence of Anaplasma phagocytophilum and Rickettsia spp. in northern Germany, Ixodes ticks were flagged monthly from April to October in 2018 and 2019 at three collection sites each in the regions of Bremen, Emsland, Hanover, Kassel and Uelzen. A total of 3150 ticks (1052 females, 1048 males and 1050 nymphs) were individually examined for rickettsial infections using probe-based quantitative real-time PCR. Overall prevalence of A. phagocytophilum was 6.4 % (202/3150; 6.7 % [71/1052] in females, 7.5 % [79/1048] in males and 5.0 % [52/1050] in nymphs). For Rickettsia spp., the overall prevalence was 29.6 % (931/3150; 33.4 % [351/1052] in females, 28.3 % [297/1048] in males and 27.0 % [283/1050] in nymphs). Rickettsia species identification by real-time pyrosequencing on a subset of 409 positive samples was successful in 407 cases (99.5 %). Rickettsia helvetica was the predominant species with a detection rate of 99.8 % (406/407). Additionally, Rickettsia monacensis was detected in one tick (0.2 %). Generalized linear mixed models showed significant regional as well as monthly differences regarding the prevalence of both pathogens. In addition, the prevalence of both pathogens was significantly higher in 2018 (A. phagocytophilum: 8.0 % [126/1575], Rickettsia spp.: 35.4 % [558/1575]) than in 2019 (A. phagocytophilum: 4.8 % [76/1575], Rickettsia spp.: 23.9 % [373/1575]). In contrast, no effect of landscape type on pathogen prevalence was found. As Rickettsia spp.-detection was based on the single-copy gene gltA, it was possible to calculate the individual pathogen load per tick, which was significantly higher in female ticks than in nymphs (mean values: 8.19 × 104 vs. 9.58 × 103). Regional, seasonal and biennial prevalence differences of tick-transmitted Rickettsiales show the necessity to investigate ticks from multiple locations, over several months and in more than one year to reliably assess the infection risk on a larger geographical scale.
Collapse
Affiliation(s)
- Steffen Knoll
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Bettina Schunack
- Bayer Animal Health GmbH (Part of Elanco Animal Health), 51373, Leverkusen, Germany
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
7
|
Hauck D, Springer A, Chitimia-Dobler L, Strube C. Two-year monitoring of tick abundance and influencing factors in an urban area (city of Hanover, Germany). Ticks Tick Borne Dis 2020; 11:101464. [PMID: 32723659 DOI: 10.1016/j.ttbdis.2020.101464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Ticks may transmit a variety of human and animal pathogens. Prevalence of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in ticks has been monitored in the city of Hanover, Germany, since 2005. However, to determine the infection risk for humans and animals, not only pathogen prevalence, but also tick abundance and seasonality need to be taken into account. Therefore, the aim of this study was to investigate tick abundance at ten different collection sites in the city of Hanover, Germany. Collection of questing ticks was performed by the flagging method in the first and second half of each month during the tick season (April-October) in 2017 and 2018. At each 200 m² collection site, one of four 50 m² fields was sampled per visit on a rotational basis, resulting in 100 m² sampled per month. In addition, data on weather conditions, near-ground temperature, relative humidity and vegetation composition were noted at each collection event. In 2017, a total of 1770 ticks were collected, while 1866 ticks were collected in 2018. Ixodes ricinus was the most prevalent species (97.0 % of all ticks, 98.0 % of nymphs, 91.6 % of adults) followed by I. inopinatus (2.3 % of all ticks, 1.1 % of nymphs, 8.0 % of adults), I. frontalis (0.6 % of all ticks, 0.6 % of nymphs, 0.3 % of adults) and I. hexagonus (0.03 % of all ticks, 0.03 % of nymphs, 0.0 % of adults). Using generalized linear mixed modeling, density of I. ricinus and I. inopinatus in 2017 was significantly higher than in 2018. Regarding different landscape types, ticks were significantly more abundant in mixed forests than in parks, with more than 50 ticks/100 m² on average in both years. In urban parks, average tick density amounted to 15 ticks/100 m² in 2017 and 11 ticks/100 m² in 2018 and in broad-leaved forests average tick density was 13 and 18 ticks/100 m² in 2017 and 2018, respectively. Tick density showed a marked peak in June 2017 and in May 2018 at most sites, whereas a less pronounced peak was recognizable in September. Tick density varied considerably between collection sites. However, no statistically significant effect of (micro-)climatic variables, including near-ground temperature, relative humidity and saturation deficit, was found. Thus, further factors, such as the abundance of wildlife hosts, need to be considered in future studies to explain the differences between collection sites.
Collapse
Affiliation(s)
- Daniela Hauck
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
8
|
Grochowska A, Milewski R, Pancewicz S, Dunaj J, Czupryna P, Milewska AJ, Róg-Makal M, Grygorczuk S, Moniuszko-Malinowska A. Comparison of tick-borne pathogen prevalence in Ixodes ricinus ticks collected in urban areas of Europe. Sci Rep 2020; 10:6975. [PMID: 32332817 PMCID: PMC7181685 DOI: 10.1038/s41598-020-63883-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Tick-borne diseases are a major threat to human and animal health. An increasing number of natural habitats have been transformed into urban areas by human activity; hence, the number of reported tick bites in urban and suburban areas has risen. This retrospective analysis evaluated 53 scientific reports concerning infections of Ixodes ricinus ticks collected from urban and suburban areas of Europe between 1991 and 2017. The results indicate significant differences in many variables, including a higher number of Anaplasma phagocytophilum infections in Eastern Europe than in Western Europe. The opposite result was observed for Candidatus Neoehrlichia mikurensis infections. A comparison of climate zones revealed that Borrelia burgdorferi s.l. infections have the greatest median incidence rate in subtropical climate zones. No statistical significance was found when comparing other tick-borne pathogens (TBPs), such as Borrelia miyamotoi, Rickettsia spp., Babesia spp., Bartonella spp., Ehrlichia spp., Coxiella burnetii and Francisella tularensis. The analysis also showed significant differences in the overall prevalence of TBPs according to average temperatures and rainfall across Europe. This retrospective study contributes to the knowledge on the occurrence and prevalence of TBPs in urbanized areas of Europe and their dependence on the habitats and geographical distributions of ticks. Due to the increased risk of tick bites, it is of great importance to investigate infections in ticks from urban and suburban areas.
Collapse
Affiliation(s)
- Anna Grochowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland.
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Białystok, Szpitalna 37, 15-295 Białystok, Poland
| | - Magdalena Róg-Makal
- Department of Invasive Cardiology, Medical University of Białystok, M. Skłodowskiej-Curie 24 A, 15-276, Białystok, Poland
| | - Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
9
|
Răileanu C, Tauchmann O, Vasić A, Wöhnke E, Silaghi C. Borrelia miyamotoi and Borrelia burgdorferi (sensu lato) identification and survey of tick-borne encephalitis virus in ticks from north-eastern Germany. Parasit Vectors 2020; 13:106. [PMID: 32106890 PMCID: PMC7045458 DOI: 10.1186/s13071-020-3969-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Ixodes ricinus is the most common tick species in Europe and the main vector for Borrelia burgdorferi (sensu lato) and tick-borne encephalitis virus (TBEV). It is involved also in the transmission of Borrelia miyamotoi, a relapsing fever spirochete that causes health disorders in humans. Little is known regarding the circulation of Borrelia species and the natural foci of TBEV in north-eastern Germany. The goal of this study was to investigate the infection rates of Borrelia spp. and of TBEV in I. ricinus ticks from north-eastern Germany. Methods Ticks were collected by flagging from 14 forest sites in Mecklenburg-Western Pomerania between April and October 2018. RNA and DNA extraction was performed from individual adult ticks and from pools of 2–10 nymphs. Real time reverse transcription PCR (RT-qPCR) targeted the 3′ non-coding region of TBEV, while DNA of Borrelia spp. was tested by nested PCR for the amplification of 16S-23S intergenic spacer. Multilocus sequence typing (MLST) was performed on B. miyamotoi isolates. Results In total, 2407 ticks were collected (239 females, 232 males and 1936 nymphs). Female and male I. ricinus ticks had identical infection rates (both 12.1%) for Borrelia spp., while nymphal pools showed a minimum infection rate (MIR) of 3.3%. Sequencing revealed four Borrelia species: B. afzelii, B. garinii, B. valaisiana and B. miyamotoi. Borrelia afzelii had the highest prevalence in adult ticks (5.5%) and nymphs (MIR of 1.8%). Borrelia miyamotoi was identified in 3.0% of adults and registered the MIR of 0.8% in nymphs. Borrelia valaisiana was confirmed in 2.5% adult ticks and nymphs had the MIR of 0.7%, while B. garinii was present in 1.1% of adults and showed a MIR of 0.1% in nymphs. The MLST of B. miyamotoi isolates showed that they belong to sequence type 635. No tick sample was positive after RT-qPCR for TBEV RNA. Conclusions The prevalence of B. miyamotoi in I. ricinus ticks registered similar levels to other reports from Europe suggesting that this agent might be well established in the local tick population. The detection of B. burgdorferi (s.l.) indicates a constant circulation in tick populations from this region.![]()
Collapse
Affiliation(s)
- Cristian Răileanu
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943, Greifswald-Insel Riems, Germany
| | - Oliver Tauchmann
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943, Greifswald-Insel Riems, Germany
| | - Ana Vasić
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943, Greifswald-Insel Riems, Germany
| | - Elisabeth Wöhnke
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943, Greifswald-Insel Riems, Germany.,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17943, Greifswald-Insel Riems, Germany. .,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany. .,Department of Biology, University of Greifswald, Domstrasse 11, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Lejal E, Marsot M, Chalvet-Monfray K, Cosson JF, Moutailler S, Vayssier-Taussat M, Pollet T. A three-years assessment of Ixodes ricinus-borne pathogens in a French peri-urban forest. Parasit Vectors 2019; 12:551. [PMID: 31752997 PMCID: PMC6873405 DOI: 10.1186/s13071-019-3799-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the predominant tick species in Europe and the primary pathogen vector for both humans and animals. These ticks are frequently involved in the transmission of Borrelia burgdorferi (sensu lato), the causative agents of Lyme borreliosis. While much more is known about I. ricinus tick-borne pathogen composition, information about temporal tick-borne pathogen patterns remain scarce. These data are crucial for predicting seasonal/annual patterns which could improve understanding and prevent tick-borne diseases. METHODS We examined tick-borne pathogen (TBP) dynamics in I. ricinus collected monthly in a peri-urban forest over three consecutive years. In total, 998 nymphs were screened for 31 pathogenic species using high-throughput microfluidic real-time PCR. RESULTS We detected DNA from Anaplasma phagocytophilum (5.3%), Rickettsia helvetica (4.5%), Borrelia burgdorferi (s.l.) (3.7%), Borrelia miyamotoi (1.2%), Babesia venatorum (1.5%) and Rickettsia felis (0.1%). Among all analysed ticks, 15.9% were infected by at least one of these microorganisms, and 1.3% were co-infected. Co-infections with B. afzeli/B. garinii and B. garinii/B. spielmanii were significantly over-represented. Moreover, significant variations in seasonal and/or inter-annual prevalence were observed for several pathogens (R. helvetica, B. burgdorferi (s.l.), B. miyamotoi and A. phagocytophilum). CONCLUSIONS Analysing TBP prevalence in monthly sampled tick over three years allowed us to assess seasonal and inter-annual fluctuations of the prevalence of TBPs known to circulate in the sampled area, but also to detect less common species. All these data emphasize that sporadic tick samplings are not sufficient to determine TBP prevalence and that regular monitoring is necessary.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, ANSES, University Paris Est, Maisons-Alfort, France
| | - Karine Chalvet-Monfray
- UMR EPIA, VetAgro Sup, INRA, Université de Lyon, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
11
|
Prevention of transmission of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10% + flumethrin 4.5%). Parasitol Res 2019; 119:299-315. [PMID: 31734862 PMCID: PMC6942034 DOI: 10.1007/s00436-019-06394-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/05/2019] [Indexed: 11/02/2022]
Abstract
The capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.
Collapse
|
12
|
Lejal E, Moutailler S, Šimo L, Vayssier-Taussat M, Pollet T. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasit Vectors 2019; 12:152. [PMID: 30940200 PMCID: PMC6444572 DOI: 10.1186/s13071-019-3418-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tick midgut and salivary glands represent the primary organs for pathogen acquisition and transmission, respectively. Specifically, the midgut is the first organ to have contact with pathogens during the blood meal uptake, while salivary glands along with their secretions play a crucial role in pathogen transmission to the host. Currently there is little data about pathogen composition and prevalence in Ixodes ricinus midgut and salivary glands. The present study investigated the presence of 32 pathogen species in the midgut and salivary glands of unfed I. ricinus males and females using high-throughput microfluidic real-time PCR. Such an approach is important for enriching the knowledge about pathogen distribution in distinct tick organs which should lead to a better understanding I. ricinus-borne disease epidemiology. RESULTS Borrelia lusitaniae, Borrelia spielmanii and Borrelia garinii, were detected in both midgut and salivary glands suggesting that the migration of these pathogens between these two organs might not be triggered by the blood meal. In contrast, Borrelia afzelii was detected only in the tick midgut. Anaplasma phagocytophilum and Rickettsia helvetica were the most frequently detected in ticks and were found in both males and females in the midgut and salivary glands. In contrast, Rickettsia felis was only detected in salivary glands. Finally, Borrelia miyamotoi and Babesia venatorum were detected only in males in both midguts and salivary glands. Among all collected ticks, between 10-21% of organs were co-infected. The most common bacterial co-infections in male and female midgut and salivary glands were Rickettsia helvetica + Anaplasma phagocytophilum and Rickettsia helvetica + Borrelia lusitaniae, respectively. CONCLUSIONS Analysing tick-borne pathogen (TBP) presence in specific tick organs enabled us to (i) highlight contrasting results with well-established transmission mechanism postulates; (ii) venture new hypotheses concerning pathogen location and migration from midgut to salivary glands; and (iii) suggest other potential associations between pathogens not previously detected at the scale of the whole tick. This work highlights the importance of considering all tick scales (i.e. whole ticks vs organs) to study TBP ecology and represents another step towards improved understanding of TBP transmission.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Ladislav Šimo
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
13
|
Blazejak K, Raulf MK, Janecek E, Jordan D, Fingerle V, Strube C. Shifts in Borrelia burgdorferi (s.l.) geno-species infections in Ixodes ricinus over a 10-year surveillance period in the city of Hanover (Germany) and Borrelia miyamotoi-specific Reverse Line Blot detection. Parasit Vectors 2018; 11:304. [PMID: 29776377 PMCID: PMC5960134 DOI: 10.1186/s13071-018-2882-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lyme borreliosis caused by spirochetes of the Borrelia burgdorferi (sensu lato) complex is still the most common tick-borne disease in Europe, posing a considerable threat to public health. The predominant vector in Europe is the widespread hard tick Ixodes ricinus, which also transmits the relapsing fever spirochete B. miyamotoi as well as pathogenic Rickettsiales (Anaplasma phagocytophilum, Rickettsia spp.). To assess the public health risk, a long-term monitoring of tick infection rates with the named pathogens is indispensable. METHODS The present study is the first German 10-year follow-up monitoring of tick infections with Borrelia spp. and co-infections with Rickettsiales. Furthermore, a specific Reverse Line Blot (RLB) protocol for detection of B. miyamotoi and simultaneous differentiation of B. burgdorferi (s.l.) geno-species was established. RESULTS Overall, 24.0% (505/2100) of ticks collected in the city of Hanover were infected with Borrelia. In detail, 35.4% (203/573) of adult ticks [38.5% females (111/288) and 32.3% males (92/285)] and 19.8% nymphs (302/1527) were infected, representing consistent infection rates over the 10-year monitoring period. Geno-species differentiation using RLB determined B. miyamotoi in 8.9% (45/505) of positive ticks. Furthermore, a significant decrease in B. afzelii and B. spielmanii infection rates from 2010 to 2015 was observed. Co-infections with Rickettsia spp. and A. phagocytophilum increased between 2010 and 2015 (7.3 vs 10.9% and 0.3 vs 1.1%, respectively). CONCLUSIONS Long-term monitoring is an essential part of public health risk assessment to capture data on pathogen occurrence over time. Such data will reveal shifts in pathogen geno-species distribution and help to answer the question whether or not climate change influences tick-borne pathogens.
Collapse
Affiliation(s)
- Katrin Blazejak
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Marie-Kristin Raulf
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.,Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Elisabeth Janecek
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Oberschleißheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
14
|
Blazejak K, Janecek E, Strube C. A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasit Vectors 2017; 10:588. [PMID: 29179774 PMCID: PMC5704456 DOI: 10.1186/s13071-017-2537-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/14/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) transmitted by ticks are considered (re-)emerging pathogens posing a risk to public health. Nevertheless, year-long monitoring studies on prevalences of these pathogens in questing ticks to contribute to public health risk assessment are rare. METHODS The current study extends previous prevalence surveillances (2005 and 2010) by 2015 to a 10-year monitoring. Therefore, 2100 questing Ixodes ricinus were collected from April to October 2015 at ten different recreation sites in the city of Hanover, Germany, to determine potential changes in tick infection rates with Rickettsiales. RESULTS Of the collected ticks, 288 were adult females, 285 adult males and 1527 nymphs. Overall, 3.8% (79/2100) of ticks were infected with A. phagocytophilum, 50.8% (1066/2100) with Rickettsia spp. and 2.2% (46/2100) with both pathogens. Statistical analyses revealed stagnating A. phagocytophilum infection rates over the 10-year monitoring period, whereas Rickettsia infections increased significantly (33.3% in 2005 and 26.2% in 2010 vs 50.8% in 2015). This increase was also characterized by prominent seasonality with higher prevalences from July to October. CONCLUSIONS As increased tick infection rates result in an increased risk for public health, the long-term data reported here provide significant implications for the understanding of progressing Rickettsiales distribution in ticks and essentially contribute to reliable public health risk assessments.
Collapse
Affiliation(s)
- Katrin Blazejak
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elisabeth Janecek
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
15
|
Hansford KM, Fonville M, Gillingham EL, Coipan EC, Pietzsch ME, Krawczyk AI, Vaux AG, Cull B, Sprong H, Medlock JM. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks Tick Borne Dis 2017; 8:353-361. [DOI: 10.1016/j.ttbdis.2016.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
16
|
Kybicová K, Baštová K, Malý M. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing ticks Ixodes ricinus from the Czech Republic. Ticks Tick Borne Dis 2017; 8:483-487. [PMID: 28238642 DOI: 10.1016/j.ttbdis.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The aim of the present study is to compare the prevalence of Borrelia burgdorferi sensu lato (s.l.) and Anaplasma phagocytophilum in questing ticks by using molecular methods from spring to autumn 2007. A total of 526 Ixodes ricinus ticks were collected from vegetation in three different sampling sites, representing an urban area (city park), a suburban area (village) and a natural montane habitat. The prevalence of B. burgdorferi s.l. was 17.3% (7.5% in males, 18.7% in females and 20.2% in nymphs), while 4.4% of ticks (13.1% of males, 3.7% of females and 1.6% of nymphs) tested positive for A. phagocytophilum. We found higher rates of Anaplasma infection in ticks from the urban area (8.6%) than from the suburban (0.8%) and natural (1.6%) habitats in the spring months. The prevalence of Borrelia infection in the urban park increased significantly from spring (14% in March) to autumn (50% in October). The Anaplasma positivity in the urban area in the autumn months (2.2%) was significantly lower than in the spring and summer months (9.6%). The prevalence of A. phagocytophilum was significantly higher in male ticks than in females and nymphs. For B. burgdorferi s.l., the inverse was true. We conclude that infection risks associated with the presence of Anaplasma and Borrelia in ticks in cities may be comparable to those in natural ecosystems or may be even higher. Our results indicate the need for the surveillance of tick-borne pathogens in urban areas.
Collapse
Affiliation(s)
- Kateřina Kybicová
- National Reference Laboratory of Lyme Borreliosis, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia.
| | - Kateřina Baštová
- National Reference Laboratory of Lyme Borreliosis, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia
| | - Marek Malý
- Department of Biostatistics, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czechia
| |
Collapse
|
17
|
Affiliation(s)
- Fedor Gassner
- Gassner Biological Risk Consultancy, Jachthoeve 22, 3992 NV Houten, the Netherlands
| | - Kayleigh M. Hansford
- Medical Entomology & Zoonoses Ecology, Emergency Response Department – Science & Technology, Health Protection Directorate, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
- NIHR Health Protection Research Unit in Environmental Change and Health, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| | - Jolyon M. Medlock
- Medical Entomology & Zoonoses Ecology, Emergency Response Department – Science & Technology, Health Protection Directorate, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
- NIHR Health Protection Research Unit in Environmental Change and Health, Porton Down, Salisbury, Wiltshire SP4 0JG, United Kingdom
| |
Collapse
|
18
|
Moutailler S, Valiente Moro C, Vaumourin E, Michelet L, Tran FH, Devillers E, Cosson JF, Gasqui P, Van VT, Mavingui P, Vourc’h G, Vayssier-Taussat M. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl Trop Dis 2016; 10:e0004539. [PMID: 26986203 PMCID: PMC4795628 DOI: 10.1371/journal.pntd.0004539] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/22/2016] [Indexed: 01/17/2023] Open
Abstract
Introduction Ticks are the most common arthropod vectors of both human and animal diseases in Europe, and the Ixodes ricinus tick species is able to transmit a large number of bacteria, viruses and parasites. Ticks may also be co-infected with several pathogens, with a subsequent high likelihood of co-transmission to humans or animals. However few data exist regarding co-infection prevalences, and these studies only focus on certain well-known pathogens. In addition to pathogens, ticks also carry symbionts that may play important roles in tick biology, and could interfere with pathogen maintenance and transmission. In this study we evaluated the prevalence of 38 pathogens and four symbionts and their co-infection levels as well as possible interactions between pathogens, or between pathogens and symbionts. Methodology/principal findings A total of 267 Ixodes ricinus female specimens were collected in the French Ardennes and analyzed by high-throughput real-time PCR for the presence of 37 pathogens (bacteria and parasites), by rRT-PCR to detect the presence of Tick-Borne encephalitis virus (TBEV) and by nested PCR to detect four symbionts. Possible multipartite interactions between pathogens, or between pathogens and symbionts were statistically evaluated. Among the infected ticks, 45% were co-infected, and carried up to five different pathogens. When adding symbiont prevalences, all ticks were infected by at least one microorganism, and up to eight microorganisms were identified in the same tick. When considering possible interactions between pathogens, the results suggested a strong association between Borrelia garinii and B. afzelii, whereas there were no significant interactions between symbionts and pathogens. Conclusion/significance Our study reveals high pathogen co-infection rates in ticks, raising questions about possible co-transmission of these agents to humans or animals, and their consequences to human and animal health. We also demonstrated high prevalence rates of symbionts co-existing with pathogens, opening new avenues of enquiry regarding their effects on pathogen transmission and vector competence. Ticks transmit more pathogens than any other arthropod, and one single species can transmit a large variety of bacteria and parasites. Because co-infection might be much more common than previously thought, we evaluated the prevalence of 38 known or neglected tick-borne pathogens in Ixodes ricinus ticks. Our results demonstrated that co-infection occurred in almost half of the infected ticks, and that ticks could be infected with up to five pathogens. Moreover, as it is well established that symbionts can affect pathogen transmission in arthropods, we also evaluated the prevalence of four symbiont species and demonstrated that all ticks were infected by at least one microorganism. This work highlights the co-infection phenomenon in ticks, which may have important implications for human and animal health, emphasizing the need for new diagnostic tests better adapted to tick-borne diseases. Finally, the high co-occurrence of symbionts and pathogens in ticks, reveals the necessity to also account for these interactions in the development of new alternative strategies to control ticks and tick-borne disease.
Collapse
Affiliation(s)
- Sara Moutailler
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Claire Valiente Moro
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | | | - Lorraine Michelet
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Florence Hélène Tran
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Elodie Devillers
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Jean-François Cosson
- UMR Bipar, Anses, INRA, ENVA 14 Rue Pierre et Marie Curie, Maisons-Alfort, France
- CBGP, INRA, Vetagrosup, IRD F-34988 Montferrier-sur-Lez, France
| | | | - Van Tran Van
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
- Université de La Réunion, UMR PIMIT, INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint-Denis, La Réunion, France
| | | | | |
Collapse
|
19
|
Mehlhorn H, Mehlhorn T, Müller M, Vogt M, Rissland J. Tick survey for prevalent pathogens in peri-urban recreation sites in Saarland and Rhineland-Palatinate (Germany). Parasitol Res 2015; 115:1167-72. [PMID: 26646396 DOI: 10.1007/s00436-015-4852-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
Ixodid ticks are important vectors of human pathogens in Central Europe. Despite this fact, prevalence studies are scarce, especially with regard to much-frequented peri-urban recreation sites. In this pilot study, 4.014 larvae, nymphs and adult ticks sampled monthly during the active seasons in 2011 and 2012 from 14 distinct collection sites in two German states (Saarland and Rhineland-Palatinate) were screened for Borrelia spp., Anaplasma spp. and tick-borne encephalitis virus. Mean prevalence rates were 19.8 % for Borrelia spp., 1.9 % for Anaplasma spp. and 0.1 % for tick-borne encephalitis virus (TBEV), which are in accordance with those reported from other regions in Germany and neighbouring countries. Nevertheless, the detection of TBEV-infected ticks is the first positive result after several unsuccessful efforts over the previous years in official "TBE-risk" zones of Saarland and Rhineland-Palatinate which supports the presumption of the origin of observed local infection. Besides ixodid ticks a non-engorged adult female tick of the invading species Dermacentor reticulatus has been found reflecting the appearance of another vector eventually jeopardising the health of host animals as well as humans.
Collapse
Affiliation(s)
- Heinz Mehlhorn
- Institute for Parasitology, Heinrich Heine University, D-40225, Düsseldorf, Germany.
| | - Tim Mehlhorn
- Institute for Clinical Microbiology and Hospital Hygiene, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Melanie Müller
- Institute of Virology, Saarland University Medical Centre, Homburg, Germany
| | - Manfred Vogt
- Landesuntersuchungsamt Rheinland-Pfalz, Abteilung Humanmedizin, Koblenz, Germany
| | - Jürgen Rissland
- Institute of Virology, Saarland University Medical Centre, Homburg, Germany
| |
Collapse
|
20
|
Henningsson AJ, Wilhelmsson P, Gyllemark P, Kozak M, Matussek A, Nyman D, Ekerfelt C, Lindgren PE, Forsberg P. Low risk of seroconversion or clinical disease in humans after a bite by an Anaplasma phagocytophilum-infected tick. Ticks Tick Borne Dis 2015; 6:787-92. [PMID: 26187418 DOI: 10.1016/j.ttbdis.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 01/24/2023]
Abstract
The risk of contracting human granulocytic anaplasmosis (HGA) after a tick bite is mainly unknown. In this study we investigated the clinical and serological response in 30 humans bitten by ticks positive for Anaplasma phagocytophilum (Group A), 30 humans bitten by Borrelia burgdorferi sensu lato (s.l.)-positive ticks (Group B), and 30 humans bitten by ticks negative for both A. phagocytophilum and B. burgdorferi s.l. (Group C). Ticks, blood samples and questionnaires were collected from tick-bitten humans at 34 primary healthcare centres in Sweden and in the Åland Islands, Finland, at the time of the tick bite and after three months. A total of 2553 ticks detached from humans in 2007-2009 were analyzed by polymerase chain reaction, and 31 (1.2%) were positive for A. phagocytophilum, 556 (21.8%) were positive for B. burgdorferi s.l., and eight (0.3%) were co-infected by A. phagocytophilum and B. burgdorferi s.l. The overall prevalence of Anaplasma IgG antibodies in the included participants (n=90) was 17%, and there was no significant difference between the groups A-C. Only one of the participants (in Group C) showed a four-fold increase of IgG antibodies against A. phagocytophilum at the three-month follow-up, but reported no symptoms. The frequency of reported symptoms did not differ between groups A-C, and was unrelated to the findings of A. phagocytophilum and B. burgdorferi s.l. in the detached ticks. We conclude that the risk for HGA or asymptomatic seroconversion after a tick bite in Sweden or in the Åland Islands is low, even if the tick is infected by A. phagocytophilum.
Collapse
Affiliation(s)
- Anna J Henningsson
- Department of Clinical Microbiology, Ryhov County Hospital, S-551 85 Jönköping, Sweden.
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, S-581 85 Linköping, Sweden
| | - Paula Gyllemark
- Department of Infectious Diseases, Ryhov County Hospital, S-551 85 Jönköping, Sweden
| | - Monika Kozak
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, S-581 85 Linköping, Sweden
| | - Andreas Matussek
- Department of Clinical Microbiology, Ryhov County Hospital, S-551 85 Jönköping, Sweden
| | - Dag Nyman
- The Åland Group for Borrelia Research, Bimelix Biomedical Laboratory, Torggatan 10, AX-22100 Mariehamn, Åland, Finland
| | - Christina Ekerfelt
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Linköping University, S-551 85 Jönköping, Sweden
| | - Per-Eric Lindgren
- Department of Clinical Microbiology, Ryhov County Hospital, S-551 85 Jönköping, Sweden; Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, S-581 85 Linköping, Sweden
| | - Pia Forsberg
- Clinic of Infectious Diseases, Linköping University Hospital, and Department of Clinical and Experimental Medicine, Linköping University, S-551 85 Jönköping, Sweden
| |
Collapse
|
21
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014; 2:251. [PMID: 25520947 PMCID: PMC4248671 DOI: 10.3389/fpubh.2014.00251] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/09/2014] [Indexed: 12/30/2022] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
22
|
Tappe J, Jordan D, Janecek E, Fingerle V, Strube C. Revisited: Borrelia burgdorferi sensu lato infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany). Parasit Vectors 2014; 7:441. [PMID: 25233844 PMCID: PMC4262061 DOI: 10.1186/1756-3305-7-441] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 11/14/2022] Open
Abstract
Background The present study investigated the prevalence of Borrelia burgdorferi sensu lato (s.l.) genospecies in Ixodes ricinus ticks collected in Hanover, Northern Germany, in 2010. At the same time the study served as fifth-year-follow-up study for data comparison with 2005. Methods A total of 2100 questing ticks were collected and analysed by quantitative real-time PCR (qPCR) with subsequent species differentiation via Reverse Line Blot and Sanger sequencing. Simultaneously, results obtained in 2010 were compared to infection rates from 2005 to evaluate the development of B. burgdorferi s.l. infection rates in Hanoverian ticks. Results Overall, 22.7% (476/2,100) of collected ticks were tested positive for B. burgdorferi s.l. infections. Adult ticks showed an infection rate of 33.3% (124/372), subdivided into 29.6% (58/196) positive males and 37.5% (66/176) positive females. Nymph and larvae infection rates were found to be 20.3% (344/1,697) and 25.8% (8/31), respectively. Species identification was successful for 59.2% (282/476) of positive ticks with B. afzelii as the most frequently detected genospecies, followed by B. garinii (including B. bavariensis) and B. spielmanii. B. burgdorferi sensu stricto (s.s.), B. bissettii, B. valaisiana and B. lusitaniae were also identified. Significant differences concerning seasonal fluctuations as well as local differences were observed. Comparing infection rates of Hanoverian ticks between years, a significant increase (P = 0.002) could be observed for larvae with 1.7% positives (2/60) in 2005 and 25.8% positives (8/31) in 2010. In the latter year, coinfections with Borrelia and Rickettsiales were detected in a total of 7.8% (163/2,100) of collected ticks. Of these, 7.3% (153/2,100) were coinfected with Rickettsia spp., 0.3% (7/2,100) with A. phagocytophilum and 0.1% (3/2,100) were coinfected with all three pathogens. Between years 2005 and 2010, no statistically significant differences in coinfection rates were found. Conclusions Comparing B. burgdorferi s.l. infections in Hanoverian I. ricinus ticks in 2010 with data from 2005, a statistically significant increase of infected larvae was noted, whereas the other stages revealed no statistically significant differences. Whether the increased larvae infection rate is an isolated event or results from factual circumstances, e.g. increasing effectiveness of transovarial transmission due to unknown factors, has to be evaluated in further studies.
Collapse
Affiliation(s)
| | | | | | | | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
23
|
Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pagès F. Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis 2014; 5:607-19. [PMID: 25178542 DOI: 10.1016/j.ttbdis.2014.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022]
Abstract
Ticks are the main vector for infectious disease pathogens in both humans and animals, and tick-borne diseases are currently spreading throughout Europe. Various surveillance methods have been developed to estimate the burden and risk of tick-borne diseases and host exposure to tick bites. The ultimate aims of these approaches are to determine the risk level of a tick-borne disease in a given area, determine its health priority, identify the at-risk population and propose specific countermeasures or complementary studies as needed. The purpose of this review is to present the current methods for monitoring the circulation of tick-borne diseases and to highlight the use of salivary antigens as original and recently developed serological tools that could be useful for tick bite risk assessment and could improve the current surveillance methods.
Collapse
Affiliation(s)
- Vinh Vu Hai
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Lionel Almeras
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Cristina Socolovschi
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Parola
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Frédéric Pagès
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; CIRE/ARS Océan Indien, 2 bis Avenue Georges Brassens CS 60050, 97408 Saint Denis Cedex 9, Reunion.
| |
Collapse
|
24
|
May K, Strube C. Prevalence of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in hard ticks (Ixodes ricinus) in the city of Hamburg, Germany. Parasitol Res 2014; 113:2169-75. [PMID: 24728556 DOI: 10.1007/s00436-014-3869-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
To narrow the gap of missing knowledge on Rickettsia spp. and Anaplasma phagocytophilum infections in ticks in northwestern Germany and, at the same time, to provide first prevalence data on these pathogens in the city of Hamburg, a total of 1,400 questing Ixodes ricinus ticks were collected at ten different public green areas from April until October 2011. Ticks were examined using probe-based quantitative real-time PCR. A percentage of 3.6% (51/1,400) ticks were tested positive for A. phagocytophilum infections divided into 2.1% (3/141) adults [1.7% (1/60) females and 2.5% (2/81) males] and 3.8% (48/1,259) nymphs. The percentage of infected ticks per sampling site varied statistically significantly from 0.7% (1/140) to 12.1% (17/140), whereas between sampling months, no statistically significant differences were observed (2.0-6.5%, 4-13/140). The overall Rickettsia spp. infection rate was 52.5% (735/1,400). In adult ticks, Rickettsia spp. infection rate was 56% (79/141) divided into 61.7% (37/60) infected females and 51.9% (42/81) infected males. Nymphs showed an infection rate of 52.1% (656/1,259). In contrast to A. phagocytophilum infections, no statistically significant differences in Rickettsia spp. infection rates among sampling sites (44.3-63.6%, 62-89/140) were observed, whereas seasonal variations were obvious: the percentage of Rickettsia-positive ticks was significantly lower in April (36.5%, 73/200) and May (29.5%, 59/200) compared to the summer and fall months (55.0-64.5%, 110-129/200). Rickettsia species differentiation via real-time pyrosequencing revealed Rickettsia helvetica as the only occurring species. Co-infections with both Rickettsia spp. and A. phagocytophilum were detected in 2.0% (28/1,400) of the ticks. The present study revealed that in the city of Hamburg, the tick infection rate with A. phagocytophilum is comparable with other German data, whereas the Rickettsia spp. infection rate of 52.5% is by far the highest prevalence detected in Germany so far. As the city of Hamburg has 1.8 million inhabitants and attracts millions of tourists every year, the potential health risk should not be underestimated.
Collapse
Affiliation(s)
- Kathrin May
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | | |
Collapse
|
25
|
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, Plantard O, Vayssier-Taussat M, Bonnet S, Spitalská E, Kazimírová M. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front Public Health 2014. [PMID: 25520947 DOI: 10.3389/fpubh.2014.00251.pmid:25520947;pmcid:pmc4248671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis," Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige , Trento , Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Vetsuisse-Faculty, Swiss National Centre for Vector Entomology, Institute for Parasitology, University of Zurich , Zürich , Switzerland
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität , Munich , Germany ; Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig , Leipzig , Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i. , Brno , Czech Republic
| | - Gábor Földvári
- Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University , Budapest , Hungary
| | - Olivier Plantard
- INRA, UMR1300 BioEpAR , Nantes , France ; LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique, UMR BioEpAR , Nantes , France
| | - Muriel Vayssier-Taussat
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Sarah Bonnet
- USC BIPAR, INRA, ANSES - French Agency for Food, Environmental and Occupational Health and Safety , Maisons-Alfort , France
| | - Eva Spitalská
- Institute of Virology, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
26
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
27
|
Tappe J, Strube C. Anaplasma phagocytophilum and Rickettsia spp. infections in hard ticks (Ixodes ricinus) in the city of Hanover (Germany): revisited. Ticks Tick Borne Dis 2013; 4:432-8. [PMID: 23838023 DOI: 10.1016/j.ttbdis.2013.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The present study aimed to determine the prevalence of Rickettsiales (A. phagocytophilum and Rickettsia spp.) in 2100 I. ricinus ticks collected at 10 different sampling sites every month during the tick season 2010 in the city of Hanover, northern Germany. At the same time, the results served as a fifth-year-follow-up study to monitor whether changes or stagnation of tick infection rates - possibly due to climate change--were obvious or not. To detect infections with A. phagocytophilum and/or Rickettsia spp., tick samples were analysed by quantitative real-time PCR. Differentiation of Rickettsia species was accomplished using real-time pyrosequencing technology. Overall, 4.5% (94/2100) of the collected ticks were tested positive for A. phagocytophilum and 26.2% (551/2100) were positive for Rickettsia spp. infections. Species differentiation of Rickettsia-positive ticks via real-time pyrosequencing was possible in 48.6% (268/551) of samples, which were all identified as R. helvetica. Coinfections with both pathogens were found in 1.0% (20/2100) of ticks. Statistically significant seasonal fluctuations between sampling months as well as local differences between sampling sites were detected for Rickettsia spp. infection rates. For A. phagocytophilum infections, only significant seasonal variations were found. When comparing infection rates of Hanoverian ticks in 2010 to those in 2005, infection rates of A. phagocytophilum-infected nymphs increased statistically significant (P=0.008, power: 0.762) from 2.3% in 2005 (Schicht et al., 2011) to 4.5% in 2010. Rickettsia spp. infections in female ticks decreased significantly (P=0.049, power: 0.491) from 41.8% in 2005 (Schicht et al., 2012) to 32.4% in 2010. Comparison of the remaining tick stages showed no statistically significant differences.
Collapse
Affiliation(s)
- Julia Tappe
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany
| | | |
Collapse
|
28
|
Mysterud A, Easterday WR, Qviller L, Viljugrein H, Ytrehus B. Spatial and seasonal variation in the prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in questing Ixodes ricinus ticks in Norway. Parasit Vectors 2013; 6:187. [PMID: 23786850 PMCID: PMC3691722 DOI: 10.1186/1756-3305-6-187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/17/2013] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Understanding the variation in prevalence of Borrelia burgdorferi sensu lato (Lyme Borreliosis Spirochaetes, LBS) and Anaplasma phagocytophilum (causing tick-borne fever in ruminants and human granulocytic ehrlichiosis) in ticks is vital from both a human and an animal disease perspective to target the most effective mitigation measures. From the host competence hypothesis, we predicted that prevalence of LBS would decrease with red deer density, while prevalence of A. phagocytophilum would increase. METHODS Based on a sample of 112 adult and 686 nymphal Ixodes ricinus ticks collected with flagging during questing from 31 transects (4-500 m long) corresponding to individual seasonal home ranges of 41 red deer along the west coast of Norway, we tested whether there were spatial and seasonal variations in prevalence with a special emphasis on the population density of the most common large host in this area, the red deer (Cervus elaphus). We used a multiplex real-time PCR assay for detection of A. phagocytophilum and LBS. RESULTS Prevalence of LBS was higher in adult female ticks (21.6%) compared to adult male ticks (11.5%) and nymphs (10.9%), while prevalence was similar among stages for prevalence of A. phagocytophilum (8.8%). Only partly consistent with predictions, we found a lower prevalence of LBS in areas of high red deer density, while there was no relationship between red deer density and prevalence of A. phagocytophilum in ticks. Prevalence of both bacteria was much higher in ticks questing in May compared to August. CONCLUSIONS Our study provides support to the notion that spatial variation in host composition forms a role for prevalence of LBS in ticks also in a northern European ecosystem, while no such association was found for A. phagocytophilum. Further studies are needed to fully understand the similar seasonal pattern of prevalence of the two pathogens.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box1066, Oslo, NO-0316, Norway
| | - William Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box1066, Oslo, NO-0316, Norway
| | - Lars Qviller
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box1066, Oslo, NO-0316, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box1066, Oslo, NO-0316, Norway
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, NO-0106, Norway
| | - Bjørnar Ytrehus
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo, NO-0106, Norway
| |
Collapse
|
29
|
Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents--analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors 2012; 5:191. [PMID: 22950642 PMCID: PMC3480827 DOI: 10.1186/1756-3305-5-191] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts. Methods Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice), were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated. Results 4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected. Conclusion Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures.
Collapse
Affiliation(s)
- Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Schicht S, Schnieder T, Strube C. Rickettsia spp. and coinfections with other pathogenic microorganisms in hard ticks from northern Germany. JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:766-771. [PMID: 22679887 DOI: 10.1603/me11204] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rickettsia species are the causative agent of different forms of spotted fever and thus, monitored in a number of prevalence studies. The current study examined the status of ticks from the city of Hanover, Northern Germany, regarding the presence of Rickettsia spp. and coinfections with Borrelia burgdorferi sensu lato (sl) and Anaplasma phagocytophilum. In total, 1,089 questing Ixodes ricinus L. ticks were analyzed using quantitative real time polymerase chain reaction. A duplex quantitative real time polymerase chain reaction for simultaneous detection of Rickettsia spp. and Ixodes spp.-DNA as positive control for successful DNA-isolation was established. Rickettsia spp. were detected in 363 (33.3%) of the 1,089 investigated ticks. Quantification of Rickettsia showed that larvae contained up to 50,000 bacteria, nymphs up to 85 million and adults up to 200 million per tick. Species differentiation was possible in 178 out of 363 Rickettsia positive samples and resulted in a predominant occurrence of R. helvetica (98.9%, 176/178), whereas R. monacensis was rarely found (1.1%, 2/178). Besides detection of Rickettsia, positive ticks were compared with results from previous studies to examine coinfections with B. burgdorferi sl and A. phagocytophilum. The resulting coinfection rates were 9.1% (99/1,089) for B. burgdorferi sl and 2.8% (11/391) for A. phagocytophilum. Triple-infection with Rickettsia spp., B. burgdorferi sl, and A. phagocytophilum occurred in 5 (1.3%) out of 391 ticks. The current study is the first presenting quantitative data concerning the load of Ixodes ticks with Rickettsia individuals.
Collapse
Affiliation(s)
- Sabine Schicht
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
31
|
Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, Babiker AM, Cassini R, Salviato A, Cattoli G, Otranto D. Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors 2012; 5:61. [PMID: 22452970 PMCID: PMC3337281 DOI: 10.1186/1756-3305-5-61] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/27/2012] [Indexed: 12/30/2022] Open
Abstract
Background Ixodes ricinus, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed. Methods From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., "Candidatus Neoehrlichia mikurensis"). Based on the results of this survey, three sampling strategies were evaluated a-posteriori, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C). Results Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were Borrelia burgdorferi sensu lato (17.6%), Rickettsia helvetica (13.1%), and "Ca. N. mikurensis" (10.5%). Within the B. burgdorferi complex, four genotypes (i.e., B. valaisiana, B. garinii, B. afzelii, and B. burgdorferi sensu stricto) were found. Less prevalent pathogens included R. monacensis (3.7%), TBE virus (2.1%), A. phagocytophilum (1.5%), Bartonella spp. (1%), and Babesia EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results. Conclusions Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.
Collapse
Affiliation(s)
- Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro (Pd), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|