1
|
Assogba YP, Adechina AP, Tchiakpe E, Nouatin OP, Kèkè RK, Bachabi M, Bankole HS, Yessoufou A. Advanced in immunological monitoring of HIV infection: profile of immune cells and cytokines in people living with HIV-1 in Benin. BMC Immunol 2024; 25:22. [PMID: 38643073 PMCID: PMC11031881 DOI: 10.1186/s12865-024-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/03/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Immune cells and cytokines have been linked to viremia dynamic and immune status during HIV infection. They may serve as useful biomarkers in the monitoring of people living with HIV-1 (PLHIV-1). The present work was aimed to assess whether cytokines and immune cell profiles may help in the therapeutic follow-up of PLHIV-1. METHODS Forty PLHIV-1 in treatment success (PLHIV-1s) and fifty PLHIV-1 in treatment failure (PLHIV-1f) followed at the University Hospital of Abomey-Calavi/Sô-Ava in Benin were enrolled. Twenty healthy persons were also recruited as control group. Circulating cytokines and immune cells were quantified respectively by ELISA and flow cytometry. RESULTS PLHIV-1 exhibited low proportions of CD4 + T cells, NK, NKT, granulocytes, classical and non-classical monocytes, and high proportions of CD8 + T cells, particularly in the PLHIV-1f group, compared to control subjects. Eosinophils, neutrophils and B cell frequencies did not change between the study groups. Circulating IFN-γ decreased whereas IL-4 significantly increased in PLHIV-1s compared to PLHIV-1f and control subjects even though the HIV infection in PLHIV-1s downregulated the high Th1 phenotype observed in control subjects. However, Th1/Th2 ratio remained biased to a Th1 phenotype in PLHIV-1f, suggesting that high viral load may have maintained a potential pro-inflammatory status in these patients. Data on inflammatory cytokines showed that IL-6 and TNF-α concentrations were significantly higher in PLHIV-1s and PLHIV-1f groups than in control subjects. Significant high levels of IL-5 and IL-7 were observed in PLHIV-1f compared to controls whereas PLHIV-1s presented only a high level of IL-5. No change was observed in IL-13 levels between the study groups. CONCLUSION Our study shows that, in addition to CD4/CD8 T cell ratio, NK and NKT cells along with IL-6, TNF-α, IL-5 and IL-7 cytokines could serve as valuable immunological biomarkers in the therapeutic monitoring of PLHIV-1 although a larger number of patients would be necessary to confirm these results.
Collapse
Affiliation(s)
- Yaou Pierrot Assogba
- Laboratory of Cell Biology, Physiology and Immunology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technology (FAST), Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi (UAC), Cotonou, 01 BP 526, Benin
| | - Adefounke Prudencia Adechina
- Laboratory of Cell Biology, Physiology and Immunology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technology (FAST), Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi (UAC), Cotonou, 01 BP 526, Benin
| | - Edmond Tchiakpe
- Laboratory of Cell Biology, Physiology and Immunology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technology (FAST), Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi (UAC), Cotonou, 01 BP 526, Benin
- National Reference Laboratory of Health Program Fighting Against AIDS in Benin (LNR/PSLS), Ministry of Health, Cotonou, BP 1258, Benin
| | | | - René K Kèkè
- National Reference Laboratory of Health Program Fighting Against AIDS in Benin (LNR/PSLS), Ministry of Health, Cotonou, BP 1258, Benin
| | - Moussa Bachabi
- National Reference Laboratory of Health Program Fighting Against AIDS in Benin (LNR/PSLS), Ministry of Health, Cotonou, BP 1258, Benin
| | - Honoré Sourou Bankole
- The Laboratory of Research and Applied Biology (LARBA), Unité de Recherche en Microbiologie Appliquée et Pharmacologie des Substances Naturelles, EPAC, Université d'Abomey-Calavi (UAC), Cotonou, 01 BP 2009, Bénin
| | - Akadiri Yessoufou
- Laboratory of Cell Biology, Physiology and Immunology, Department of Biochemistry and Cellular Biology, Faculty of Sciences and Technology (FAST), Institute of Applied Biomedical Sciences (ISBA), University of Abomey-Calavi (UAC), Cotonou, 01 BP 526, Benin.
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT), Université d'Abomey-Calavi (UAC), Cotonou, 01 BP 526, Benin.
- Institute of Applied Biomedical Sciences (ISBA), Ministry of High Education and Scientific Research, Cotonou, 01 BP 918, Bénin.
| |
Collapse
|
2
|
Kang MH, Hong J, Lee J, Cha MS, Lee S, Kim HY, Ha SJ, Lim YT, Bae YS. Discovery of highly immunogenic spleen-resident FCGR3 +CD103 + cDC1s differentiated by IL-33-primed ST2 + basophils. Cell Mol Immunol 2023:10.1038/s41423-023-01035-8. [PMID: 37246159 DOI: 10.1038/s41423-023-01035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/25/2023] [Indexed: 05/30/2023] Open
Abstract
Recombinant interleukin-33 (IL-33) inhibits tumor growth, but the detailed immunological mechanism is still unknown. IL-33-mediated tumor suppression did not occur in Batf3-/- mice, indicating that conventional type 1 dendritic cells (cDC1s) play a key role in IL-33-mediated antitumor immunity. A population of CD103+ cDC1s, which were barely detectable in the spleens of normal mice, increased significantly in the spleens of IL-33-treated mice. The newly emerged splenic CD103+ cDC1s were distinct from conventional splenic cDC1s based on their spleen residency, robust effector T-cell priming ability, and surface expression of FCGR3. DCs and DC precursors did not express Suppressor of Tumorigenicity 2 (ST2). However, recombinant IL-33 induced spleen-resident FCGR3+CD103+ cDC1s, which were found to be differentiated from DC precursors by bystander ST2+ immune cells. Through immune cell fractionation and depletion assays, we found that IL-33-primed ST2+ basophils play a crucial role in the development of FCGR3+CD103+ cDC1s by secreting IL-33-driven extrinsic factors. Recombinant GM-CSF also induced the population of CD103+ cDC1s, but the population neither expressed FCGR3 nor induced any discernable antitumor immunity. The population of FCGR3+CD103+ cDC1s was also generated in vitro culture of Flt3L-mediated bone marrow-derived DCs (FL-BMDCs) when IL-33 was added in a pre-DC stage of culture. FL-BMDCs generated in the presence of IL-33 (FL-33-DCs) offered more potent tumor immunotherapy than control Flt3L-BMDCs (FL-DCs). Human monocyte-derived DCs were also more immunogenic when exposed to IL-33-induced factors. Our findings suggest that recombinant IL-33 or an IL-33-mediated DC vaccine could be an attractive protocol for better tumor immunotherapy.
Collapse
Affiliation(s)
- Myeong-Ho Kang
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - JungHyub Hong
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Jinjoo Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Min-Suk Cha
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
| | - Hye-Young Kim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Taik Lim
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea
- Department of Nano Engineering and School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Center for Immune Research on Non-Lymphoid Organs, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyounggi-do, 16419, Republic of Korea.
| |
Collapse
|
3
|
Recent Progress on Exosomes in RNA Virus Infection. Viruses 2021; 13:v13020256. [PMID: 33567490 PMCID: PMC7915723 DOI: 10.3390/v13020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Recent research indicates that most tissue and cell types can secrete and release membrane-enclosed small vesicles, known as exosomes, whose content reflects the physiological/pathological state of the cells from which they originate. These exosomes participate in the communication and cell-to-cell transfer of biologically active proteins, lipids, and nucleic acids. Studies of RNA viruses have demonstrated that exosomes release regulatory factors from infected cells and deliver other functional host genetic elements to neighboring cells, and these functions are involved in the infection process and modulate the cellular responses. This review provides an overview of the biogenesis, composition, and some of the most striking functions of exosome secretion and identifies physiological/pathological areas in need of further research. While initial indications suggest that exosome-mediated pathways operate in vivo, the exosome mechanisms involved in the related effects still need to be clarified. The current review focuses on the role of exosomes in RNA virus infections, with an emphasis on the potential contributions of exosomes to pathogenesis.
Collapse
|
4
|
Shedding Light on the Role of Extracellular Vesicles in HIV Infection and Wound Healing. Viruses 2020; 12:v12060584. [PMID: 32471020 PMCID: PMC7354510 DOI: 10.3390/v12060584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication. They are naturally released from cells into the extracellular environment. Based on their biogenesis, release pathways, size, content, and function, EVs are classified into exosomes, microvesicles (MVs), and apoptotic bodies (ApoBDs). Previous research has documented that EVs, specifically exosomes and MVs, play an important role in HIV infection, either by promoting HIV infection and pathogenesis or by inhibiting HIV-1 to a certain extent. We have also previously reported that EVs (particularly exosomes) from vaginal fluids inhibit HIV at the post-entry step (i.e., reverse transcription, integration). Besides the role that EVs play in HIV, they are also known to regulate the process of wound healing by regulating both the immune and inflammatory responses. It is noted that during the advanced stages of HIV infection, patients are at greater risk of wound-healing and wound-related complications. Despite ongoing research, the data on the actual effects of EVs in HIV infection and wound healing are still premature. This review aimed to update the current knowledge about the roles of EVs in regulating HIV pathogenesis and wound healing. Additionally, we highlighted several avenues of EV involvement in the process of wound healing, including coagulation, inflammation, proliferation, and extracellular matrix remodeling. Understanding the role of EVs in HIV infection and wound healing could significantly contribute to the development of new and potent antiviral therapeutic strategies and approaches to resolve impaired wounds in HIV patients.
Collapse
|
5
|
Mueller KAL, Hanna DB, Ehinger E, Xue X, Baas L, Gawaz MP, Geisler T, Anastos K, Cohen MH, Gange SJ, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Tien PC, Hodis HN, Landay AL, Kaplan RC, Ley K. Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovasc Res 2019; 115:1029-1040. [PMID: 30520941 PMCID: PMC6735712 DOI: 10.1093/cvr/cvy292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women. METHODS AND RESULTS sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women's Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV-/sCVD-, HIV-/sCVD+, HIV+/sCVD-, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR) (295-1389)], followed by HIV+/CVD- [486, IQR (248-699)], HIV-/CVD+ (398, IQR (89-901)), and lowest in HIV+/CVD+ women [226, IQR (73-519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV-/CVD- vs. HIV+/CVD+ remained significant with P = 0.005 (HIV-/CVD- vs. HIV+/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD- P = 0.88, HIV+/CVD+ vs. HIV-/CVD+ P = 0.81, HIV+/CVD- vs. HIV-/CVD+, P = 0.99). All pairwise comparisons with HIV-/CVD- were individually significant (P = 0.050 vs. HIV-/CVD+, P = 0.028 vs. HIV+/CVD-, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5-887.3)) vs. CVD+ (297, IQR (81.75-626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes. CONCLUSION CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
Collapse
Affiliation(s)
- Karin A L Mueller
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Erik Ehinger
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Livia Baas
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Meinrad P Gawaz
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Tobias Geisler
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Mardge H Cohen
- John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Ave, Chicago, IL, USA
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, 265 Garland Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL, USA
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - Chenglong Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA, USA
| | - Phyllis C Tien
- Department of Medicine, VAMC, Infectious Disease Section, 111W 4150 Clement St., San Francisco, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, 1735 West Harrison St, Chicago, IL, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| |
Collapse
|
6
|
Sims B, Farrow AL, Williams SD, Bansal A, Krendelchtchikov A, Gu L, Matthews QL. Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells. Int J Nanomedicine 2017; 12:4823-4833. [PMID: 28740388 PMCID: PMC5505621 DOI: 10.2147/ijn.s132762] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exosomes, 30–200 nm nanostructures secreted from donor cells and internalized by recipient cells, can play an important role in the cellular entry of some viruses. These microvesicles are actively secreted into various body fluids, including blood, urine, saliva, cerebrospinal fluid, and breast milk. We successfully isolated exosomes from human breast milk and plasma. The size and concentration of purified exosomes were measured by nanoparticle tracking, while Western blotting confirmed the presence of the exosomal-associated proteins CD9 and CD63, clathrin, and T cell immunoglobulin and mucin proteins (TIMs). Through viral infection assays, we determined that HIV-1 utilizes an exosome-dependent mechanism for entry into human immune cells. The virus contains high amounts of phosphatidylserine (PtdSer) and may bind PtdSer receptors, such as TIMs. This mechanism is supported by our findings that exosomes from multiple sources increased HIV-1 entry into T cells and macrophages, and viral entry was potently blocked with anti-TIM-4 antibodies.
Collapse
Affiliation(s)
- Brian Sims
- Division of Neonatology, Department of Pediatrics.,Department of Cell, Developmental and Integrative Biology.,Center for AIDS Research
| | | | - Sparkle D Williams
- Division of Neonatology, Department of Pediatrics.,Department of Cell, Developmental and Integrative Biology
| | | | - Alexandre Krendelchtchikov
- Division of Neonatology, Department of Pediatrics.,Department of Cell, Developmental and Integrative Biology.,Division of Infectious Diseases
| | - Linlin Gu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham
| | - Qiana L Matthews
- Center for AIDS Research.,Division of Infectious Diseases.,Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
7
|
Zeng B, Zhu D, Su Z, Li Z, Yu Z. Tristetraprolin exerts tumor suppressive functions on the tumorigenesis of glioma by targeting IL-13. Int Immunopharmacol 2016; 39:63-70. [PMID: 27424080 DOI: 10.1016/j.intimp.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022]
Abstract
The RNA-binding protein tristetraprolin (TTP) is an adenine/uridine (AU)-rich elements (AREs)-binding protein that can induce the decay of AREs containing mRNAs. In this study, we demonstrated that TTP is significantly down-regulated in human glioma tissue samples and cell lines. It is also associated with diminished survival in glioma patients. Gain- and loss-of-function studies demonstrated that TTP inhibited the growth, migration and invasion of glioma cells through regulation of interleukin (IL)-13. Furthermore, mechanistic investigations showed that TTP attenuated activation of PI3K/Akt/mTOR pathway by IL-13, and the ectopic expression of IL-13 markedly abrogated the anti-invasive effect of TTP. Additionally, TTP were found inversely correlated with IL-13 in glioma specimens. In conclusion, our results suggested that the low expression of TTP is significantly associated with the growth and metastasis of human glioma cells by targeting IL-13, while TTP may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Bo Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China; Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Danhua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zequn Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
8
|
Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity? Adv Virol 2016; 2016:9852494. [PMID: 26981123 PMCID: PMC4766318 DOI: 10.1155/2016/9852494] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022] Open
Abstract
Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency Virus Type I (HIV-1) particles in terms of proteomics and lipid profiles. These observations postulated that HIV-resembled exosomes may contribute to HIV pathogenesis. Interestingly, recent reports illustrated that exosomes from body fluids could inhibit HIV infection, which then bring up a new paradigm for HIV/AIDS therapy. Accumulative findings suggested that the cellular origin of exosomes may define their effects towards HIV-1. This review summarizes the two distinctive roles of exosomes in regulating HIV pathogenesis. We also highlighted several additional factors that govern the exosomal functions. Deeper understanding on how exosomes promote or abate HIV infection can significantly contribute to the development of new and potent antiviral therapeutic strategy and vaccine designs.
Collapse
|
9
|
Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection. PLoS One 2013; 8:e65950. [PMID: 23824043 PMCID: PMC3688867 DOI: 10.1371/journal.pone.0065950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022] Open
Abstract
HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an “Ile-Gly” insertion in the gp120 V3 loop and replacement of the V3 “Gly-Pro-Gly” crown with a “Gly-Arg-Gly” motif, but that the accumulation of additional gp120 “scaffold” mutations was required for these V3 loop changes to confer functional effects. In this context, either of the V3 loop changes could confer possible transitional R5X4 phenotypes, but when present together they completely abolished CCR5 usage and conferred the X4 phenotype. Our results show that the emergence of CXCR4-using strains is rare in this cohort of untreated individuals with advanced C-HIV infection. In the subject where X4 variants did emerge, alterations in the gp120 V3 loop were necessary but not sufficient to confer CXCR4 usage.
Collapse
|
10
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
11
|
Youssef DA, Miller CW, El-Abbassi AM, Cutchins DC, Cutchins C, Grant WB, Peiris AN. Antimicrobial implications of vitamin D. DERMATO-ENDOCRINOLOGY 2011; 3:220-9. [PMID: 22259647 DOI: 10.4161/derm.3.4.15027] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 12/14/2022]
Abstract
Evidence exists that vitamin D has a potential antimicrobial activity and its deficiency has deleterious effects on general well-being and longevity. Vitamin D may reduce the risk of infection through multiple mechanisms. Vitamin D boosts innate immunity by modulating production of anti-microbial peptides (AMPs) and cytokine response. Vitamin D and its analogues via these mechanisms are playing an increasing role in the management of atopic dermatitis, psoriasis, vitiligo, acne and rosacea. Vitamin D may reduce susceptibility to infection in patients with atopic dermatitis and the ability to regulate local immune and inflammatory responses offers exciting potential for understanding and treating chronic inflammatory dermatitides. Moreover, B and T cell activation as well as boosting the activity of monocytes and macrophages also contribute to a potent systemic anti-microbial effect. The direct invasion by pathogenic organisms may be minimized at sites such as the respiratory tract by enhancing clearance of invading organisms. A vitamin D replete state appears to benefit most infections, with the possible noteworthy exception of Leishmaniasis. Antibiotics remain an expensive option and misuse of these agents results in significant antibiotic resistance and contributes to escalating health care costs. Vitamin D constitutes an inexpensive prophylactic option and possibly therapeutic product either by itself or as a synergistic agent to traditional antimicrobial agents. This review outlines the specific antimicrobial properties of vitamin D in combating a wide range of organisms. We discuss the possible mechanisms by which vitamin D may have a therapeutic role in managing a variety of infections.
Collapse
Affiliation(s)
- Dima A Youssef
- Mountain Home VAMC Medicine Service; Mountain Home; TN USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pandit TS, Hosseinkhani MR, Kang BN, Bahaie NS, Ge XN, Rao SP, Sriramarao P. Chronic allergen challenge induces pulmonary extramedullary hematopoiesis. Exp Lung Res 2011; 37:279-90. [PMID: 21309736 DOI: 10.3109/01902148.2010.540769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic inflammation is associated with increased generation and trafficking of inflammatory cells, especially eosinophils, to sites of inflammation. The effect of acute versus chronic airway allergen challenge on hematopoietic activity in the bone marrow (BM) and lungs was investigated using murine models of allergic airway inflammation. Acute allergen challenge induced proliferation of BM cells and significantly increased generation of eosinophil, but not multipotent, granulocyte-macrophage (GM), or B-lymphocyte progenitor cells. However, no hematopoietic activity was observed in the lungs. With chronic challenge, BM cells failed to proliferate, but exhibited increased capacity to generate multipotent as well as eosinophil, GM, and B-lymphocyte progenitors. In addition, increased generation of eosinophil- and GM-specific progenitors was observed in the lungs. Although no differences were observed in their ability to roll on BM endothelium in vitro or in vivo, CD34-enriched hematopoietic/stem progenitor cells (HSPCs) from chronic-, but not acute-, challenged mice demonstrated reduced migration across BM endothelial cells associated with decreased CXCR4 expression. Overall, these studies demonstrate that chronic allergen exposure can alter BM homing due to decreased transendothelial migration enabling noninteracting HSPCs to egress out of the BM and recruit to sites of inflammation such as the airways, resulting in extramedullary hematopoiesis.
Collapse
Affiliation(s)
- Terlika S Pandit
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Saunders KO, Ward-Caviness C, Schutte RJ, Freel SA, Overman RG, Thielman NM, Cunningham CK, Kepler TB, Tomaras GD. Secretion of MIP-1β and MIP-1α by CD8(+) T-lymphocytes correlates with HIV-1 inhibition independent of coreceptor usage. Cell Immunol 2010; 266:154-64. [PMID: 21030011 PMCID: PMC3615706 DOI: 10.1016/j.cellimm.2010.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/29/2010] [Indexed: 01/22/2023]
Abstract
CD8(+) T-lymphocytes can utilize noncytolytic mechanisms to suppress HIV-1 replication through the secretion of soluble factors. The secretion of MIP-1β, MIP-1α, IP-10, MIG, IL-1α, and interferon gamma correlated most strongly with soluble noncytolytic suppression (p<0.0001). Since the noncytolytic response is impaired by histone hyperacetylation, we examined the ability of histone hyperacetylation to alter the expression of immune-related genes. MIP-1α and IP-10 were also among the genes that were down-regulated by histone hyperacetylation. We define a multifactorial cytokine profile of CD8(+) T-lymphocytes capable of mediating noncytolytic suppression of CXCR4-tropic HIV-1 replication.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Cavin Ward-Caviness
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Robert J. Schutte
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Stephanie A. Freel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - R. Glenn Overman
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Nathan M. Thielman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Coleen K. Cunningham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Thomas B. Kepler
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Bioinformatics and Biostatistics, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA, 27710
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA, 27710
| |
Collapse
|
14
|
Gauthier S, Tremblay MJ. Interleukin-4 inhibits an early phase in the HIV-1 life cycle in the human colorectal cell line HT-29. Clin Immunol 2010; 135:146-55. [DOI: 10.1016/j.clim.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/11/2022]
|
15
|
Saïdi H, Carbonneil C, Magri G, Eslahpazir J, Sekaly RP, Bélec L. Differential modulation of CCR5-tropic human immunodeficiency virus–1 transfer from macrophages towards T cells under interleukin-4/interleukin-13 microenvironment. Hum Immunol 2010; 71:1-13. [DOI: 10.1016/j.humimm.2009.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 12/16/2022]
|
16
|
Plander M, Seegers S, Ugocsai P, Diermeier-Daucher S, Iványi J, Schmitz G, Hofstädter F, Schwarz S, Orsó E, Knüchel R, Brockhoff G. Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 2009; 23:2118-28. [DOI: 10.1038/leu.2009.145] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol 2008; 1:475-88. [PMID: 19079215 DOI: 10.1038/mi.2008.35] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus (HIV) infection leads to severe CD4+ T-cell depletion in gut-associated lymphoid tissue (GALT) that persists despite the initiation of highly active antiretroviral therapy (HAART). It is not known whether restoration of gut mucosal CD4+ T cells and their functions is feasible during therapy and how that relates to immune correlates and viral reservoirs. Intestinal biopsies and peripheral blood samples from HIV-infected patients who were either HAART naive or on long-term HAART were evaluated. Our data demonstrated that gut CD4+ T-cell restoration ranged from modest (<50%) to high (>50%), compared with uninfected controls. Despite persistent CD4+ T-cell proviral burden and residual immune activation in GALT during HAART, effective CD4+ T-cell restoration (>50%) was achieved, which was associated with enhanced Th17 CD4+ T-cell accumulation and polyfunctional anti-HIV cellular responses. Our findings suggest that a threshold of>50% CD4+ T-cell restoration may be sufficient for polyfunctional HIV-specific T cells with implications in the evaluation of vaccines and therapeutics.
Collapse
|
18
|
Tepsuporn S, Horwitt JN, Cobb GW, Stranford SA. MAIDS resistance-associated gene expression patterns in secondary lymphoid organs. Immunogenetics 2008; 60:485-94. [PMID: 18612634 DOI: 10.1007/s00251-008-0312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/28/2008] [Indexed: 11/28/2022]
Abstract
Murine acquired immunodeficiency syndrome (MAIDS) is caused by exposure to murine leukemia virus and serves as a model to study human AIDS. In MAIDS-susceptible C57BL/6 mice, virus exposure leads to progressive immune deficiency, while resistant strains such as BALB/c recover from infection and develop protective immunity. The goal of this study was to identify early gene expression patterns that may be important in establishing this strain-specific differential response. Total RNA was isolated from spleens and pooled lymph nodes of both mouse strains at 3 and 7 days post virus infection. The complementary DNA generated from this RNA was hybridized to mouse oligonucleotide DNA microarrays using a strategy that controlled for inherent variability and highlighted only virus-induced changes. Fluorescent intensities were normalized and analyzed for statistically significant differential expression between strains across both time points and lymphoid organs. The majority of the resistance-associated genes was identified at day 3 post-infection and demonstrated the highest fold differences between strains, while more susceptibility-associated sequences were seen at 7 days post-infection. Among the most highly differentially expressed sequences seen at the earlier time point were genes related to protein metabolism, especially serine proteases. Differential patterns of chemokine-related genes were observed at the later time point. The overall pattern of expression suggests strain-specific differences in proteases and chemokines within secondary lymphoid organs shortly after infection influence the likelihood of disease progression.
Collapse
Affiliation(s)
- Suprawee Tepsuporn
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | | | | | | |
Collapse
|
19
|
Characterization of the early steps of infection of primary blood monocytes by human immunodeficiency virus type 1. J Virol 2008; 82:6557-65. [PMID: 18417568 DOI: 10.1128/jvi.02321-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-circulating monocytes migrate in tissues in response to danger stimuli and differentiate there into two major actors of the immune system: macrophages and dendritic cells. Given their migratory behavior and their pivotal role in the orchestration of immune responses, it is not surprising that cells of the monocyte lineage are the target of several viruses, including human immunodeficiency virus type 1 (HIV-1). HIV-1 replicates in monocytoid cells to an extent that is influenced by their differentiation status and modulated by exogenous stimulations. Unstimulated monocytes display a relative resistance to HIV infection mostly exerted during the early steps of the viral life cycle. Despite intensive studies, the identity of the affected step remains controversial, although it is generally assumed to take place after viral entry. We reexamine here the early steps of viral infection of unstimulated monocytes using vesicular stomatitis virus G protein-pseudotyped HIV-1 virions. Our data indicate that a first block to the early steps of infection of monocytes with these particles occurs at the level of viral entry. After entry, reverse transcription and integration proceed with extremely slow kinetics rather than being blocked. Once completed, viral DNA molecules delay entry into the nucleus and integration for up to 5 to 6 days. The inefficacy of these steps accounts for the resistance of monocytes to HIV-1 during the early steps of infection.
Collapse
|
20
|
Markus MB, Fincham JE. Helminthiasis, bystander diseases and vaccines: analysis of interaction. Trends Parasitol 2007; 23:517-9. [DOI: 10.1016/j.pt.2007.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
|