1
|
Koma T, Huang C, Kolokoltsova OA, Brasier AR, Paessler S. Innate immune response to arenaviral infection: a focus on the highly pathogenic New World hemorrhagic arenaviruses. J Mol Biol 2013; 425:4893-903. [PMID: 24075870 PMCID: PMC3864108 DOI: 10.1016/j.jmb.2013.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 12/13/2022]
Abstract
Arenaviruses are enveloped, negative-stranded RNA viruses that belong to the family Arenaviridae. This diverse family can be further classified into OW (Old World) and NW (New World) arenaviruses based on their antigenicity, phylogeny, and geographical distribution. Many of the NW arenaviruses are highly pathogenic viruses that cause systemic human infections characterized by hemorrhagic fever and/or neurological manifestations, constituting public health problems in their endemic regions. NW arenavirus infection induces a variety of host innate immune responses, which could contribute to the viral pathogenesis and/or influence the final outcome of virus infection in vitro and in vivo. On the other hand, NW arenaviruses have also developed several strategies to counteract the host innate immune response. We will review current knowledge regarding the interplay between the host innate immune response and NW arenavirus infection in vitro and in vivo, with emphasis on viral-encoded proteins and their effect on the type I interferon response. NW arenaviruses induce a variety of host innate immune responses. The arenaviruses have several strategies to counteract host innate immune response. We review the interplay between host innate immunity and the arenavirus infections.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
2
|
Lukashevich IS. The search for animal models for Lassa fever vaccine development. Expert Rev Vaccines 2013; 12:71-86. [PMID: 23256740 DOI: 10.1586/erv.12.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
3
|
Zapata JC, Poonia B, Bryant J, Davis H, Ateh E, George L, Crasta O, Zhang Y, Slezak T, Jaing C, Pauza CD, Goicochea M, Moshkoff D, Lukashevich IS, Salvato MS. An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity. Virol J 2013; 10:52. [PMID: 23402317 PMCID: PMC3602176 DOI: 10.1186/1743-422x-10-52] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/28/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lassa hemorrhagic fever (LHF) is a rodent-borne viral disease that can be fatal for human beings. In this study, an attenuated Lassa vaccine candidate, ML29, was tested in SIV-infected rhesus macaques for its ability to elicit immune responses without instigating signs pathognomonic for arenavirus disease. ML29 is a reassortant between Lassa and Mopeia viruses that causes a transient infection in non-human primates and confers sterilizing protection from lethal Lassa viral challenge. However, since the LHF endemic area of West Africa also has high HIV seroprevalence, it is important to determine whether vaccination could be safe in the context of HIV infection. Results SIV-infected and uninfected rhesus macaques were vaccinated with the ML29 virus and monitored for specific humoral and cellular immune responses, as well as for classical and non-classical signs of arenavirus disease. Classical disease signs included viremia, rash, respiratory distress, malaise, high liver enzyme levels, and virus invasion of the central nervous system. Non-classical signs, derived from profiling the blood transcriptome of virulent and non-virulent arenavirus infections, included increased expression of interferon-stimulated genes (ISG) and decreased expression of COX2, IL-1β, coagulation intermediates and nuclear receptors needed for stress signaling. All vaccinated monkeys showed ML29-specific antibody responses and ML29-specific cell-mediated immunity. Conclusion SIV-infected and uninfected rhesus macaques responded similarly to ML29 vaccination, and none developed chronic arenavirus infection. Importantly, none of the macaques developed signs, classical or non-classical, of arenavirus disease.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Droniou-Bonzom ME, Cannon PM. A systems biology starter kit for arenaviruses. Viruses 2012; 4:3625-46. [PMID: 23342371 PMCID: PMC3528283 DOI: 10.3390/v4123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 12/05/2022] Open
Abstract
Systems biology approaches in virology aim to integrate viral and host biological networks, and thus model the infection process. The growing availability of high-throughput “-omics” techniques and datasets, as well as the ever-increasing sophistication of in silico modeling tools, has resulted in a corresponding rise in the complexity of the analyses that can be performed. The present study seeks to review and organize published evidence regarding virus-host interactions for the arenaviruses, from alterations in the host proteome during infection, to reported protein-protein interactions. In this way, we hope to provide an overview of the interplay between arenaviruses and the host cell, and lay the foundations for complementing current arenavirus research with a systems-level approach.
Collapse
Affiliation(s)
- Magali E Droniou-Bonzom
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
5
|
Abstract
Arenaviruses include several causative agents of hemorrhagic fever (HF) disease in humans that are associated with high morbidity and significant mortality. Morbidity and lethality associated with HF arenaviruses are believed to involve the dysregulation of the host innate immune and inflammatory responses that leads to impaired development of protective and efficient immunity. The molecular mechanisms underlying this dysregulation are not completely understood, but it is suggested that viral infection leads to disruption of early host defenses and contributes to arenavirus pathogenesis in humans. We demonstrate in the accompanying paper that the prototype member in the family, lymphocytic choriomeningitis virus (LCMV), disables the host innate defense by interfering with type I interferon (IFN-I) production through inhibition of the interferon regulatory factor 3 (IRF3) activation pathway and that the viral nucleoprotein (NP) alone is responsible for this inhibitory effect (C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-Sobrido, J. C. de la Torre, and S. Kunz, J. Virol. 86:7728-7738, 2012). In this report, we show that LCMV-NP, as well as NPs encoded by representative members of both Old World (OW) and New World (NW) arenaviruses, also inhibits the nuclear translocation and transcriptional activity of the nuclear factor kappa B (NF-κB). Similar to the situation previously reported for IRF3, Tacaribe virus NP (TCRV-NP) does not inhibit NF-κB nuclear translocation and transcriptional activity to levels comparable to those seen with other members in the family. Altogether, our findings demonstrate that arenavirus infection inhibits NF-κB-dependent innate immune and inflammatory responses, possibly playing a key role in the pathogenesis and virulence of arenavirus.
Collapse
|
6
|
Bowick GC, McAuley AJ. Meta-analysis of high-throughput datasets reveals cellular responses following hemorrhagic fever virus infection. Viruses 2011; 3:613-9. [PMID: 21994748 PMCID: PMC3185756 DOI: 10.3390/v3050613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022] Open
Abstract
The continuing use of high-throughput assays to investigate cellular responses to infection is providing a large repository of information. Due to the large number of differentially expressed transcripts, often running into the thousands, the majority of these data have not been thoroughly investigated. Advances in techniques for the downstream analysis of high-throughput datasets are providing additional methods for the generation of additional hypotheses for further investigation. The large number of experimental observations, combined with databases that correlate particular genes and proteins with canonical pathways, functions and diseases, allows for the bioinformatic exploration of functional networks that may be implicated in replication or pathogenesis. Herein, we provide an example of how analysis of published high-throughput datasets of cellular responses to hemorrhagic fever virus infection can generate additional functional data. We describe enrichment of genes involved in metabolism, post-translational modification and cardiac damage; potential roles for specific transcription factors and a conserved involvement of a pathway based around cyclooxygenase-2. We believe that these types of analyses can provide virologists with additional hypotheses for continued investigation.
Collapse
Affiliation(s)
- Gavin C. Bowick
- Department of Microbiology & Immunology, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; E-Mail:
- Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-409-772-4043; Fax: +1-409-772-5065
| | - Alexander J. McAuley
- Department of Microbiology & Immunology, Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; E-Mail:
| |
Collapse
|
7
|
Bowick GC, McAuley AJ. Vaccine and adjuvant design for emerging viruses: mutations, deletions, segments and signaling. Bioeng Bugs 2011; 2:129-35. [PMID: 21637006 PMCID: PMC3225654 DOI: 10.4161/bbug.2.3.15367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
Vaccination is currently the most effective strategy to medically control viral diseases. However, developing vaccines is a long and expensive process, and traditional methods, such as attenuating wild-type viruses by serial passage, may not be suitable for all viruses and may lead to vaccine safety considerations, particularly in the case of the vaccination of particular patient groups, such as the immunocompromised and the elderly. In particular, developing vaccines against emerging viral pathogens adds a further level of complexity, as they may only be administered to small groups of people or only in response to a specific event or threat, limiting our ability to study and evaluate responses. In this commentary, we discuss how novel techniques may be used to engineer a new generation of vaccine candidates as we move toward a more targeted vaccine design strategy, driven by our understanding of the mechanisms of viral pathogenesis, attenuation and the signaling events which are required to develop a lasting, protective immunity. We will also briefly discuss the potential future role of vaccine adjuvants, which could be used to bridge the gap between vaccine safety, and lasting immunity from a single vaccination.
Collapse
Affiliation(s)
- Gavin C Bowick
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
8
|
Srikiatkhachorn A, Chintapalli J, Liu J, Jamaluddin M, Harrod KS, Whitsett JA, Enelow RI, Ramana CV. Interference with intraepithelial TNF-α signaling inhibits CD8(+) T-cell-mediated lung injury in influenza infection. Viral Immunol 2011; 23:639-45. [PMID: 21142450 DOI: 10.1089/vim.2010.0076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD8(+) T-cell-mediated pulmonary immunopathology in respiratory virus infection is mediated in large part by antigen-specific TNF-α expression by antiviral effector T cells, which results in epithelial chemokine expression and inflammatory infiltration of the lung. To further define the signaling events leading to lung epithelial chemokine production in response to CD8(+) T-cell antigen recognition, we expressed the adenoviral 14.7K protein, a putative inhibitor of TNF-α signaling, in the distal lung epithelium, and analyzed the functional consequences. Distal airway epithelial expression of 14.7K resulted in a significant reduction in lung injury resulting from severe influenza pneumonia. In vitro analysis demonstrated a significant reduction in the expression of an important mediator of injury, CCL2, in response to CD8(+) T-cell recognition, or to TNF-α. The inhibitory effect of 14.7K on CCL2 expression resulted from attenuation of NF-κB activity, which was independent of Iκ-Bα degradation or nuclear translocation of the p65 subunit. Furthermore, epithelial 14.7K expression inhibited serine phosphorylation of Akt, GSK-3β, and the p65 subunit of NF-κB, as well as recruitment of NF-κB for DNA binding in vivo. These results provide insight into the mechanism of 14.7K inhibition of NF-κB activity, as well as further elucidate the mechanisms involved in the induction of T-cell-mediated immunopathology in respiratory virus infection.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- Center for Infectious Disease and Vaccine Research, University of Massachusetts, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Comparative pathogenesis and systems biology for biodefense virus vaccine development. J Biomed Biotechnol 2010; 2010:236528. [PMID: 20617142 PMCID: PMC2896660 DOI: 10.1155/2010/236528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/21/2010] [Accepted: 03/08/2010] [Indexed: 11/18/2022] Open
Abstract
Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.
Collapse
|
10
|
Proteomic analysis of Pichindé virus infection identifies differential expression of prothymosin-alpha. J Biomed Biotechnol 2010; 2010. [PMID: 20706531 PMCID: PMC2896915 DOI: 10.1155/2010/956823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/04/2010] [Indexed: 11/18/2022] Open
Abstract
The arenaviruses include a number of important pathogens including Lassa virus and Junin virus. Presently, the only treatment is supportive care and the antiviral Ribavirin. In the event of an epidemic, patient triage may be required to more effectively manage resources; the development of prognostic biomarker signatures, correlating with disease severity, would allow rational triage. Using a pair of arenaviruses, which cause mild or severe disease, we analyzed extracts from infected cells using SELDI mass spectrometry to characterize potential biomarker profiles. EDGE analysis was used to analyze longitudinal expression differences. Extracts from infected guinea pigs revealed protein peaks which could discriminate between mild or severe infection, and between times post-infection. Tandem mass-spectrometry identified several peaks, including the transcriptional regulator prothymosin-alpha. Further investigation revealed differences in secretion of this peptide. These data show proof of concept that proteomic profiling of host markers could be used as prognostic markers of infectious disease.
Collapse
|