1
|
Hoffmann M, Pantazis N, Martin GE, Hickling S, Hurst J, Meyerowitz J, Willberg CB, Robinson N, Brown H, Fisher M, Kinloch S, Babiker A, Weber J, Nwokolo N, Fox J, Fidler S, Phillips R, Frater J. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection. PLoS Pathog 2016; 12:e1005661. [PMID: 27415828 PMCID: PMC4945085 DOI: 10.1371/journal.ppat.1005661] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital, St. Gallen, Switzerland
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology & Medical Statistics, Athens University Medical School, Athens, Greece
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Genevieve E. Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Stephen Hickling
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
| | - Christian B. Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Martin Fisher
- Brighton and Sussex University Hospitals, Brighton, United Kingdom
| | - Sabine Kinloch
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Abdel Babiker
- MRC Clinical Trials Unit at UCL Institute of Clinical Trials & Methodology, London, United Kingdom
| | - Jonathan Weber
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Rodney Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, United Kingdom
- The Oxford Martin School, Oxford, United Kingdom
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
2
|
Gonzalez SM, Zapata W, Rugeles MT. Role of Regulatory T Cells and Inhibitory Molecules in the Development of Immune Exhaustion During Human Immunodeficiency Virus Type 1 Infection. Viral Immunol 2015; 29:2-10. [PMID: 26566019 DOI: 10.1089/vim.2015.0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
One of the key hallmarks of chronic human immunodeficiency virus type 1 (HIV-1) infection is the persistent immune activation triggered since early stages of the infection, followed by the development of an exhaustion phenomena, which leads to the inability of immune cells to respond appropriately to the virus and other pathogens, constituting the acquired immunodeficiency syndrome (AIDS); this exhausting state is characterized by a loss of effector functions of immune cells such as proliferation, production of cytokine, as well as cytotoxic potential and it has been attributable to an increased response of regulatory T cells and recently also to the expression in different cell populations of inhibitory molecules, such as programmed death receptor-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell immunoglobulin-3 (Tim-3), and lymphocyte activation gene-3 (LAG-3). The importance of these molecules relies on the possibility to restore the immune response once these molecules are blocked, constituting a potential therapeutic target for treatment during HIV infection. In this regard, we explored the available data evaluating the functional role of Treg cells and inhibitory molecules during the infection in both blood and gut-associated lymphoid tissue (GALT) and their contribution to the development of immune exhaustion and progression to AIDS, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Sandra Milena Gonzalez
- 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| | - Wildeman Zapata
- 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia .,2 Grupo Infettare, Facultad de Medicina, Sede Medellín, Universidad Cooperativa de Colombia , Medellín, Colombia
| | - María Teresa Rugeles
- 1 Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
3
|
Taborda NA, Hernández JC, Lajoie J, Juno JA, Kimani J, Rugeles MT, Fowke KR. Short Communication: Low Expression of Activation and Inhibitory Molecules on NK Cells and CD4(+) T Cells Is Associated with Viral Control. AIDS Res Hum Retroviruses 2015; 31:636-40. [PMID: 25738606 DOI: 10.1089/aid.2014.0325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic HIV-1 infection induces severe immune alterations, including hyperactivation, exhaustion, and apoptosis. In fact, viral control has been associated with low frequencies of these processes. Here, we evaluated the expression of activation and inhibitory molecules on natural killer (NK) and CD4(+) T cells and plasma levels of proinflammatory cytokines in individuals exhibiting viral control: a cohort of HIV-1-exposed-seronegative individuals (HESN) and a cohort of HIV controllers. There was lower expression of CD69, LAG-3, PD-1, and TIM-3 in both cohorts when compared to a low-risk population or HIV progressors. In addition, HIV controllers exhibited lower plasma levels of proinflamatory molecules TNF-α and IP-10. These findings suggest that individuals exhibiting viral control have lower basal expression of markers associated with cellular activation and particularly immune exhaustion.
Collapse
Affiliation(s)
- Natalia A. Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C. Hernández
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Julie Lajoie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer A. Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly because of their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. RECENT FINDINGS Although nonhuman primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV-infected and simian immunodeficiency virus (SIV)-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining programmed death-1 (PD-1) blockade with suppressive antiretroviral therapy provide further support to the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon antiretroviral therapy interruption. Future in-vivo studies should build on recent in-vitro data, supporting the simultaneous targeting of multiple regulators of cell exhaustion. SUMMARY In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice.
Collapse
|
5
|
Juno JA, Stalker AT, Waruk JL, Oyugi J, Kimani M, Plummer FA, Kimani J, Fowke KR. Elevated expression of LAG-3, but not PD-1, is associated with impaired iNKT cytokine production during chronic HIV-1 infection and treatment. Retrovirology 2015; 12:17. [PMID: 25810006 PMCID: PMC4332911 DOI: 10.1186/s12977-015-0142-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background LAG-3 is a potent negative regulator of the immune response but its impact in HIV infection in poorly understood. Unlike exhaustion markers such as PD-1, Tim-3, 2B4 and CD160, LAG-3 is poorly expressed on bulk and antigen-specific T cells during chronic HIV infection and its expression on innate lymphocyte subsets is not well understood. The aim of this study was to assess LAG-3 expression and association with cellular dysfunction on T cells, NK cells and iNKT cells among a cohort of healthy and HIV-infected female sex workers in Nairobi, Kenya. Results Ex vivo LAG-3 expression was measured by multiparametric flow cytometry, and plasma cytokine/chemokine concentrations measured by bead array. Although LAG-3 expression on bulk T cells was significantly increased among HIV-infected women, the proportion of cells expressing the marker was extremely low. In contrast, LAG-3 was more highly expressed on NK and iNKT cells and was not reduced among women treated with ART. To assess the functional impact of LAG-3 on iNKT cells, iNKT cytokine production was measured in response to lipid (αGalCer) and PMA/Io stimulation by both flow cytometry and cytokine bead array. iNKT cytokine production is profoundly altered by both HIV infection and treatment, and LAG-3, but not PD-1, expression is associated with a reduction in iNKT IFNγ production. Conclusions LAG-3 does not appear to mediate T cell exhaustion in this African population, but is instead expressed on innate lymphocyte subsets including iNKT cells. HIV infection alters iNKT cytokine production patterns and LAG-3 expression is uniquely associated with iNKT dysfunction. The continued expression of LAG-3 during treatment suggests it may contribute to the lack of innate immune reconstitution commonly observed during ART. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Peña J, Jones NG, Bousheri S, Bangsberg DR, Cao H. Lymphocyte activation gene-3 expression defines a discrete subset of HIV-specific CD8+ T cells that is associated with lower viral load. AIDS Res Hum Retroviruses 2014; 30:535-41. [PMID: 24180338 DOI: 10.1089/aid.2012.0195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanisms leading to the observed immune dysregulation in chronic HIV infection are not well understood. The MHC-II class ligand, lymphocyte activation gene-3 (LAG-3, CD223), has been implicated in the complex regulation mechanism of immune functions. In this study, we describe a new population of HIV-specific CD8(+) T cells expressing LAG-3. These LAG-3(+)CD8(+) T cells do not display immunophenotypic patterns traditionally attributed to regulatory T cells. The LAG3(+)CD8(+) T cells are CCR7(+),CD127(-), and display heterogeneous surface expressions of CD45RA and CD25. Interestingly, HIV-specific LAG-3(+)CD8(+) T cells do not substantially express CTLA-4 and LAG-3 expression does not correlate with interleukin (IL)-10 or tumor growth factor (TGF)-β production. In addition, HIV-specific LAG3(+)CD8(+) T cells do not produce interferon (IFN-γ) or express CD107a. The frequency of HIV-specific LAG3(+)CD8(+) T cells negative correlated with plasma viral load. Our study introduces a new population of HIV-specific CD8(+) T cells and proposes additional mechanisms of immune regulation in chronic HIV infection.
Collapse
Affiliation(s)
- José Peña
- California Department of Public Health, Richmond, California
| | - Norman G. Jones
- California Department of Public Health, Richmond, California
| | | | - David R. Bangsberg
- Mbarara University of Science and Technology, Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital Center for Global Health, Harvard Medical School, Boston, Massachusetts
| | - Huyen Cao
- California Department of Public Health, Richmond, California
| |
Collapse
|
7
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Larsson M, Shankar EM, Che KF, Saeidi A, Ellegård R, Barathan M, Velu V, Kamarulzaman A. Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology 2013; 10:31. [PMID: 23514593 PMCID: PMC3610157 DOI: 10.1186/1742-4690-10-31] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
Cellular immune responses play a crucial role in the control of viral replication in HIV-infected individuals. However, the virus succeeds in exploiting the immune system to its advantage and therefore, the host ultimately fails to control the virus leading to development of terminal AIDS. The virus adopts numerous evasion mechanisms to hijack the host immune system. We and others recently described the expression of inhibitory molecules on T cells as a contributing factor for suboptimal T-cell responses in HIV infection both in vitro and in vivo. The expression of these molecules that negatively impacts the normal functions of the host immune armory and the underlying signaling pathways associated with their enhanced expression need to be discussed. Targets to restrain the expression of these molecular markers of immune inhibition is likely to contribute to development of therapeutic interventions that augment the functionality of host immune cells leading to improved immune control of HIV infection. In this review, we focus on the functions of inhibitory molecules that are expressed or secreted following HIV infection such as BTLA, CTLA-4, CD160, IDO, KLRG1, LAG-3, LILRB1, PD-1, TRAIL, TIM-3, and regulatory cytokines, and highlight their significance in immune inhibition. We also highlight the ensemble of transcriptional factors such as BATF, BLIMP-1/PRDM1, FoxP3, DTX1 and molecular pathways that facilitate the recruitment and differentiation of suppressor T cells in response to HIV infection.
Collapse
Affiliation(s)
- Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 58 185, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Chronic immune activation is a hallmark of HIV infection, yet the underlying triggers of immune activation remain unclear. Persistent antigenic stimulation during HIV infection may also lead to immune exhaustion, a phenomenon in which effector T cells become dysfunctional and lose effector functions and proliferative capacity. Several markers of immune exhaustion, such as PD-1, LAG-3, Tim-3, and CTLA-4, which are also negative regulators of immune activation, are preferentially upregulated on T cells during HIV infection. It is not yet clear whether accumulation of T cells expressing activation inhibitory molecules is a consequence of general immune or chronic HIV-specific immune activation. Importantly, however, in vitro blockade of PD-1 and Tim-3 restores HIV-specific T-cell responses, indicating potential for immunotherapies. In this review we discuss the evolution of our understanding of immune exhaustion during HIV infection, highlighting novel markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Alka Khaitan
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Derya Unutmaz
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; New York University Langone Medical Center, 522 First Avenue, Smilow Research Center, Room 1011, New York, NY 10016, USA
| |
Collapse
|
10
|
Shankar EM, Che KF, Messmer D, Lifson JD, Larsson M. Expression of a broad array of negative costimulatory molecules and Blimp-1 in T cells following priming by HIV-1 pulsed dendritic cells. Mol Med 2010; 17:229-40. [PMID: 21103670 DOI: 10.2119/molmed.2010.00175] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/16/2010] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence indicates that immune impairment in persistent viral infections could lead to T-cell exhaustion. To evaluate the potential contribution of induction of negative costimulatory molecules to impaired T-cell responses, we primed naïve T cells with mature monocyte-derived dendritic cells (MDDCs) pulsed with HIV-1 in vitro. We used quantitative real-time polymerase chain reaction and flow cytometry, respectively, to compare the gene and surface-protein expression profiles of naïve T cells primed with HIV-pulsed or mock-pulsed DCs. We detected elevated expressions of negative costimulatory molecules, including lymphocyte activation gene-3 (LAG-3), CD160, cytolytic T-lymphocyte antigen-4 (CTLA-4), T-cell immunoglobulin mucin-containing domain-3 (TIM-3), programmed death-1 (PD-1) and TRAIL (tumor necrosis-factor-related apoptosis-inducing ligand) in T cells primed by HIV-pulsed DCs. The PD-1(+) T-cell population also coexpressed TIM-3, LAG-3, and CTLA-4. Interestingly, we also found an increase in gene expression of the transcriptional repressors Blimp-1 (B-lymphocyte-induced maturation protein-1) and Foxp3 (forkhead transcription factor) in T-cells primed by HIV-pulsed DCs; Blimp-1 expression was directly proportional to the expression of the negative costimulatory molecules. Furthermore, levels of the effector cytokines interleukin-2, tumor necrosis factor-α and interferon-γ, and perforin and granzyme B were decreased in T-cell populations primed by HIV-pulsed DCs. In conclusion, in vitro priming of naïve T-cells with HIV-pulsed DC leads to expansion of T cells with coexpression of a broad array of negative costimulatory molecules and Blimp-1, with potential deleterious consequences for T-cell responses.
Collapse
Affiliation(s)
- Esaki Muthu Shankar
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Kim SW, Kim HY, Lee HJ, Yun HJ, Kim S, Jo DY. Dexamethasone and hypoxia upregulate CXCR4 expression in myeloma cells. Leuk Lymphoma 2009; 50:1163-73. [PMID: 19391039 DOI: 10.1080/10428190902893801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the modulation of CXCR4 expression by cytokines, dexamethasone, and hypoxia in myeloma cells in vitro. Tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) enhanced CXCR4 expression in RPMI8226 cells. In the myeloma cell lines examined and primary bone marrow (BM) CD138+ cells, dexamethasone enhanced CXCR4 expression both in the cytoplasm and on the cell surface, while downregulating SDF-1 expression and secretion in BM stromal cells. Incubation of cells under hypoxic conditions (1% O(2)) also induced upregulation of CXCR4 in the cytoplasm and on the cell surface and enhanced chemotaxis in response to stromal cell-derived factor-1 (SDF-1). Cell surface CXCR4 expression was more prominent in annexin V-positive apoptotic cells. Given the roles of the SDF-1/CXCR4 axis in the development and progression of myeloma, CXCR4-downregulating agents may enhance the antitumor effects of dexamethasone.
Collapse
Affiliation(s)
- Seong-Woo Kim
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Jung-gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|