1
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
2
|
Moon S, Lee KW, Park M, Moon J, Park SH, Kim S, Hwang J, Yoon JW, Jeon SM, Kim JS, Jeon YJ, Kweon DH. 3-Fucosyllactose-mediated modulation of immune response against virus infection. Int J Antimicrob Agents 2024; 64:107187. [PMID: 38697577 DOI: 10.1016/j.ijantimicag.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Viral pathogens, particularly influenza and SARS-CoV-2, pose a significant global health challenge. Given the immunomodulatory properties of human milk oligosaccharides, in particular 2'-fucosyllactose and 3-fucosyllactose (3-FL), we investigated their dietary supplementation effects on antiviral responses in mouse models. This study revealed distinct immune modulations induced by 3-FL. RNA-sequencing data showed that 3-FL increased the expression of interferon receptors, such as Interferon Alpha and Beta Receptor (IFNAR) and Interferon Gamma Receptor (IFNGR), while simultaneously downregulating interferons and interferon-stimulated genes, an effect not observed with 2'-fucosyllactose supplementation. Such modulation enhanced antiviral responses in both cell culture and animal models while attenuating pre-emptive inflammatory responses. Nitric oxide concentrations in 3-FL-supplemented A549 cells and mouse lung tissues were elevated exclusively upon infection, reaching 5.8- and 1.9-fold increases over control groups, respectively. In addition, 3-FL promoted leukocyte infiltration into the site of infection upon viral challenge. 3-FL supplementation provided protective efficacy against lethal influenza challenge in mice. The demonstrated antiviral efficacy spanned multiple influenza strains and extended to SARS-CoV-2. In conclusion, 3-FL is a unique immunomodulator that helps protect the host from viral infection while suppressing inflammation prior to infection.
Collapse
Affiliation(s)
- Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeonghui Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Hee Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Seon-Min Jeon
- Advanced Protein Technologies Corp., Suwon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea.
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea; Advanced Protein Technologies Corp., Suwon, Republic of Korea.
| |
Collapse
|
3
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Hu H, Feng Y, He ML. Targeting Type I Interferon Induction and Signaling: How Zika Virus Escapes from Host Innate Immunity. Int J Biol Sci 2023; 19:3015-3028. [PMID: 37416780 PMCID: PMC10321277 DOI: 10.7150/ijbs.83056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Zika virus (ZIKV) infection causes neurological disorders and draws great attention. ZIKV infection can elicit a wide range of immune response. Type I interferons (IFNs) as well as its signaling cascade play crucial role in innate immunity against ZIKV infection and in turn ZIKV can antagonize them. ZIKV genome are mainly recognized by Toll-like receptors 3 (TLR3), TLR7/8 and RIG-I-like receptor 1 (RIG-1), which induces the expression of Type I IFNs and interferon-stimulated genes (ISGs). ISGs exert antiviral activity at different stages of the ZIKV life cycle. On the other hand, ZIKV takes multiple strategies to antagonize the Type Ⅰ IFN induction and its signaling pathway to establish a pathogenic infection, especially by using the viral nonstructural (NS) proteins. Most of the NS proteins can directly interact with the factors in the pathways to escape the innate immunity. In addition, structural proteins also participate in the innate immune evasion and activation of antibody-binding of blood dendritic cell antigen 2 (BDCA2) or inflammasome also be used to enhance ZIKV replication. In this review, we summarize the recent findings about the interaction between ZIKV infection and type I IFNs pathways and suggest potential strategies for antiviral drug development.
Collapse
Affiliation(s)
- Huan Hu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yaxiu Feng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
6
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
7
|
Tian J, Kang H, Huang J, Li Z, Pan Y, Li Y, Chen S, Zhang J, Yin H, Qu L. Feline calicivirus strain 2280 p30 antagonizes type I interferon-mediated antiviral innate immunity through directly degrading IFNAR1 mRNA. PLoS Pathog 2020; 16:e1008944. [PMID: 33075108 PMCID: PMC7571719 DOI: 10.1371/journal.ppat.1008944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-β. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5’UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, vaccines cannot prevent infection, and vaccinated cats can still become persistently infected by FCV, suggesting that FCV has evolved several strategies for counteracting various components of the innate and adaptive immune systems. Here, we show that FCV strain 2280 is resistant to the antiviral effect of IFN. The molecular mechanism by which this occurs is that FCV 2280 infection blocks the JAK-STAT pathway through promoting the degradation of IFNAR1 mRNA by FCV p30 protein. An in vitro degradation assay demonstrated that 2280 p30, but not p30 of the vaccine strain F9, could directly and selectively decay IFNAR1 RNA. The exchange of p30 between 2280 and F9 strains using a reverse genetic system also showed that 2280 p30 is a key factor that contributes to the resistance to IFN and enhances virulence. Our findings reveal a new mechanism evolved by FCV to circumvent the host antiviral response.
Collapse
Affiliation(s)
- Jin Tian
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| | - Hongtao Kang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jiapei Huang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Zhijie Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yudi Pan
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Yin Li
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Si Chen
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Jikai Zhang
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Hang Yin
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
| | - Liandong Qu
- Division of Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China
- * E-mail: (JT); (LQ)
| |
Collapse
|
8
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
9
|
Zimmerman MG, Bowen JR, McDonald CE, Young E, Baric RS, Pulendran B, Suthar MS. STAT5: a Target of Antagonism by Neurotropic Flaviviruses. J Virol 2019; 93:e00665-19. [PMID: 31534033 PMCID: PMC6854481 DOI: 10.1128/jvi.00665-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023] Open
Abstract
Flaviviruses are a diverse group of arthropod-borne viruses responsible for numerous significant public health threats; therefore, understanding the interactions between these viruses and the human immune response remains vital. West Nile virus (WNV) and Zika virus (ZIKV) infect human dendritic cells (DCs) and can block antiviral immune responses in DCs. Previously, we used mRNA sequencing and weighted gene coexpression network analysis (WGCNA) to define molecular signatures of antiviral DC responses following activation of innate immune signaling (RIG-I, MDA5, or type I interferon [IFN] signaling) or infection with WNV. Using this approach, we found that several genes involved in T cell cosignaling and antigen processing were not enriched in DCs during WNV infection. Using cis-regulatory sequence analysis, STAT5 was identified as a regulator of DC activation and immune responses downstream of innate immune signaling that was not activated during either WNV or ZIKV infection. Mechanistically, WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and interleukin-4 (IL-4), but not granulocyte-macrophage colony-stimulating factor (GM-CSF), signaling. Unexpectedly, dengue virus serotypes 1 to 4 (DENV1 to DENV4) and the yellow fever 17D vaccine strain (YFV-17D) did not antagonize STAT5 phosphorylation. In contrast to WNV, ZIKV inhibited JAK1 and TYK2 phosphorylation following type I IFN treatment, suggesting divergent mechanisms used by these viruses to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert the immune response in infected DCs.IMPORTANCE Flaviviruses are a diverse group of insect-borne viruses responsible for numerous significant public health threats. Previously, we used a computational biology approach to define molecular signatures of antiviral DC responses following activation of innate immune signaling or infection with West Nile virus (WNV). In this work, we identify STAT5 as a regulator of DC activation and antiviral immune responses downstream of innate immune signaling that was not activated during either WNV or Zika virus (ZIKV) infection. WNV and ZIKV actively blocked STAT5 phosphorylation downstream of RIG-I, IFN-β, and IL-4, but not GM-CSF, signaling. However, other related flaviviruses, dengue virus serotypes 1 to 4 and the yellow fever 17D vaccine strain, did not antagonize STAT5 phosphorylation. Mechanistically, WNV and ZIKV showed differential inhibition of Jak kinases upstream of STAT5, suggesting divergent countermeasures to inhibit STAT5 activation. Combined, these findings identify STAT5 as a target of antagonism by specific pathogenic flaviviruses to subvert antiviral immune responses in human DCs.
Collapse
Affiliation(s)
- Matthew G Zimmerman
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - James R Bowen
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Circe E McDonald
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | - Ellen Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Gilbert‐Jaramillo J, Garcez P, James W, Molnár Z, Clarke K. The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 2019; 235:468-480. [PMID: 30793304 PMCID: PMC6704275 DOI: 10.1111/joa.12959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) became a major worldwide public concern in 2015 due to the congenital syndrome which presents the highest risk during the first trimester of pregnancy and includes microcephaly and eye malformations. Several cellular, genetic and molecular studies have shown alterations in metabolic pathways, endoplasmic reticulum (ER) stress, immunity and dysregulation of RNA and energy metabolism both in vivo and in vitro. Here we summarise the main metabolic complications, with a particular focus on the possibility that brain energy metabolism is altered following ZIKV infection, contributing to developmental abnormalities. Brain energetic failure has been implicated in neurological conditions such as autism disorder and epilepsy, as well as in metabolic diseases with severe neurodevelopmental complications such as Glut-1 deficiency syndrome. Therefore, these energetic alterations are of wide-ranging interest as they might be directly implicated in congenital ZIKV syndrome. Data showing increased glycolysis during ZIKV infection, presumably required for viral replication, might support the idea that the virus can cause energetic stress in the developing brain cells. Consequences may include neuroinflammation, cell cycle dysregulation and cell death. Ketone bodies are non-glycolytic brain fuels that are produced during neonatal life, starvation or fasting, ingestion of high-fat low-carbohydrate diets, and following supplementation with ketone esters. We propose that dietary ketones might alter the course of the disease and could even provide some degree of prevention of ZIKV-associated abnormalities and potentially related neurological conditions characterised by brain glucose impairment.
Collapse
Affiliation(s)
| | - Patricia Garcez
- Institute of Biomedical SciencesFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - William James
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
11
|
Banks DA, Ahlbrand SE, Hughitt VK, Shah S, Mayer-Barber KD, Vogel SN, El-Sayed NM, Briken V. Mycobacterium tuberculosis Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. THE JOURNAL OF IMMUNOLOGY 2019; 202:2348-2359. [PMID: 30833347 DOI: 10.4049/jimmunol.1801303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
The type I IFNs (IFN-α and -β) are important for host defense against viral infections. In contrast, their role in defense against nonviral pathogens is more ambiguous. In this article, we report that IFN-β signaling in murine bone marrow-derived macrophages has a cell-intrinsic protective capacity against Mycobacterium tuberculosis via the increased production of NO. The antimycobacterial effects of type I IFNs were mediated by direct signaling through the IFN-α/β-receptor (IFNAR), as Ab-mediated blocking of IFNAR1 prevented the production of NO. Furthermore, M. tuberculosis is able to inhibit IFNAR-mediated cell signaling and the subsequent transcription of 309 IFN-β-stimulated genes in a dose-dependent way. The molecular mechanism of inhibition by M. tuberculosis involves reduced phosphorylation of the IFNAR-associated protein kinases JAK1 and TYK2, leading to reduced phosphorylation of the downstream targets STAT1 and STAT2. Transwell experiments demonstrated that the M. tuberculosis-mediated inhibition of type I IFN signaling was restricted to infected cells. Overall, our study supports the novel concept that M. tuberculosis evolved to inhibit autocrine type I IFN signaling to evade host defense mechanisms.
Collapse
Affiliation(s)
- Dallas A Banks
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Sarah E Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - V Keith Hughitt
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742;
| |
Collapse
|
12
|
Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med 2018; 24:950-962. [PMID: 30314877 DOI: 10.1016/j.molmed.2018.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Neurotropic RNA virus infections cause a major neurological disease burden. Due to the morbidity and mortality rates of viral encephalitides worldwide, there is a need to develop clinical treatments. Features of the central nervous system (CNS), including interconnected cell types and limited regeneration, provide unique challenges. Viral encephalitis and antiviral immunity can disrupt the CNS environment, leaving patients with poor neurological outcomes despite virologic control. The cellular mechanism(s) underlying neurological recovery are not fully understood, but involve neuroimmune interactions that, until recently, primarily focused on microglia. With increasing evidence that astrocytes also have significant roles in inflammatory responses to viruses, here we summarize recent astrocyte contributions to acute virologic control and neurological impairments during recovery from viral infection.
Collapse
Affiliation(s)
- Allison Soung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
13
|
Xia C, Anderson P, Hahm B. Viral dedication to vigorous destruction of interferon receptors. Virology 2018; 522:19-26. [PMID: 30014854 PMCID: PMC6087481 DOI: 10.1016/j.virol.2018.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
Interferons (IFNs) exhibit forceful inhibitory activities against numerous viruses by inducing synthesis of anti-viral proteins or promoting immune cell functions, which help eradicate the vicious microbes. Consequently, the degree to which viruses evade or counterattack IFN responses influences viral pathogenicity. Viruses have developed many strategies to interfere with the synthesis of IFNs or IFN receptor signaling pathway. Furthermore, multiple viruses decrease levels of IFN receptors via diverse tactics, which include decreasing type I IFN receptor mRNA expression, blocking post-translational modification of the receptor, and degrading IFN receptors. Recently, influenza virus was found to induce CK1α-induced phosphorylation and subsequent degradation of the receptor for type I and II IFNs. In this review, viral mechanisms that remove IFN receptors are summarized with an emphasis on the mechanisms for virus-induced degradation of IFN receptors.
Collapse
Affiliation(s)
- Chuan Xia
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Paul Anderson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA; Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
14
|
Airo AM, Urbanowski MD, Lopez-Orozco J, You JH, Skene-Arnold TD, Holmes C, Yamshchikov V, Malik-Soni N, Frappier L, Hobman TC. Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology 2018; 516:147-157. [PMID: 29358114 DOI: 10.1016/j.virol.2018.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 01/23/2023]
Abstract
Flaviviruses depend on multiple host pathways during their life cycles and have evolved strategies to avoid the innate immune response. Previously, we showed that the West Nile virus capsid protein plays a role in this process by blocking apoptosis. In this study, we examined how expression of capsid proteins from several flaviviruses affects apoptosis and other host processes that impact virus replication. All of the tested capsid proteins protected cells from Fas-dependent apoptosis through a mechanism that requires activated Akt. Capsid expression upregulated other Akt-dependent cellular processes including expression of glucose transporter 1 and mitochondrial metabolism. Protein phosphatase 1, which is known to inactivate Akt, was identified as a DENV capsid interacting protein. This suggests that DENV capsid expression activates Akt by sequestering phosphatases that downregulate phospho-Akt. Capsid-dependent upregulation of Akt would enhance downstream signalling pathways that affect cell survival and metabolism, thus providing a favourable environment for virus replication.
Collapse
Affiliation(s)
- Adriana M Airo
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | - Jae Hwan You
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | - Charles Holmes
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Natasha Malik-Soni
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Tom C Hobman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Cell Biology, University of Alberta, Edmonton, Canada; Li Ka Shing Institute of Virology, University of Alberta, Canada; Women & Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
15
|
Aloia AL, Calvert JK, Clarke JN, Davies LT, Helbig KJ, Pitson SM, Carr JM. Investigation of sphingosine kinase 1 in interferon responses during dengue virus infection. Clin Transl Immunology 2017; 6:e151. [PMID: 28791126 PMCID: PMC5539417 DOI: 10.1038/cti.2017.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-β) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1-/- pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and -7 in SK1-/- pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and -7 and p-STAT1. Responses, however, were significantly reduced in SK1-/- pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1-/- pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1-/- compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies.
Collapse
Affiliation(s)
- Amanda L Aloia
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Julie K Calvert
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Jennifer N Clarke
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jillian M Carr
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling. J Virol 2017; 91:JVI.01970-16. [PMID: 27881649 DOI: 10.1128/jvi.01970-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The vector-borne flaviviruses cause severe disease in humans on every inhabited continent on earth. Their transmission by arthropods, particularly mosquitoes, facilitates large emergence events such as witnessed with Zika virus (ZIKV) or West Nile virus in the Americas. Every vector-borne flavivirus examined thus far that causes disease in humans, from dengue virus to ZIKV, antagonizes the host type I interferon (IFN-I) response by preventing JAK-STAT signaling, suggesting that suppression of this pathway is an important determinant of infection. The most direct and potent viral inhibitor of this pathway is the nonstructural protein NS5. However, the mechanisms utilized by NS5 from different flaviviruses are often quite different, sometimes despite close evolutionary relationships between viruses. The varied mechanisms of NS5 as an IFN-I antagonist are also surprising given that the evolution of NS5 is restrained by the requirement to maintain function of two enzymatic activities critical for virus replication, the methyltransferase and RNA-dependent RNA polymerase. This review discusses the different strategies used by flavivirus NS5 to evade the antiviral effects of IFN-I and how this information can be used to better model disease and develop antiviral countermeasures.
Collapse
|
17
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Lopušná K, Benkóczka T, Lupták J, Matúšková R, Lukáčiková Ľ, Ovečková I, Režuchová I. Murine gammaherpesvirus targets type I IFN receptor but not type III IFN receptor early in infection. Cytokine 2016; 83:158-170. [PMID: 27152708 DOI: 10.1016/j.cyto.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2-4hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.
Collapse
Affiliation(s)
- Katarína Lopušná
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Tímea Benkóczka
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Jakub Lupták
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Radka Matúšková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ľubomíra Lukáčiková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingrid Ovečková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingeborg Režuchová
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
19
|
Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, Walts AD, Tsuruda S, Sakai M, Ishizuka M, Boer EF, Foster EC, Chiramel AI, Addison CB, Green R, Kastner DL, Katze MG, Holland SM, Forlino A, Freeman AF, Boehm M, Yoshii K, Best SM. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe 2016; 18:61-74. [PMID: 26159719 DOI: 10.1016/j.chom.2015.06.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 04/08/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022]
Abstract
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
Collapse
Affiliation(s)
- Kirk J Lubick
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Brett A Freedman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Avram D Walts
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Seitaro Tsuruda
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Elena F Boer
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Erin C Foster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Conrad B Addison
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Richard Green
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Alexandra F Freeman
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
20
|
Lukacikova L, Oveckova I, Betakova T, Laposova K, Polcicova K, Pastorekova S, Pastorek J, Tomaskova J. Antiviral Effect of Interferon Lambda Against Lymphocytic Choriomeningitis Virus. J Interferon Cytokine Res 2015; 35:540-53. [PMID: 25830339 DOI: 10.1089/jir.2014.0083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lambda interferons inhibit replication of many viruses, but their role in the inhibition of lymphocytic choriomeningitis virus (LCMV) infection remains unclear. In this study, we examined the antiviral effects of interferon (IFN)-λ2 and IFN-λ3 against LCMV in A549 cells. We found that IFN-λ2 is a more potent inhibitor of LCMV strain MX compared with IFN-λ3, whereas both cytokines have similar antiviral effects against an immunosuppressive variant of LCMV, clone-13. We also demonstrated that the antiviral activity of IFN-λ2 is more effective if it is delivered early rather than after establishment of a long-term infection, suggesting that virus replication is only partially responsive to the cytokine. In agreement with this observation, we showed that LCMV infection significantly reduces IFNLR1 mRNA expression in infected cells. In addition, LCMV infection, to some extent, compromises the signal transduction pathway of IFN-λ2. This implies that IFN receptors as well as their downstream signaling components could be selectively targeted either directly by LCMV proteins or indirectly by cellular factor(s) that are induced or activated by LCMV infection.
Collapse
Affiliation(s)
- Lubomira Lukacikova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingrid Oveckova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tatiana Betakova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Laposova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Polcicova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jana Tomaskova
- Department of Molecular Medicine, Institute of Virology , Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
21
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
22
|
Liu Y, Zhang Z, Zhao X, Yu R, Zhang X, Wu S, Liu J, Chi X, Song X, Fu L, Yu Y, Hou L, Chen W. Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression. Viral Immunol 2014; 27:267-76. [PMID: 24905060 DOI: 10.1089/vim.2013.0127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enterovirus 71 (EV71) infection can cause severe disease and lead to death in children. Recurring outbreaks of EV71 have been reported in several countries. Interferons (IFNs) have been used for decades to treat several types of viral infection, but have a limited ability to inhibit EV71 replication. Herein, we intend to investigate the mechanisms by which EV71 inhibits the cellular type I IFN response. In this study, MRC-5 (human embryonic lung fibroblast) or RD (human rhabdomyosarcoma) cells were infected with EV71, and then treated with or without IFN-α2b. Cells were harvested and analyzed by flow cytometry to determine the level of IFNAR1. Cell lysis were prepared to detect the levels of STAT1, STAT2, phosphorylated STAT1, phosphorylated STAT2, IFNAR1, JAK1, and TYK2 by Western blotting. The phosphorylation of STAT1 and STAT2 induced by IFN were inhibited without significant downregulation of IFNAR1 in EV71-infected cells. The EV71-induced suppression of STAT1 and STAT2 phosphorylation was not rescued by the protein tyrosine phosphatases inhibitor, and was independent of suppressor of cytokine signaling protein 1/3 levels. The phosphorylation of JAK1 and TYK2 were inhibited accompanied by EV71-induced downregulation of JAK1, which occurred at a post-transcriptional level and was proteasome independent. JAK1 expression did not decrease, and IFN-α-stimulated STAT1 and STAT2 phosphorylation were not blocked in HEK293T cells overexpressing the EV71 viral protein 2A or 3C. This study demonstrates that EV71 inhibits the cellular type I IFN antiviral pathway by downregulating JAK1, while the expression of IFNAR1 does not significantly alter in EV71-infected cells. Additionally, the EV71 viral proteins 2A and 3C do not act as antagonists of cellular type I IFN signaling.
Collapse
|
23
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 DOI: 10.3389/fpls.2014.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
24
|
Ong RY, Lum FM, Ng LFP. The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections. Future Virol 2014. [DOI: 10.2217/fvl.14.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Flavivirus and alphavirus are two families of medically important arboviruses known to cause devastating neurologic disease. Exciting knowledge regarding epidemiology, disease and host immune responses are constantly unraveling. In this review, we aim to piece existing knowledge of neurotropic flavi- and alpha-viruses into a general, coherent picture of host–pathogen interactions. Special interest lies in the protective and pathologic host immunity to flavi- and alpha-viral infections, with a strong focus on West Nile virus, Japanese Encephalitis virus and Venezuelan equine encephalitis virus as representatives of their family.
Collapse
Affiliation(s)
- Ruo-Yan Ong
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
| | - Fok-Moon Lum
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Lisa FP Ng
- Laboratory of Chikungunya Virus Immunity, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04–06 Immunos Biopolis, 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| |
Collapse
|
25
|
Kolekar P, Hake N, Kale M, Kulkarni-Kale U. WNV Typer: a server for genotyping of West Nile viruses using an alignment-free method based on a return time distribution. J Virol Methods 2014; 198:41-55. [PMID: 24388930 DOI: 10.1016/j.jviromet.2013.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023]
Abstract
West Nile virus (WNV), genus Flavivirus, family Flaviviridae, is a major cause of viral encephalitis with broad host range and global spread. The virus has undergone a series of evolutionary changes with emergence of various genotypic lineages that are known to differ in type and severity of the diseases caused. Currently, genotyping is carried out using molecular phylogeny of complete coding sequences and genotype is assigned based on proximity to reference genotypes in tree topology. Efficient epidemiological surveillance of WNVs demands development of objective criteria for typing. An alignment-free approach based on return time distribution (RTD) of k-mers has been validated for genotyping of WNVs. The RTDs of complete genome sequences at k=7 were found to be optimum for classification of the known lineages of WNVs as well as for genotyping. It provides time and computationally efficient alternative for genome based annotation of WNV lineages. The development of a WNV Typer server based on RTD is described (http://bioinfo.net.in/wnv/homepage.html). Both the method and the server have 100% sensitivity and specificity.
Collapse
Affiliation(s)
| | - Nilesh Hake
- Bioinformatics Centre, University of Pune, Pune 411007, India
| | - Mohan Kale
- Department of Statistics, University of Pune, Pune 411007, India.
| | | |
Collapse
|
26
|
Verchot J. The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:66. [PMID: 24653727 PMCID: PMC3949406 DOI: 10.3389/fpls.2014.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- *Correspondence: Jeanmarie Verchot, Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK 74078, USA e-mail:
| |
Collapse
|
27
|
Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses 2013; 5:2643-58. [PMID: 24178712 PMCID: PMC3856407 DOI: 10.3390/v5112643] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023] Open
Abstract
West Nile virus (WNV) is an emerging mosquito-borne flavivirus that causes annual epidemics of encephalitic disease throughout the world. Despite the ongoing risk to public health, no approved vaccines or therapies exist for use in humans to prevent or combat WNV infection. The innate immune response is critical for controlling WNV replication, limiting virus-induced pathology, and programming protective humoral and cell-mediated immunity to WNV infection. The RIG-I like receptors, Toll-like receptors, and Nod-like receptors detect and respond to WNV by inducing a potent antiviral defense program, characterized by production of type I IFN, IL-1β and expression of antiviral effector genes. Recent research efforts have focused on uncovering the mechanisms of innate immune sensing, antiviral effector genes that inhibit WNV, and countermeasures employed by WNV to antagonize innate immune cellular defenses. In this review, we highlight the major research findings pertaining to innate immune regulation of WNV infection.
Collapse
Affiliation(s)
- Kendra M Quicke
- Department of Pediatrics and Children's Healthcare of Atlanta and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA.
| | | |
Collapse
|
28
|
Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile virus: Implications for central nervous system immunopathology. World J Virol 2013; 2:49-56. [PMID: 24175229 PMCID: PMC3785052 DOI: 10.5501/wjv.v2.i2.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/19/2013] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that has recently spread to America and Southern Europe via an enzootic/epizootic bird-mosquito-bird transmission cycle. The virus can occasionally infect humans through mosquito bites, and man-to-man transmission has also been reported via infected blood or organ donation. In the human host, WNV causes asymptomatic infection in about 70%-80% of cases, while < 1% of clinical cases progress to severe neuroinvasive disease; long-term neurological sequelae are common in more than 50% of these severe cases. The pathogenesis of the neuroinvasive form of WNV infection remains incompletely understood, and risk factors for developing severe clinical illness are largely unknown. The innate immune response plays a major role in the control of WNV replication, which is supported by the fact that the virus has developed numerous mechanisms to escape the control of antiviral interferons. However, exaggerated inflammatory responses lead to pathology, mainly involving the central nervous system. This brief review presents the salient features of innate host responses, WNV immunoevasion strategies, and WNV-induced immunopathology.
Collapse
|
29
|
Suthar MS, Diamond MS, Gale Jr M. West Nile virus infection and immunity. Nat Rev Microbiol 2013; 11:115-28. [DOI: 10.1038/nrmicro2950] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Veksler-Lublinsky I, Shemer-Avni Y, Meiri E, Bentwich Z, Kedem K, Ziv-Ukelson M. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV). BMC Bioinformatics 2012. [PMID: 23206407 PMCID: PMC3598692 DOI: 10.1186/1471-2105-13-322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation.
Collapse
|
31
|
Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine 2012; 31:461-71. [PMID: 23153447 DOI: 10.1016/j.vaccine.2012.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 12/24/2022]
Abstract
Flavivirus is a genus of the family Flaviviridae. It includes West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and several other viruses which lead to extensive morbidity and mortality in humans. To establish infection and replication in the hosts, flaviviruses have evolved a variety of strategies to modulate the host's immune responses. In this review, the strategies employed by flaviviruses to evade the innate and adaptive immunity of host are summarized based on current studies, with a major focus on the inhibition of interferon, complement, natural killer (NK) cell, B cell, and T cell responses. This review aims to provide an overview of the current understanding for the mechanisms used by flaviviruses to escape the host's immune response, which will facilitate the future studies on flavivirus pathogenesis and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | | | | | | | | |
Collapse
|
32
|
Diamond MS, Gale M. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 2012; 33:522-30. [PMID: 22726607 DOI: 10.1016/j.it.2012.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 12/25/2022]
Abstract
West Nile virus (WNV) is an enveloped positive-stranded RNA virus that has emerged over the past decade in North America to cause epidemics of meningitis, encephalitis, and acute flaccid paralysis in humans. WNV has broad species specificity, and replicates efficiently in many cell types, including those of the innate immune and central nervous systems. Recent studies have defined the pathogen recognition receptor (PRR) and signaling pathways by which WNV is detected, and several effector mechanisms that contribute to protective cell-intrinsic immunity. This review focuses on recent advances in identifying the host sensors that detect WNV, the adaptor molecules and signaling pathways that regulate the induction of interferon (IFN)-dependent defenses, and the proteins that limit WNV replication, spread, and disease pathogenesis.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
33
|
de Weerd NA, Nguyen T. The interferons and their receptors--distribution and regulation. Immunol Cell Biol 2012; 90:483-91. [PMID: 22410872 PMCID: PMC7165917 DOI: 10.1038/icb.2012.9] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/07/2012] [Accepted: 02/12/2012] [Indexed: 12/19/2022]
Abstract
The interferons (IFNs) were originally described over 50 years ago, identified by their ability to confer viral resistance to cells. We now know that they are much more than just anti-viral cytokines collectively having roles in both innate and adaptive immune responses, in tumor surveillance and defense, and modulation of immune cell function. Three types of IFN have now been described, simply referred to as type I, II and III. Distinguishable by the unique receptors that they rely on for signal transduction, the three types of IFN have specific and varied roles in the maintenance of human health and defense against pathogens. In mounting an IFN-mediated immune response, the human body has developed the ability to regulate IFN-mediated signal transduction. Like all cytokines, the ability of a cell to respond to IFN is completely dependent on the presence of its cognate receptor on the surface of the target cell. Thus, one of the major mechanisms used by the human body to regulate the strength and duration of the IFN response is through regulation of receptor levels, thereby altering the cytokine-specific responsiveness of the target cell. This review will discuss the receptor system utilized by the type I IFNs and compare it with that of the type II and III IFNs, which also regulate immune responses through controlling receptor level on the cell surface.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
34
|
Pesko KN, Ebel GD. West Nile virus population genetics and evolution. INFECTION GENETICS AND EVOLUTION 2011; 12:181-90. [PMID: 22226703 DOI: 10.1016/j.meegid.2011.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/18/2022]
Abstract
West Nile virus (WNV) (Flaviviridae: Flavivirus) is transmitted from mosquitoes to birds, but can cause fatal encephalitis in infected humans. Since its introduction into North America in New York in 1999, it has spread throughout the western hemisphere. Multiple outbreaks have also occurred in Europe over the last 20 years. This review highlights recent efforts to understand how host pressures impact viral population genetics, genotypic and phenotypic changes which have occurred in the WNV genome as it adapts to this novel environment, and molecular epidemiology of WNV worldwide. Future research directions are also discussed.
Collapse
Affiliation(s)
- Kendra N Pesko
- Department of Pathology, University of New Mexico School of Medicine, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|