1
|
Mgijima T, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Onani MO. Wound healing effects of biogenic gold nanoparticles synthesized using red wine extracts. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:399-410. [PMID: 39069752 DOI: 10.1080/21691401.2024.2383583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Gold nanoparticles (AuNPs) were synthesized using three red wine extracts (RW-Es); by varying temperature, pH, concentrations of RW-Es and gold salt. The RW-AuNPs were characterized by UV-vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), and the Fourier Transform Infra-red Spectroscopy (FT-IR). Their stability was evaluated in water, foetal bovine serum (FBS), phosphate-buffered saline (PBS), and Dulbecco's Modified Eagle Medium (DMEM) by UV-Vis. The effect of the RW-Es and RW-AuNPs on KMST-6 cell cell viability was evaluated by MTT assay; and their wound healing effects were monitored by scratch assay. RW-AuNPs synthesis was observed by colour change, and confirmed by UV-Vis spectrum, with an absorption peak around 550 nm. The hydrodynamic sizes of the RW-AuNPs ranged between 10 and 100 nm. Polyphenols, carboxylic acids, and amino acids are some of functional groups in the RW-Es that were involved in the reduction of RW-AuNPs. The RW-AuNPs were stable in test solutions and showed no cytotoxicity to the KMST-6 cells up to 72 h. AuNPs synthesized from Pinotage and Cabernet Sauvignon enhanced proliferation of KMST-6 cells and showed potential as wound healing agents. Further studies are required to investigate the molecular mechanisms involved in the potential wound-healing effect of the RW-AuNPs.
Collapse
Affiliation(s)
- Tswellang Mgijima
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole R S Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- Health Platform, Advanced Materials Division, Mintek, Randburg, South Africa
| | - Adewale O Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Samantha Meyer
- Phytotherapy Research Group, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Abram M Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Martin O Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
2
|
Zhang T, Sheng S, Cai W, Yang H, Li J, Niu L, Chen W, Zhang X, Zhou Q, Gao C, Li Z, Zhang Y, Wang G, Shen H, Zhang H, Hu Y, Yin Z, Chen X, Liu Y, Cui J, Su J. 3-D bioprinted human-derived skin organoids accelerate full-thickness skin defects repair. Bioact Mater 2024; 42:257-269. [PMID: 39285913 PMCID: PMC11404058 DOI: 10.1016/j.bioactmat.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The healing of large skin defects remains a significant challenge in clinical settings. The lack of epidermal sources, such as autologous skin grafting, limits full-thickness skin defect repair and leads to excessive scar formation. Skin organoids have the potential to generate a complete skin layer, supporting in-situ skin regeneration in the defect area. In this study, skin organoid spheres, created with human keratinocytes, fibroblasts, and endothelial cells, showed a specific structure with a stromal core surrounded by surface keratinocytes. We selected an appropriate bioink and innovatively combined an extrusion-based bioprinting technique with dual-photo source cross-linking technology to ensure the overall mechanical properties of the 3D bioprinted skin organoid. Moreover, the 3D bioprinted skin organoid was customized to match the size and shape of the wound site, facilitating convenient implantation. When applied to full-thickness skin defects in immunodeficient mice, the 3D bioprinted human-derived skin organoid significantly accelerated wound healing through in-situ regeneration, epithelialization, vascularization, and inhibition of excessive inflammation. The combination of skin organoid and 3D bioprinting technology can overcome the limitations of current skin substitutes, offering a novel treatment strategy to address large-area skin defects.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
| | - Weihuang Cai
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Huijian Yang
- Department of Laboratory Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiameng Li
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Luyu Niu
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wanzhuo Chen
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiuyuan Zhang
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qirong Zhou
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhifeng Yin
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Trauma Orthopedics Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Institute of Musculoskeletal Injury and Translational Medicine of Organoids, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jin Cui
- Department of Orthopedics, First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Institute of Biomedicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Kang B, Jia Z, Dong Y, Li W, Zhang W. Recombinant human annexin A5 accelerates diabetic wounds healing by regulating skin inflammation. Regen Ther 2024; 27:342-353. [PMID: 38645281 PMCID: PMC11031805 DOI: 10.1016/j.reth.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Background One of the key obstacles to the healing of diabetic wound is the persistence of active inflammation. We previously demonstrated the potential of cell-free fat extract (CEFFE) to promote the healing of diabetic wounds, and annexin A5 (A5) is a crucial anti-inflammatory protein within CEFFE. This study aimed to evaluate the therapeutic potential of A5 in diabetic wounds. Methods A5 was loaded into GelMA hydrogels and applied to skin wounds of diabetic mice in vivo. The diabetic wounds with the treatment of GelMA-A5 were observed for 14 days and evaluated by histological analysis. Accessment of inflammation regulation were conducted through anti-CD68 staining, anti-CD86 and anti-CD206 staining, and qRT-PCR of wound tissue. In presence of A5, macrophages stimulated by lipopolysaccharide (LPS) in vitro, and detected through qRT-PCR, flow cytometry, and immunocytofluorescence staining. Besides, epithelial cells were co-cultured with A5 for epithelialization regulation by CCK-8 assay and cell migration assay. Results A5 could promote diabetic wound healing and regulate inflammations by promoting the transition of macrophages from M1 to M2 phenotype. In vitro experiments demonstrated that A5 exerted a significant effect on reducing pro-inflammatory factors and inhibiting the polarization of macrophages from M0 toward M1 phenotype. A5 significantly promoted the migration of epithelial cells. Conclusion Annexin A5 has a significant impact on the regulation of macrophage inflammation and promotion of epithelialization.
Collapse
Affiliation(s)
- Bijun Kang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai 200011, China
| | - Zhuoxuan Jia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai 200011, China
| | - Yushan Dong
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai 200011, China
| | - Wei Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, National Tissue Engineering Center of China, 639 ZhiZaoJu Road, Shanghai 200011, China
| |
Collapse
|
4
|
Chen S, Luo X, Ma R, Guo Z, Zhao J, Gao J, He R, Jin W. Promotes M1-polarization and diabetic wound healing using Prussian blue nanozymes. Int Immunopharmacol 2024; 141:113009. [PMID: 39191123 DOI: 10.1016/j.intimp.2024.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.
Collapse
Affiliation(s)
- ShuRui Chen
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Xiang Luo
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Ruixi Ma
- Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Zeyu Guo
- Department of Orthopedic, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jiyu Zhao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinpeng Gao
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Rongrong He
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.
| | - Wen Jin
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Salgado-Pacheco V, Oller R, Ferrer-Solà M, Masó-Albareda C, Casals-Zorita M, Sarri E, Puigoriol-Juvanteny E, Espaulella-Panicot J, Otero-Viñas M. A Prospective Observational Study to Evaluate the Effectiveness of Platelet-Rich Plasma Therapy for Complex Wounds: Influential Clinical Variables on Wound Healing Outcomes. Adv Wound Care (New Rochelle) 2024. [PMID: 39506887 DOI: 10.1089/wound.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Objective: Autologous platelet-rich plasma (PRP) has shown promising outcomes in treating wounds, but the profile of patients benefiting most from this therapy is not known. This study aimed to identify influential variables in the success of this therapy, analyzing its personalized therapeutic potential for complex wounds. Approach: A prospective observational study was conducted in elderly patients with complex wounds receiving autologous PRP. Patient's data about sociodemographic parameters, comorbidities, frailty (FI-VIG score), complete blood count including albumin, wound depth, location, chronicity, and etiology were collected at the beginning of the study. The wound area was monitored weekly. The data were analyzed using descriptive and inferential statistics, longitudinal data analysis, and survival analysis. Results: Ninety-seven elderly patients were included. The FI-VIG, baseline wound area, depth, and etiology were significantly correlated with wound outcome. Strong differences in wound area variation from treatment initiation were observed in healed wounds (13% reduction/week) compared with stagnant and complicated wounds (1 and 2% reduction/week, respectively). The healing time analysis showed that nearly 80% of patients required at least 15 weeks for complete healing. In addition, patients with smaller wound sizes, younger age, or lower FI-VIG scores had shorter healing times. Innovation: This is the first study that identifies prognostic indicators for wound outcomes to guide clinician decision-making for using autologous PRP. It also highlights the relevance of patient health baseline and wound features and evolution for the success of this therapy. Conclusion: This study demonstrates that personalizing autologous PRP therapy to treat complex wounds in elderly patients is possible.
Collapse
Affiliation(s)
- Verónica Salgado-Pacheco
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Doctoral School, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ramon Oller
- Data Analysis and Modeling (DAM) Research Group, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Department of Economics and Business, Faculty of Business and Communication, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Marta Ferrer-Solà
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Fundació Hospital de la Santa Creu de Vic, Vic, Spain
- Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Consorci Hospitalari de Vic, Vic, Spain
| | - Clara Masó-Albareda
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Doctoral School, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Hospital de la Santa Creu de Vic, Vic, Spain
| | - Marta Casals-Zorita
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Doctoral School, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Hospital de la Santa Creu de Vic, Vic, Spain
- Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Elisabet Sarri
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Emma Puigoriol-Juvanteny
- Faculty of Health Sciences and Welfare, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Consorci Hospitalari de Vic, Vic, Spain
- Multidisciplinary Inflamation Research Group (MIRG), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
| | - Joan Espaulella-Panicot
- Fundació Hospital de la Santa Creu de Vic, Vic, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Marta Otero-Viñas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (IrisCC), Vic, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
6
|
Dallmann AC, Sheridan M, Mattke S, Ennis W. Prediction of Healing Trajectory of Chronic Wounds Using a Machine Learning Approach. Adv Wound Care (New Rochelle) 2024. [PMID: 39508072 DOI: 10.1089/wound.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Objective: New treatment options are emerging for chronic wounds, which represent a growing problem because of population ageing and increasing burden of chronic disease. While promising, the existing evidence for advanced modalities is commonly derived from small and/or poorly controlled studies and clear criteria for selecting patients, who are likely to benefit from these expensive options are lacking. In this study, we develop and validate a machine learning model to predict if a chronic wound, independent of etiology, is expected to heal within 12 weeks to identify cases in potential need of advanced treatment options. Approach: Retrospective analysis of electronic health record data from 2014 to 2018 covering 532 wound care clinics in the United States and 261,398 patients with 620,356 unique wounds. Prediction of 12-week healing trajectories with a machine learning model. Results: The best-performing model in a training dataset of a randomly drawn 75% subset of wounds contained variables for patient demographics, comorbidities, wound characteristics at initial presentation, and changes in wound dimensions over time, with the latter group being the most influential predictors. The final machine learning model had a high predictive accuracy with area under the receiver operating characteristic curves of 0.9 and 0.92 after 4 and 5 weeks of treatment, respectively. Innovation: A machine learning model can identify chronic wounds at risk of not healing by week 12 with high accuracy in the early weeks of treatment. Conclusions: If embedded in real-world care, the generated information could be able to guide effective and efficient treatment decisions.
Collapse
Affiliation(s)
- Anissa C Dallmann
- Cornell Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, New York, USA
| | | | - Soeren Mattke
- Center for Improving Chronic Illness Care, University of Southern California, Los Angeles, California, USA
| | - William Ennis
- Healogics Inc., Jacksonville, Florida, USA
- Healing and Tissue Repair Program, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Sanin GD, Minnick CE, Stutsrim A, Williams TK, Velazquez G, Blazek C, Edwards M, Craven T, Goldman MP. Impact of regional differences and neighborhood socioeconomic deprivation on the outcomes of patients with lower extremity wounds evaluated by a limb-preservation service. J Vasc Surg 2024; 80:1578-1586. [PMID: 38782216 DOI: 10.1016/j.jvs.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Management of lower extremity (LE) wounds has evolved with the establishment of specialized limb preservation services. Although clinical factors contribute to limb outcomes, socioeconomic status and community factors also influence the risk for limb loss. The Distressed Community Index (DCI) score is a validated index of social deprivation created to provide an objective measure of economic well-being in United States communities. Few studies have examined the influence of geographic deprivation on outcomes in patients with LE wounds. We examined relationships between socioeconomic deprivation and outcomes of inpatients evaluated by a dedicated limb preservation service (Functional Limb Extremity Service [FLEX]). METHODS Inpatients referred to FLEX over a 5-year period were included. Wound, Ischemia, foot Infection (WIfI) staging was collected. DCI scores were determined using seven indices based on ZIP Code. Outcomes included any minor or major amputations, any endovascular or open LE revascularization, or wound care procedures. Disease etiology, demographic, and anthropometric data were collected. Associations between neighborhood deprivation and limb-specific outcomes were evaluated in models for the DCI and each of its components separately. RESULTS A total of 677 patients were included. Thirty-eight percent were female, with a mean age of 64 years. Sixty percent had WIfI stage 3 or 4 risk of amputation, and 43% had WIfI stage 3 or 4 risk of revascularization. Mean ankle-brachial index and toe pressure were 0.96 (standard deviation [SD], 0.43) and 80 (SD, 57) mmHg. Thirty-five percent were non-White. Amputation was performed in 31% of patients, whereas 17% underwent revascularization. The mean distress score was 64 (SD, 24). Mean DCI scores did not differ across WIfI scores. Likewise, overall DCI distress score was not related to any of the outcomes in univariable or multivariable linear regression models. In univariable linear regression models for amputation, higher poverty rate (odds ratio for SD increase 1.20; 95% confidence interval, 1.02-1.42; P = .025) was significantly associated with the outcome. In multivariable models, neither DCI distress score nor any of its components remained significantly associated with the outcome. CONCLUSIONS Despite known racial disparities in limb-specific outcomes, an aggregate measure of community level distress was not found to be related to outcomes. Although the poverty rate demonstrated a significant relationship with amputation in univariable analysis, this association was not found in multivariable models. Notably, non-White race emerged as a predictor of amputation, underscoring the importance of addressing racial disparities in LE outcomes. Further investigation of potential determinants of LE outcomes is needed, particularly the interaction of such factors with race.
Collapse
Affiliation(s)
- Gloria D Sanin
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC; Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC.
| | | | - Ashlee Stutsrim
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Timothy K Williams
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Gabriela Velazquez
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Cody Blazek
- Department of Orthopedic Surgery and Rehabilitation, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Matthew Edwards
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Timothy Craven
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC
| | - Matthew P Goldman
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| |
Collapse
|
8
|
Guth C, Limjunyawong N, Pundir P. The evolving role of mast cells in wound healing: insights from recent research and diverse models. Immunol Cell Biol 2024; 102:878-890. [PMID: 39377394 DOI: 10.1111/imcb.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell-derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.
Collapse
Affiliation(s)
- Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Nathachit Limjunyawong
- Research Department, Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Wu X, Ding C, Liu X, Ding Q, Zhang S, Wang Y, Xin C, Wei H, Mao R, Zhang G, Zhao T, Liu W. The role of phlorizin liposome-embedded oxidized sodium alginate/carboxymethyl chitosan in diabetic wound healing. Int J Biol Macromol 2024; 279:135324. [PMID: 39241996 DOI: 10.1016/j.ijbiomac.2024.135324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Wound healing in diabetic patients is often complicated by issues like inflammation, infection, bleeding, and fluid retention. To tackle these challenges, it is essential to create hydrogel dressings with anti-inflammatory, antibacterial, and antioxidative properties. This study aimed to synthesize Phlorizin-Liposomes (PL) through the thin-film dispersion method and integrate them into an oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) hydrogel scaffold, resulting in an OSA/CMCS/PL (PLOCS) composite hydrogel via a Schiff base reaction. Characterization of the composite was performed using FTIR, TEM, and SEM techniques. The research assessed the swelling behavior, antibacterial effectiveness, and biocompatibility of the PLOCS composite hydrogel, while also investigating how PLOCS facilitates diabetic wound healing. The results demonstrated that PLOCS effectively controls drug release, possesses favorable swelling and degradation characteristics, and shows significant antioxidative properties along with in vitro biocompatibility. Histological analysis confirmed that PLOCS supports the proliferation of healthy epithelial tissue and collagen production. Western blotting indicated that PLOCS diminishes inflammation by inhibiting the TLR4/NF-κB/MyD88 pathway and activates Nrf2 to boost wound healing, increasing the levels of antioxidative enzymes such as HO-1, NQO1, and GCLC. In summary, PLOCS presents a promising new option for advanced wound dressings aimed at treating diabetic ulcers.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chenran Xin
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Rui Mao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guiping Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
11
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
12
|
Xu YY, Chen T, Ding H, Chen Q, Fan QL. Melatonin inhibits circadian gene DEC1 and TLR2/MyD88/NF-κB signaling pathway to alleviate renal injury in type 2 diabetic mice. Acta Diabetol 2024; 61:1455-1474. [PMID: 38896283 DOI: 10.1007/s00592-024-02312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Diabetic Kidney Disease (DKD) is a complex disease associated with circadian rhythm and biological clock regulation disorders. Melatonin (MT) is considered a hormone with renal protective effects, but its mechanism of action in DKD is unclear. METHODS We used the GSE151325 dataset from the GEO database for differential gene analysis and further explored related genes and pathways through GO and KEGG analysis and PPI network analysis. Additionally, this study used a type 2 diabetes db/db mouse model and investigated the role of melatonin in DKD and its relationship with clock genes through immunohistochemistry, Western blot, real-time PCR, ELISA, chromatin immunoprecipitation (ChIP), dual-luciferase reporter technology, and liposome transfection technology to study DEC1 siRNA. RESULTS Bioinformatics analysis revealed the central position of clock genes such as CLOCK, DEC1, Bhlhe41, CRY1, and RORB in DKD. Their interaction with key inflammatory regulators may reveal melatonin's potential mechanism in treating diabetic kidney disease. Further experimental results showed that melatonin significantly improved the renal pathological changes in db/db mice, reduced body weight and blood sugar, regulated clock genes in renal tissue, and downregulated the TLR2/MyD88/NF-κB signaling pathway. We found that the transcription factor DEC1 can bind to the TLR2 promoter and activate its transcription, while CLOCK's effect is unclear. Liposome transfection experiments further confirmed the effect of DEC1 on the TLR2/MyD88/NF-κB signaling pathway. CONCLUSION Melatonin shows significant renal protective effects by regulating clock genes and downregulating the TLR2/MyD88/NF-κB signaling pathway. The transcription factor DEC1 may become a key regulatory factor for renal inflammation and fibrosis by activating TLR2 promoter transcription. These findings provide new perspectives and directions for the potential application of melatonin in DKD treatment.
Collapse
Affiliation(s)
- Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tong Chen
- Department of Nephrology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Qiong Chen
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| | - Qiu-Ling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
13
|
Kulayta K, Zerdo Z, Seid M, Dubale A, Manilal A, Kebede T, Alahmadi RM, Raman G, Akbar I. Biofilm formation and antibiogram profile of bacteria from infected wounds in a general hospital in southern Ethiopia. Sci Rep 2024; 14:26359. [PMID: 39487302 PMCID: PMC11530625 DOI: 10.1038/s41598-024-78283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Biofilm-producing bacteria associated with wound infections exhibit exceptional drug resistance, leading to an escalation in morbidity, worse clinical outcomes (including delay in the healing process), and an increase in health care cost, burdening the whole system. This study is an attempt to estimate the prevalence and the relationship between the biofilm-forming capacity and multi-drug resistance of wound bacterial isolates. The findings intended to help clinicians, healthcare providers and program planners and to formulate an evidence-based decision-making process, especially in resource-limited healthcare settings. This study was done to assess the prevalence of bacterial infections in wounds and the antibiogram and biofilm-forming capacity of those bacteria in patients with clinical signs and symptoms, attending a General Hospital in southern Ethiopia. A cross-sectional study was performed in Arba Minch General Hospital from June to November 2021. The study participants comprised 201 patients with clinically infected wounds. Demographic and clinical data were gathered via a structured questionnaire. Specimens from wounds were taken from each participant and inoculated onto a series of culture media, namely MacConkey agar, mannitol salt agar, and blood agar, and different species were identified using a number of biochemical tests. Antimicrobial susceptibility tests were performed by means of the Kirby-Bauer disc diffusion technique following the guidelines of the Clinical and Laboratory Standards Institute. A micro-titer plate method was employed to detect the extent of biofilm formation. Bivariable and multivariable logistic regression models were applied to analyse the association between dependent and independent variables, and P values ≤ 0.05 were considered as statistically significant. Data analyses were done with Statistical Package for the Social Sciences version 25. Out of the 201 clinically infected wounds, 165 were found culture-positive with an overall prevalence of 82% (95% CI: 75.9-86.9). In total, 188 bacteria were recovered; 53.1% of them were Gram-positive cocci. The often-isolated bacterial species were Staphylococcus aureus, 38.3% (n = 72), and Pseudomonas aeruginosa, 16.4% (n = 31). The Gram-positive isolates showed considerable resistance against penicillin, 70%, and somewhat strong resistance against tetracycline, 57.7%. Gram-negative isolates showed severe resistance to ampicillin, 80.68%. The overall multi-drug resistance (MDR) among isolates was 48.4%. Extended beta-lactamase (ESBL)-producing Gram-negatives and methicillin-resistant Staphylococcus aureus (MRSA) accounted for 49 and 41.67%, respectively; 62.2% of the isolates were biofilm formers and were correlated statistically with MDR, ESBL producers, and MRSA (P < 0.005). The extent of biofilm formation and the prevalence of MDR bacteria associated with infected wounds hint at a public health threat that needs immediate attention. Thus, a more balanced and comprehensive wound management approach and antimicrobial stewardship program are essential in the study setting.
Collapse
Affiliation(s)
- Kebede Kulayta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia
- Department of Medical Laboratory Science, Arba Minch College of Health Sciences, Arba Minch, Ethiopia
| | - Zerihun Zerdo
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia
| | - Mohammed Seid
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia.
| | - Amanuel Dubale
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia
| | - Aseer Manilal
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia.
| | - Teshome Kebede
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, southern, Ethiopia
- Arba Minch General Hospital, Arba Minch, Ethiopia
| | - Reham M Alahmadi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk-Do, South Korea.
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli District, 621007, Tamil Nadu, India
| |
Collapse
|
14
|
Mahendran MIMS, Gopalakrishnan V, Saravanan V, Dhamodharan R, Jothimani P, Balasubramanian M, Singh AK, Vaithianathan R. Managing drug therapy-related problems and assessment of chronic diabetic wounds. Curr Med Res Opin 2024:1-17. [PMID: 39402701 DOI: 10.1080/03007995.2024.2414893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM), responsible for most diabetes cases recorded worldwide, increases the risk of chronic wounds and amputation. Patients with T2DM appear to be more susceptible to delayed wound healing due to their treatment adherence. This review explores the specifics of polypharmacy, side effects, possible drug interactions and the importance of medication adherence for therapeutic efficacy. We discuss the effects of anti-diabetes medications on wound healing as well as the role that biofilms and microbial infections play in diabetic wounds. Inconsistent use of medications can lead to poor glycaemic control, which negatively affects the healing process of diabetic foot ulcers. Managing chronic wounds represents a substantial portion of healthcare expenditures. Biofilm-associated infections are difficult for the immune system to treat and respond inconsistently to antibiotics as these infections are slow growing and persistent. Additionally, we emphasize the critical role pharmacists play in enhancing patient adherence and optimizing diabetes treatment by offering comprehensive coverage of drugs associated with problems related to pharmacological therapy in type 2 diabetes.
Collapse
Affiliation(s)
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Ramasamy Dhamodharan
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Pradeep Jothimani
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - M Balasubramanian
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Abhimanyu Kumar Singh
- MGM Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| | - Rajan Vaithianathan
- Department of Surgery, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India
| |
Collapse
|
15
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
16
|
Alaqabani H, Hammad A, Abosnwber Y, Perrie Y. Novel microfluidic development of pH-responsive hybrid liposomes: In vitro and in vivo assessment for enhanced wound Healing. Int J Pharm 2024; 667:124884. [PMID: 39471888 DOI: 10.1016/j.ijpharm.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, especially in chronic wounds where healing is impaired. Liposomes have emerged as promising vehicles for delivering therapeutics to facilitate wound repair. Liposomes have been explored as effective carriers for therapeutic agents. However, traditional methods of liposome preparation face significant challenges, particularly in achieving consistent stability and precise control over drug encapsulation and release. This study addresses these challenges by pioneering the development of Hybrid Liposomes (HLPs) using microfluidic technology, which provides more controlled characteristics through precisely managed formulation parameters. Notably, the formation of Polydopamine (PDA) polymer within HLPs facilitates pH-responsive drug release, making them well-suited for acidic wound environments. Furthermore, surface modification with Folic Acid (FA) enhances cellular interaction with the HLPs. In vitro and in vivo studies demonstrate the efficacy of HLPs loaded with Hyaluronic Acid (HA) or Phenytoin (PHT) in promoting wound healing. Microfluidics optimizes the stability of HLPs over 90 days, underscoring their potential as a potent, antibiotic-free drug delivery system. In conclusion, this research advances the understanding of microfluidic optimization for HLPs, offering cutting-edge drug delivery systems. The transformative potential of targeted HLPs through microfluidics holds promise for revolutionizing wound healing and inspires optimism for effective therapeutic interventions.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Alaa Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Yara Abosnwber
- Faculty of Health School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| |
Collapse
|
17
|
Trimukhe AM, Melo JS, Chaturvedi D, Jain RD, Dandekar P, Deshmukh RR. RF pulsed plasma modified composite scaffold for enhanced anti-microbial activity and accelerated wound healing. Int J Pharm 2024; 667:124864. [PMID: 39461682 DOI: 10.1016/j.ijpharm.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Infected wounds present significant challenges pertaining to healing and often demand administration of strong antibiotics to patients. Also, drug resistant microbes may alter the physiology of wounds to create biofilms, frequently leading to high morbidity and mortality. In this investigation, a biodegradable, microporous composite agarose-chitosan scaffold was fabricated. Furthermore, its surface was modified with diphenyldiselenide deposition, using low pressure pulsed plasma technology. The optimized plasma parameters, viz. 5ON/15OFF (ms) of plasma pulse rate and 80 min of treatment time resulted in scaffolds having enhanced anti-bacterial activity against gram positive microbes like Staphylococcus (S.) aureus and S. epidermidis. The scaffolds were non-toxic to skin cells, as confirmed by the MTT assay. Cell proliferation through plasma treated and untreated scaffolds was assessed by culturing primary human dermal fibroblasts (HdaF) and human keratinocytes (HaCaT) and visualizing via confocal microscopy. Moreover, in-vivo rat model confirmed accelerated wound healing with plasma treated scaffold (100 % on day 14), as compared to the untreated scaffold (100 % on day 16) when compared with over-the-counter (OTC) ointment Betadine (100 % on day 12).
Collapse
Affiliation(s)
- A M Trimukhe
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - J S Melo
- Enzyme Microbial Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R D Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
18
|
Mehl AA, Pagliosa VMR, Tauil DA, Schilling Rosenfeld VA. The Use of a Specialized Oral Nutritional Supplement in the Management of Chronic Wounds in Patients With and Without Diabetes Mellitus: Cost-Effectiveness Analysis. Value Health Reg Issues 2024; 45:101049. [PMID: 39454323 DOI: 10.1016/j.vhri.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES To analyze the cost-effectiveness of the use of a specialized oral nutritional supplement (ONS) with proline, arginine, vitamins, and micronutrients to stimulate the healing of chronic wounds in patients with and without diabetes mellitus. METHODS This is a quantitative study on cost-effectiveness. This model used a decision-tree model followed by a budget impact analysis from the Brazilian public healthcare system's perspective. For this analysis, the population and data from a randomized trial of an oral specialized-ONS-containing supplement were considered. For budget impact analysis, an epidemiologic approach was used to estimate the eligible population. The eligible population comprised 3 different groups: patients with pressure ulcers, patients with vascular ulcers, and patients with diabetic feet. The budget impact analysis used the results of the cost-effectiveness analysis. RESULTS The results demonstrate that the use of specialized ONS, when compared with control ONS, proved to be cost saving (cheaper and more effective), considering the presence of predictive scar factor. The aggregated budget impact analysis results shows that the total reduction of costs after 5 years is USD 332 628 437.00. CONCLUSIONS The use of a specialized ONS was cost-effective in the healing of chronic wounds, when compared with control. The budget impact analysis showed a significant decrease in costs in a 5-year time horizon for the management of pressure ulcers, vascular ulcers, and diabetic feet.
Collapse
|
19
|
Mary AS, Muthuchamy M, Thillaichidambaram M, Lee S, Sivaraj B, Magar S, Ghosh S, Roy CL, Sundaresan S, Kannan M, Govindarajan S, Cho WS, Rajaram K. Formulation of Dual-Functional Nonionic Cetomacrogol Creams Incorporated with Bacteriophage and Human Platelet Lysate for Effective Targeting of MDR P. aeruginosa and Enhanced Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:6583-6593. [PMID: 39262041 DOI: 10.1021/acsabm.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Successful development of phage-based therapeutics and their utility predominantly depend on the mode and route of phage administration. Topical and site-directed phage application evokes minimal immune clearance and allows more phage-host adsorption, thereby ensuring higher phage efficacy. However, a notable drawback of conventional topical phage applications is the absence of sustained release. Occlusive emollients guarantee the controlled release of active pharmaceutical ingredients (APIs), thereby facilitating administration, preventing moisture loss, and acting as a skin barrier. In this study, we developed phage and human platelet lysate (h-PL) incorporated cetomacrogol-based creams for combined phage therapy and wound healing. The base material for phage immobilization was formulated by emulsifying paraffin and sterile water with cetomacrogol (emulsifying agent). Specifically, we incorporated a Pseudomonas aeruginosa-infecting lytic phage vB_PaeM_M12PA in the formulation and characterized its genome in this study. Cetomacrogol, a nonionic PEG (polyethylene glycol) based ether, rendered phage stability and allowed initial burst release followed by continuous controlled release of phages from the embedding matrix in the initial 6-8 h. Rheological studies showed that the material has elastic properties with storage moduli (G') values ranging from 109.51 ± 2.10 to 126.02 ± 3.13 kPa, indicating frequency-independent deformation. Platelet lysates in the cream acted as wound healing agents, and in vitro evaluation of cell migration and wound healing capacity of h-PL showed a significant enhancement by the sixth hour compared to untreated groups. The phage-incorporated cream showed sustained phage release in solid media and a significant reduction in bacterial growth in liquid cultures. In vivo wound healing studies in 6-week-old Wistar rats with full-thickness excision wounds and subsequent histopathological studies showed that the formulation enhanced wound healing and tissue restoration efficiency. In conclusion, the study unveils a promising approach for integrated phage therapy and wound healing strategies.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Maruthupandy Muthuchamy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Muneeswaran Thillaichidambaram
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Barath Sivaraj
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Somnath Ghosh
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh - 530003, India
| | - Chitrali Laha Roy
- Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Srivignesh Sundaresan
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Meganathan Kannan
- Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kaushik Rajaram
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| |
Collapse
|
20
|
Ding L, Lin H, Yang Z, Zhang P, Chen X. Polycaprolactone/gelatin-QAS/bioglass nanofibres accelerate diabetic chronic wound healing by improving dysfunction of fibroblasts. Int J Biol Macromol 2024:136699. [PMID: 39442840 DOI: 10.1016/j.ijbiomac.2024.136699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Worldwide, more than 25 % of patients with diabetes develop chronic diabetic wounds in their lifetime. Infection and dysfunctional fibroblasts represent two significant etiological factors contributing to impaired wound healing in patients with diabetes. It is therefore evident that the development of wound dressings with both anti-infective and DM fibroblast modulating functions has the potential for clinical applications. In this study, a PCL/gelatine-quaternary ammonium salts (QAS)/bioglass (BG) electrospun nanofibrous membrane was developed with physico-chemical and biological properties that not only meet the clinical requirements for wound dressings but also exhibit remarkable moisturising (water adsorption rate of 382.39 ± 4.36 %) and tear-resistance properties (a tear strength of ~5.5 MPa). The incorporation of QAS and BG has enhanced the biocompatibility and bioactivity of the nanofibres, while also imparting remarkable antimicrobial properties. The antibacterial efficacy of PGQ-BG against E. coli and S. aureus was found to be 92.8 ± 0.78 % and 99.3 ± 0.55 %, respectively. Moreover, it was demonstrated that PGQ-BG nanofibers exerted a promoting effect on the extracellular matrix (ECM) in dysfunctional fibroblasts and upregulated the expression level of α-smooth muscle actin (α-SMA), a marker of their differentiation to myofibroblasts in vitro and in vivo. Furthermore, the COL-III/COL-I ratio was significantly increased, indicating that PGQ-BG may also accelerate wound healing. The nanofibrous dressing reduced scar formation by increasing the COL-III/COL-I ratio. This is the first report of BG improving fibroblast dysfunction via COL-III and COL-I promotion in fibroblasts, both in vitro and in vivo. Therefore, this novel bioactive nanofibrous dressing represents an effective and safe therapeutic strategy for improving chronic wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Lin Ding
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Zhengyu Yang
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China
| | - Peng Zhang
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Zhuhai 519040, China.
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
21
|
Stewart PS, Kim J, James G, Yi F, Stechmiller J, Weaver M, Kelly DL, Fisher S, Schultz G, Lyon D. Association of biofilm and microbial metrics with healing rate in older adults with chronic venous leg ulcers. Wound Repair Regen 2024. [PMID: 39425525 DOI: 10.1111/wrr.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The presence of microbial biofilms in many human chronic wounds led to the hypothesis that biofilms delay healing of these wounds. We tested this hypothesis in a population of 117 older individuals with venous leg ulcers who were receiving standardised therapy, including frequent debridement. Debridement specimens were analysed for the amount of bacterial biomass by two independent methods: a microscopic approach that scored the relative size and number of bacterial aggregates, interpreted as a biofilm metric, and conventional enumeration by agar plating for viable bacteria. The plating protocol yielded three distinct values: the total viable bacterial count, bleach-tolerant bacteria, and the log reduction in viable bacteria upon bleach treatment. Wound healing rates over an 8-week observation period were calculated as the rate of decrease of the equivalent diameter of the wound. There was no statistically significant association between wound healing and the biofilm metric in any of the three analyses performed (p ≥0.15). In all three statistical tests, wound healing was associated with the log reduction caused by bleach treatment (p ≤0.004); wounds that harboured bacteria that were more bleach-susceptible healed more slowly. A refinement of the model of chronic wound infection pathogenesis is proposed in which dormant bacteria constitute a persistent nidus and outgrowth of metabolically active cells impairs healing. This model constitutes a new hypothesis as metabolic activity was not directly measured in this investigation.
Collapse
Affiliation(s)
- Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Junglyun Kim
- Chungnam National University College of Nursing, Daejeon, South Korea
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Garth James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Fan Yi
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, Idaho, USA
| | - Joyce Stechmiller
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Michael Weaver
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Debra L Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| | - Steve Fisher
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | - Debra Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, Florida, USA
| |
Collapse
|
22
|
Nifontova G, Safaryan S, Khristidis Y, Smirnova O, Vosough M, Shpichka A, Timashev P. Advancing wound healing by hydrogel-based dressings loaded with cell-conditioned medium: a systematic review. Stem Cell Res Ther 2024; 15:371. [PMID: 39420416 PMCID: PMC11488269 DOI: 10.1186/s13287-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing, including cellular proliferation, migration, and angiogenesis. METHODS The methodology of this review adheres to the standards set by the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the assessment of study quality by CAMARADES tool. RESULTS The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM role in advancing the wound healing therapy. CONCLUSIONS The data presented demonstrate that H-CM is a promising material for advanced wound healing and regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical potential and paves the way to further investigations of H-CM formulations within clinical trials.
Collapse
Affiliation(s)
- Galina Nifontova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Sofia Safaryan
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, 1665666311, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| |
Collapse
|
23
|
Iversen AKS, Lichtenberg M, Fritz BG, Díaz-Pinés Cort I, Al-Zoubaidi DF, Gottlieb H, Kirketerp-Møller K, Bjarnsholt T, Jakobsen TH. The chronic wound characterisation study and biobank: a study protocol for a prospective observational cohort investigation of bacterial community composition, inflammatory responses and wound-healing trajectories in non-healing wounds. BMJ Open 2024; 14:e084081. [PMID: 39419618 PMCID: PMC11487800 DOI: 10.1136/bmjopen-2024-084081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Chronic wounds affect 1%-2% of the global population, with rising incidence due to ageing and lifestyle-related diseases. Bacterial biofilms, found in 80% of chronic wounds, and scattered single-cell bacteria may hinder healing. Microbes are believed to negatively impact healing by exacerbating inflammation and host immune response. METHODS AND ANALYSIS The primary objective of the chronic wound characterisation (CWC) study is to investigate chronic wounds through a prospective observational cohort study exploring bacterial community composition, inflammatory responses and the influence of bacteria on wound-healing trajectories. The CWC study will be investigated through two cohorts: the predictive and in-depth.The predictive cohort includes patients with a chronic wound scheduled for mechanical debridement. The debrided material will be collected for dual RNA sequencing and 16s ribosomal RNA gene sequencing, as well as samples for microbial culturing and a photo to assess the wound. Clinical data is recorded, and healing and/or other clinical endpoints are established through medical records.The in-depth cohort includes and follows patients undergoing split-thickness skin grafting. Extensive sampling (ESwabs, biopsies, tape strips, debrided material and a sample of the skin graft) will be performed on surgery and patients will be seen at two follow-up visits. Samples will be analysed through culturing and next-generation sequencing methods. A biobank will be established comprising longitudinal clinical samples and clinical data. ETHICS AND DISSEMINATION The study has been approved by the board of health ethics, Capital Region of Denmark, under protocol number H-20032214. The study findings will be disseminated through peer-reviewed publications and showcased at both national and international conferences and meetings within the domains of microbiology, wound healing and infection.
Collapse
Affiliation(s)
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Blaine Gabriel Fritz
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Díaz-Pinés Cort
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Dania Firas Al-Zoubaidi
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Gottlieb
- Department of Orthopaedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Klaus Kirketerp-Møller
- Copenhagen Wound Healing Centre, University Hospital of Copenhagen, Bispebjerg, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Liu JD, VanTreeck KE, Marston WA, Papadopoulou V, Rowe SE. Ultrasound-Mediated Antibiotic Delivery to In Vivo Biofilm Infections: A Review. Chembiochem 2024; 25:e202400181. [PMID: 38924307 PMCID: PMC11483220 DOI: 10.1002/cbic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Bacterial biofilms are a significant concern in various medical contexts due to their resilience to our immune system as well as antibiotic therapy. Biofilms often require surgical removal and frequently lead to recurrent or chronic infections. Therefore, there is an urgent need for improved strategies to treat biofilm infections. Ultrasound-mediated drug delivery is a technique that combines ultrasound application, often with the administration of acoustically-active agents, to enhance drug delivery to specific target tissues or cells within the body. This method involves using ultrasound waves to assist in the transportation or activation of medications, improving their penetration, distribution, and efficacy at the desired site. The advantages of ultrasound-mediated drug delivery include targeted and localized delivery, reduced systemic side effects, and improved efficacy of the drug at lower doses. This review scrutinizes recent advances in the application of ultrasound-mediated drug delivery for treating biofilm infections, focusing on in vivo studies. We examine the strengths and limitations of this technology in the context of wound infections, device-associated infections, lung infections and abscesses, and discuss current gaps in knowledge and clinical translation considerations.
Collapse
Affiliation(s)
- Jamie D. Liu
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kelly E. VanTreeck
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William A. Marston
- Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
- Department of Radiology, The University of North Carolina at Chapel Hill, NC, USA
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
25
|
Miao N, Jiang T, Li Y, Xue S, Hao S, Zhou C, Gu Y, Li R, Yu B, Duan X, Xu W, Wang R, Ran L. Recombinant Keratin-Chitosan Cryogel Decorated with Gallic Acid-Reduced Silver Nanoparticles for Wound Healing. Int J Nanomedicine 2024; 19:10369-10385. [PMID: 39430306 PMCID: PMC11490246 DOI: 10.2147/ijn.s479637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/07/2024] [Indexed: 10/22/2024] Open
Abstract
Background Wound healing is a complex physiological process that can be roughly divided into four stages: hemostasis, inflammation, proliferation, and remodeling. Conventional wound dressings often fail to meet the diverse needs of these healing stages due to their limited functionality. Cryogels, however, possess several attractive properties, such as large, interconnected pores, good mechanical strength, and ease of modification, making them suitable for developing advanced dressings with multiple functions. In this study, we developed a multifunctional cryogel dressing, with biocompatible polysaccharides as the main component, designed to provide a breathable, moist, and antibacterial microenvironment for chronic infected wounds, thereby promoting wound healing. Methods Recombinant keratin 31 (RK31) was combined with chitosan (CS) to produce a CS/RK31 cryogel, referred to as CK. Gallic acid-reduced silver nanoparticles (GA/Ag NPs) were incorporated as the active antibacterial component to create the CS/K31@GA/Ag cryogel, known as CKGA. The cryogel was characterized using scanning electron microscopy (SEM) and a universal testing machine, and its biocompatibility was assessed in vitro. The dynamic hemostatic performance of the cryogel was evaluated with a rat tail amputation bleeding model. Additionally, the antibacterial effects of the cryogel against Staphylococcus aureus and Escherichia coli were tested using agar diffusion assays and turbidimetry. The antioxidant capacity of the CKGA cryogel was also measured in vitro. Finally, the cryogel's ability to promote wound healing was tested in an SD rat model of infected wounds. Results Characterization results showed that the CKGA cryogel features an interpenetrating porous network structure and exhibits excellent mechanical properties, with a swelling rate of up to 1800%. Both in vitro and in vivo experiments confirmed that the cryogel has good biocompatibility, effectively absorbs exudates, and rapidly stops bleeding. The addition of GA/Ag NPs provided significant antibacterial effects, achieving an inhibition rate of over 99.9% against both S. aureus and E. coli. Furthermore, CKGA cryogels demonstrated a strong scavenging capacity for ROS in a dose-dependent manner. Studies using the SD rat infected wound model showed that the cryogel effectively inhibited bacterial proliferation on wound surfaces, reduced local tissue inflammation, and promoted the healing of infected wounds. Conclusion The multifunctional cryogel, with its rapid hemostatic, antibacterial, and antioxidant properties, as well as its ability to promote cell proliferation, could be widely used as a wound dressing for the healing of bacterial infections.
Collapse
Affiliation(s)
- Nanan Miao
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Tao Jiang
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yuanchao Li
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Sihong Xue
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Shilei Hao
- College of Bioengineering, University of Chongqing, Chongqing, People’s Republic of China
| | - Chunli Zhou
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yujie Gu
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Ran Li
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Bo Yu
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Xiaoqu Duan
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Wenchao Xu
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Rupeng Wang
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Lei Ran
- Department of Rheumatology and Dermatology, The Second Affiliated Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
26
|
Hora AB, Biano LS, Nascimento ACS, Camargo ZT, Heiden GI, Albulquerque-Júnior RLC, Grespan R, Aragão JMDA, Camargo EA. Isoorientin Improves Excisional Skin Wound Healing in Mice. Pharmaceuticals (Basel) 2024; 17:1368. [PMID: 39459009 PMCID: PMC11510251 DOI: 10.3390/ph17101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Wound healing relies on a coordinated process with the participation of different mediators. Natural products are a source of active compounds with healing potential. Isoorientin is a natural flavone recognized as having several pharmacological properties, such as anti-inflammatory effects, making it a potential treatment for wounds. We investigated the effect of isoorientin on the healing of excisional skin wounds. Methods: Male Swiss mice were subjected to the induction of excisional skin wounds (6 mm diameter) and treated with a vehicle (2% dimethyl sulfoxide in propylene glycol) or 2.5% isoorientin applied topically once a day for 14 days. The wound area was measured on days 0, 3, 7, and 14. Histopathological analyses were performed on the cicatricial tissue after 14 days. The myeloperoxidase activity and the interleukin-1β, tumoral necrosis factor (TNF)-α, and interleukin-6 concentrations were determined on the third day. Results: We observed that 3 days after the topical application of isoorientin, the lesion area was significantly smaller when compared to those of the vehicle (p < 0.01) and control (p < 0.05) groups. No difference was observed after 7 and 14 days of induction. Despite this, on day 14, histological analysis of cicatricial tissue from the animals treated with isoorientin showed reduced epidermal thickness (p < 0.001) and increased collagen deposition (p < 0.001). These effects were accompanied by decreased myeloperoxidase activity and interleukin-1β concentration on the third day of induction, without alteration in TNF-α and interleukin-6. Conclusions: The treatment with isoorientin promoted better tissue repair in excisional wounds in mice, which may be linked to the modulation of the early inflammatory response.
Collapse
Affiliation(s)
- Aline B. Hora
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
| | - Laiza S. Biano
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Ana Carla S. Nascimento
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Zaine T. Camargo
- Graduate Program in Chemistry, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Greice I. Heiden
- Graduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Renata Grespan
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
| | - Jessica M. D. A. Aragão
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| | - Enilton A. Camargo
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão 49060-676, Brazil
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão 49107-230, Brazil
| |
Collapse
|
27
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
28
|
Li Y, Gong H, Gan T, Ma X, Geng Q, Yin S, Zhang H, Wu Y. Smart Hydrogel Dressing Enhances the Healing of Chronic Infectious Diabetic Wounds through Dual-Barrier Drug Delivery Action. Biomacromolecules 2024; 25:6814-6829. [PMID: 39235955 DOI: 10.1021/acs.biomac.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Chronic diabetic wounds struggle to heal due to drug-resistant bacterial infections, oxidative stress microenvironment, and immune dysfunction. At present, the disease has become a huge clinical challenge. Multifunctional hydrogels with antibacterial, antioxidant, and anti-inflammatory properties are becoming an emerging trend in the treatment of chronic wounds. However, matching different bioactive functions with the wound healing process to sequentially exert antibacterial, antioxidant, anti-inflammatory, and immunomodulatory functions remains a significant challenge. In this research, a hydrogel dressing with bactericidal and anti-inflammatory properties was synthesized by crafting a pH/ROS-responsive scaffold from phenylboronic acid-grafted hyaluronic acid (HA-PBA) and 4-arm-PEG-dopamine (4A-PEG-Dopa), employing dynamic borate ester bonds. This structure was then infused with the antimicrobial peptide (AMP) and ROS-sensitive micelle mPEG-TK-PLGA loaded with quercetin (QC). This dressing embodied a dual-barrier drug delivery mechanism, engineered for the prolonged and consistent liberation of QC. In the experiment, the hydrogel dissociated within the acidic microenvironment of diabetic wounds, thereby liberating the encapsulated micelles and AMP. Upon further dissociation, the micelles release QC due to the ROS-abundant microenvironment, which could relieve oxidative stress and encourage M2 polarization of macrophage via the Akt/STAT6 signaling pathway. Therefore, this smart delivery system, developed through our innovative approach, holds promise for treating chronic infectious diabetic wounds.
Collapse
Affiliation(s)
- Yaxing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tingjiang Gan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qirui Geng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shijiu Yin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
30
|
Chattopadhyay D, Sinha M, Kapoor A, Kumar M, Singh K, Mathew-Steiner SS, Sen CK. Deficient functional wound closure as measured by elevated trans-epidermal water loss predicts chronic wound recurrence: An exploratory observational study. Sci Rep 2024; 14:23593. [PMID: 39384891 PMCID: PMC11464781 DOI: 10.1038/s41598-024-74426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
A single-center, prospective, observational pilot study was performed to evaluate wound healing endpoint and recurrence by measuring transepidermal water loss (TEWL) post-closure at the site of wound repair. Patients with clinically-defined chronic wounds (such as pressure ulcers, diabetic ulcers, and trauma wounds) who visited the Plastic Surgery outpatient department or were in-patients at the All India Institute of Medical Sciences, Rishikesh, India, and were referred for chronic wound management, were enrolled. Non-invasive point-of-care TEWL measurements were obtained, from closed wound-site and contralateral healthy skin site, starting from confirmation of closure (post-closure, V0) continuing every 2 weeks for a maximum of five visits or until the wound recurred. Statistical analyses of the data involved logistic regression and likelihood ratio chi-square tests to assess differences in TEWL at visit 0 (V0) between the closed wound site and reference skin, with the TEWL score as the sole predictor of recurrence. Of the 72 subjects that completed the study, 44 (61%) showed no recurrence and 28 (39%) had wounds that recurred over a period of 12 weeks. A significant association was found between the V0 (post-closure) TEWL score and the odds of wound recurrence, both in univariate analysis (OR [95%CI] = 1.26[1.14,1.42] (p < 0.001) and after adjusting for covariates in multivariable analysis (OR [95%CI] = 1.34[1.19,1.61] (p < 0.001). The likelihood ratio chi-square analysis demonstrated that the V0 TEWL score is a significant universal predictor of recurrence across all wound types studied. Cases of closed wounds with subsequent recurrence showed an overall higher post-closure V0 TEWL score, compared to those who did not have a wound recurrence, across visits. The TEWL score cut-off value predictive of recurrence was 24.1 g.m-2.h-1 (AUC = 0.967). The outcome of this pilot study on a wide range of chronic wounds leads to the hypothesis that post-closure TEWL at the site of wound healing is a reliable biomarker of wound recurrence. It also raises the question whether the clinical endpoint of wound closure should include re-establishment of skin barrier function as additional criterion. The current standard of care wound closure endpoint calls for re-epithelialization of the wound with no discharge for two consecutive weeks disregarding the functional parameter of restoration of skin barrier function at the wound-site.
Collapse
Affiliation(s)
| | - Mithun Sinha
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Akshay Kapoor
- All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manoj Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Economic Studies and Planning, Jawaharlal Nehru University, New Delhi, India
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chandan K Sen
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Pratheesh KV, Nair RS, Purnima C, Raj R, Mony MP, Geetha CS, Sobhan PK, Ramesan RM, Nair PD, Thomas LV, Anilkumar TV. An injectable hydrogel of porcine cholecyst extracellular matrix for accelerated wound healing. J Biomed Mater Res A 2024. [PMID: 39381970 DOI: 10.1002/jbm.a.37795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 10/10/2024]
Abstract
Hydrogel formulations of xenogeneic extracellular matrices have been widely used for topical wound care because of their exceptional tunability over other formulations like lyophilized sheets, powders, non-injectable gels, pastes, and ointments. This is important in the treatment of wounds with irregular shapes and depth. This study identified an injectable hydrogel formulation of porcine cholecyst extracellular matrix (60%) in medical-grade carboxymethyl cellulose (40%) as vehicle and evaluated its biomaterial properties. Further, an in-depth evaluation of in vivo wound healing efficacy was conducted in a rat full-thickness skin excision wound healing model, which revealed that the hydrogel formulation accelerated wound healing process compared to wounds treated with a commercial formulation and untreated wounds. The hydrogel appeared to have promoted a desirable pro-regenerative tissue reaction predominated by Th2 helper lymphocytes and M2 macrophages as well as an effective collagen remodeling indicative of diminished scarring. In conclusion, the porcine cholecyst extracellular matrix injectable hydrogel formulation appeared to be a promising candidate formulation as an advanced wound care biomaterial for faster healing of skin wounds with minimal scarring.
Collapse
Affiliation(s)
- Kanakarajan V Pratheesh
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshma S Nair
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandramohanan Purnima
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Reshmi Raj
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Manjula P Mony
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Chandrika S Geetha
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Lynda V Thomas
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| |
Collapse
|
32
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
33
|
Geng RSQ, Sibbald RG, Slomovic J, Toksarka O, Schultz G. Therapeutic Indices of Topical Antiseptics in Wound Care: A Systematic Review. Adv Skin Wound Care 2024:00129334-990000000-00053. [PMID: 39355996 DOI: 10.1097/asw.0000000000000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
ABSTRACT Chronic wounds place a heavy burden on healthcare systems and markedly reduce the ability of patients to engage in activities of daily living. One major factor contributing to impaired wound healing is bacterial bioburden. With the rise in antibiotic resistance and the slowdown in antibiotic development pipelines, alternative antimicrobial strategies are important. The objective of this systematic review is to determine the topical antiseptic therapeutic index values for bacterial species commonly isolated from chronic wounds. The therapeutic index is a ratio of the lowest concentration that causes mammalian cell cytotoxicity over the minimum bactericidal concentration. Higher values indicate greater safety and potential clinical benefit. A systematic literature search was performed in Medline and Embase, resulting in the inclusion of 37 articles that reported on the minimum bactericidal concentration in bacterial species commonly isolated from chronic wounds and their cytotoxicity concentrations in mammalian cells. The therapeutic indices for the topical antiseptics included in this study were generally low, with most ranging between 0.5-3.0. The highest therapeutic index values for Escherichia coli (5.49), Staphylococcus aureus (6.31) and Pseudomonas aeruginosa (8.81) were achieved by hypochlorous acid, whereas the highest therapeutic index values for methicillin resistant S aureus (12.1) was achieved by polyhexamethylenebiguanide. Antibiotic stewardship principles may need to be applied to topical antiseptics due to some isolated evidence of topical antiseptic resistance and cross-resistance to antibiotics. The choice of antiseptic should not be made solely based on therapeutic index values, but individualized to the patient, with consideration for the wound healing condition that may include covert infection.
Collapse
|
34
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
35
|
Pan H, Song J, An Q, Chen J, Zheng W, Zhang L, Gu J, Deng C, Yang B. Inhibition of Ubiquitin C-Terminal Hydrolase L1 Facilitates Cutaneous Wound Healing via Activating TGF-β/Smad Signalling Pathway in Fibroblasts. Exp Dermatol 2024; 33:e15186. [PMID: 39367569 DOI: 10.1111/exd.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing. Murine full-thickness excisional wound model was utilised to study the effects of UCHL1 on wound healing through topical administration of the UCHL1 inhibitor LDN57444, followed by assessment of wound areas and histological alterations. Subsequently, ethynyldeoxyuridine, scratch and transwell assays were performed to examine fibroblast migration and proliferation. The extracellular matrix (ECM)-related genes expression and transforming growth factor-β (TGF-β)/Smad signalling pathways activation were investigated by immuno-fluorescent staining, Western blots and quantitative reverse transcription polymerase chain reaction. We identified elevated UCHL1 expression in non-healing wound tissues. The UCHL1 expression displayed a dynamic change and reached a peak on Day-7 post-wounding during the healing process in mice. Cutaneous administration of LDN57444 promoted wound healing by facilitating collagen deposition, myofibroblast activation and angiogenesis. In vitro experiments demonstrated that UCHL1 concentration dependently inhibited migration, ECM synthesis and activation of human dermal fibroblasts, which was mechanistically related to downregulation of TGF-β/Smad signalling. Furthermore, these effects could be reversed by TGF-β inhibitor SB431542. Our findings reveal that UCHL1 is a negative regulator of cutaneous wound healing and considered as a novel prospective therapeutic target for effective wound healing.
Collapse
Affiliation(s)
- Huihui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing An
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenyue Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingjing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chengcheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Gil J, Solis M, Strong R, Cassagnol R, Jozic I, Davis SC. Antimicrobial effects of a multimodal wound matrix against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in an in vitro and an in vivo porcine wound model. Int Wound J 2024; 21:e70059. [PMID: 39359044 PMCID: PMC11447198 DOI: 10.1111/iwj.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
Chronic non-healing wounds pose significant challenges due to an elevated inflammatory response caused in part by bacterial contamination (Physiol Rev. 2019;99:665). These wounds lead to billions being spent in the health care system worldwide (N Engl J Med. 2017;376:2367, Int J Pharm. 2014;463:119). We studied the in-vitro and in-vivo antimicrobial effects of a multimodal wound matrix (MWM) against two common wound pathogens, Methicillin-Resistant Staphylococcus aureus (MRSA USA300) and Pseudomonas aeruginosa ATCC 27312 (PA27312) (Int Wound J. 2019;16:634). The in-vitro study conducted was a zone of inhibition test with the two microbes at 104 Log CFU/mL inoculated on Tryptic soy agar with 5% sheep blood (TSAII) plates. Treatments used were MWM, Mupirocin (Positive control for MRSA), Silver Sulfadiazine (Positive Control for PA), Petrolatum and Sterile Saline (both serving as Negative Controls). Treatments were allowed to diffuse into the agar for 3 h and then were incubated for 24 h at 37°C. The in-vivo study utilized a deep dermal porcine wound model (22 × 22 × 3 mm) created on six animals. Three animals were inoculated with MRSA USA300 and the other three with PA27312 with each allowing a 72-h biofilm formation. After 72 h, baseline wounds were assessed for bacterial concentration and all remaining wounds were treated with either MWM alone, Silver Treatment or Untreated Control. Wounds were assessed on days 4, 8 and 12 after treatment application for microbiological analysis. In-vitro, MWM exhibited significant inhibition of MRSA USA300 and PA27312 growth when compared to negative controls (p ≤ 0.05). Likewise, in-vivo, the MWM-treated wounds exhibited a significant (p ≤ 0.05) bacterial reduction compared to all other treatment groups, especially on days 8 and 12 for both pathogens. MWM demonstrated promise in addressing colonized wounds with biofilms. Additional studies on MWM's benefits and comparisons with existing treatments are warranted to optimize wound care strategies (Adv Wound Care. 2021;10:281).
Collapse
Affiliation(s)
- Joel Gil
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Roger Cassagnol
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Ivan Jozic
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Stephen C. Davis
- Dr. Philip Frost Department of Dermatology & Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
37
|
Senthilnathan S, Rajagopal P, Krishnamoorthy R, Alshuniaber MA, Al-Anazi KM, Farah MA, Jayaraman S, Veeraraghvan VP, Gnanamani A. Identifying the molecular mechanisms of action of wound healing properties of Mathan tailam and Mahamegarajanga tailam in Wistar albino rats: Evidence through IL-10/VEGF/TNF-α signalling pathways. Acta Trop 2024; 258:107357. [PMID: 39122101 DOI: 10.1016/j.actatropica.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The Siddha system of medicine (SSM) is the oldest medical science practised in the ancient period of the southern part of India and Sri Lanka. Many formulations were described for wound healing in the SSM, with specific diagnostic differentiation in the Siddha literature. Most preparations for wound healing were available in the form of oil-based formulations, especially for external usage. Mathan tailam (MT) and Mahamegarajanga tailam (MMRT) have been used by Siddha physicians and traditional practitioners to treat wounds. Mathan tailam is a popular regimen for skin lacerations, burns, skin infections, diabetic wounds, and dermatitis. Mahamegarajanga tailam has long been used by traditional vaidyars to treat cuts and burns. Both MT and MMRT are clinically well-appreciated drugs for wound healing and need to be studied for their mechanisms of action for scientific documentation. In an in vivo study on albino rats -excisional wound model, the histopathological changes, histo-immune response, biomarker analysis, and mRNA expression were studied and analysed. Wounds treated with MT and MMRT healed faster (p < 0.05) than the untreated group (CNT). Histological investigation showed rapid re-epithelialization, dense collagen deposition, increased enzymatic antioxidant activities and decreased lipid peroxidation in the MT and MMRT groups. mRNA expression reveals MT and MMRT-treated tissues able to induce convergent cell motility in wound space. Our study for the first time provides strong in vivo experimental evidence that Mathan tailam and Mahamegarajanga tailam play a crucial role in promoting skin tissue wound healing through IL-6/VEGF/TNF-α mediated mechanisms. Traditional practices continue to teach us valuable lessons, as seen by their continuous use in their locality for years.
Collapse
Affiliation(s)
- Subramanian Senthilnathan
- Academics & Research Department, Dr. Rela Institute & Medical Centre, Microbiology Laboratory, CSIR-CLRI, Adyar, Chennai, 600020, India
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakhsi Ammal Dental College and Hospital, MAHER (Deemed to be University), Chennai, 600 098, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghvan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arumugam Gnanamani
- Microbiology Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
38
|
Asadi K, Azarpira N, Heidari R, Hamidi M, Yousefzadeh-Chabok S, Nemati MM, Ommati MM, Amini A, Gholami A. Trinitroglycerin-loaded chitosan nanogels accelerate angiogenesis in wound healing process. Int J Biol Macromol 2024; 278:134937. [PMID: 39179074 DOI: 10.1016/j.ijbiomac.2024.134937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Trinitroglycerin (TNG) with remarkable angiogenic, antibacterial, and antioxidative activity is a promising candidate to govern wound healing capacity. However, its clinical administration is limited due to associated complications and NO short half-life. In the current study, TNG-loaded chitosan nanogels (TNG-Ngs) were examined in-vitro and in-vivo to gain insight into their clinical application. We prepared TNG-Ngs and characterized their physiochemical properties. The potential of TNG-Ngs was assessed using biocompatibility, scratch assay, and a full-thickness skin wounds model, followed by histopathological and immunohistochemistry examinations. TNG-Ngs particle size 96 ± 18 and definite size distribution histogram. The loading capacity (LC) and encapsulation efficiency (EE) of prepared TNG-Ngs were 70.2 % and 2.1 %, respectively. The TNG-Ngs samples showed enhanced migration of HUVECs with no apparent cytotoxicity. The topical use of TNG-Ngs200 on the wounds revealed a complete wound closure ratio, skin component formation, less scar width, remarkable granulation tissue, promoted collagen deposition, and enhanced the relative mean density of α-SMA and CD31. TNG-Ngs accelerated wound healing by promoting collagen deposition and angiogenic activity, as well as reducing inflammation. The findings indicated that TNG-Ngs is expected to be well vascularized in the wound area and to be more effective in topical therapy.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | | | - Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Abbas Amini
- Abdullah Al Salem University (AASU), College of Engineering and Energy, Khaldiya, Kuwait; Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Kivity S, Rajuan E, Arbeli S, Alcalay T, Shiri L, Orvieto N, Alon Y, Saban M. Optimising wound monitoring: Can digital tools improve healing outcomes and clinic efficiency. J Clin Nurs 2024; 33:4014-4023. [PMID: 38379311 DOI: 10.1111/jocn.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Chronic wounds present significant challenges for patients and nursing care teams worldwide. Digital health tools offer potential for more standardised and efficient nursing care pathways but require further rigorous evaluation. OBJECTIVE This retrospective matched cohort study aimed to compare the impacts of a digital tracking application for wound documentation versus traditional manual nursing assessments. METHODS Data from 5236 patients with various wound types were analysed. Propensity score matching balanced groups, and bivariate tests, correlation analyses, linear regression, and Hayes' Process Macro Model 15 were utilised for a mediation-moderation model. RESULTS Digital wound tracking was associated with significantly shorter healing durations (15 vs. 35 days) and fewer clinic nursing visits (3 vs. 5.8 visits) compared to standard nursing monitoring. Digital tracking demonstrated improved wound size reduction over time. Laboratory values tested did not consistently predict healing outcomes. Digital tracking exhibited moderate negative correlations with the total number of nursing visits. Regression analysis identified wound complexity, hospitalizations, and initial wound size as clinical predictors for more nursing visits in patients with diabetes mellitus (p < .01). Digital tracking significantly reduced the number of associated nursing visits for patients with peripheral vascular disease. CONCLUSION These findings suggest that digital wound management may streamline nursing care and provide advantages, particularly for comorbid populations facing treatment burdens. REPORTING METHOD This study adhered to STROBE guidelines in reporting this observational research. RELEVANCE TO CLINICAL PRACTICE By streamlining documentation and potentially shortening healing times, digital wound tracking could help optimise nursing resources, enhance wound care standards, and improve patient experiences. This supports further exploration of digital health innovations to advance evidence-based nursing practice. PATIENT OR PUBLIC CONTRIBUTION This study involved retrospective analysis of existing patient records and did not directly include patients or the public in the design, conduct, or reporting of the research.
Collapse
Affiliation(s)
- Sara Kivity
- Maccabi healthcare services, Tel Aviv-Jaffa, Israel
| | - Ella Rajuan
- Maccabi healthcare services, Tel Aviv-Jaffa, Israel
| | - Sima Arbeli
- Maccabi healthcare services, Tel Aviv-Jaffa, Israel
| | | | - Lior Shiri
- Maccabi healthcare services, Tel Aviv-Jaffa, Israel
| | - Noam Orvieto
- Maccabi healthcare services, Tel Aviv-Jaffa, Israel
| | - Yaniv Alon
- Nursing Department, School of Health Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Saban
- Nursing Department, School of Health Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Fang Y, Liu Z, Jin Y, Huang Y, Zhou S, Tian H, Wu H. Electrospun high hydrophilicity antimicrobial poly (lactic acid)/silk fibroin nanofiber membrane for wound dressings. Int J Biol Macromol 2024; 277:133905. [PMID: 39079839 DOI: 10.1016/j.ijbiomac.2024.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/25/2024]
Abstract
Antimicrobial wound dressings can aid wound healing by preventing bacterial infection. This is particularly true of electrospun ones, which have a porous structure and can be easily loaded with antimicrobial drugs. Here, Poly lactic acid (PLA), Silk Fibroin (SF) and antimicrobial agents of Silver nanoparticles (Ag NPs) and Silver oxide (Ag2O) to prepare the PLA/SF composites antimicrobial nanofiber membrane by electrospinning. The PLA with 30 % SF nanofiber membrane show the water vapor permeability (WVP) and the liquid absorption of 36 g·mm/(m2·d·kPa) and 1721 %. With the increasing of SF contents, the degradation rate and surface hydrophilicity of the nanofiber membrane increase significantly. The nanofiber membrane exhibited excellent antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) with the inhibition circle reach at 18.2 mm. The resultant nanofiber membrane showed high cytosolic activity, good cytocompatibility and strong antimicrobial ability, which laid a theoretical foundation for the construction of a new PLA/SF composites antimicrobial fiber membrane.
Collapse
Affiliation(s)
- Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
41
|
Xue TT, Cha HJ, Liu QK, Yang D, Zhang Z, Jiang JS, Song JK, Wang MX, Shen F, Zheng Q, Kuai L, Ru Y, Li X, Li B. Sirtuin-6 knockout causes exacerbated stalled healing of diabetic ulcers in mice. Biochem Biophys Res Commun 2024; 726:150235. [PMID: 38908345 DOI: 10.1016/j.bbrc.2024.150235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1β, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.
Collapse
Affiliation(s)
- Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hui-Jung Cha
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qing-Kai Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Dan Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ming-Xia Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fang Shen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
42
|
Picciotti SL, El-Ahmad H, Bucci MP, Grayton QE, Wallet SM, Schoenfisch MH. Delivery of Nitric Oxide by Chondroitin Sulfate C Increases the Rate of Wound Healing through Immune Modulation. ACS APPLIED BIO MATERIALS 2024; 7:6152-6161. [PMID: 39159191 PMCID: PMC11546757 DOI: 10.1021/acsabm.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Chronic wounds impact 2.5% of the United States population and will continue to be a major clinical challenge due to increases in population age, chronic disease diagnoses, and antibiotic-resistant infection. Nitric oxide (NO) is an endogenous signaling molecule that represents an attractive, simple therapeutic for chronic wound treatment due to its innate antibacterial and immunomodulatory function. Unfortunately, modulating inflammation for extended periods by low levels of NO is not possible with NO gas. Herein, we report the utility of a NO-releasing glycosaminoglycan biopolymer (GAG) for promoting wound healing. GAGs are naturally occurring biopolymers that are immunomodulatory and known to be involved in the native wound healing process. Thus, the combination of NO and GAG biopolymers represents an attractive wound therapeutic due to these known independent roles. The influence and contribution of chondroitin sulfate C (CSC) modified to facilitate controlled and targeted delivery of NO (CSC-HEDA/NO) was evaluated using in vitro cell proliferation and migration assays and an in vivo wound model.
Collapse
Affiliation(s)
- Samantha L. Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Heba El-Ahmad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610
| | - Madelyn P. Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610
| | - Quincy E. Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
43
|
Jeon Y, Kim TR, Park ES, Park JH, Youn HS, Hwang DY, Seo S. Effect of Silica Nanoparticle Treatment on Adhesion between Tissue-like Substrates and In Vivo Skin Wound Sealing. J Funct Biomater 2024; 15:259. [PMID: 39330234 PMCID: PMC11433542 DOI: 10.3390/jfb15090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Silica nanoparticles are innovative solutions of surgical glue that can readily adhere to various tissue-like substrates without the need for time-consuming chemical reactions or ultraviolet irradiation. Herein, 10 nm-sized silica nanoparticle (SiNP10) treatment exhibited maximum adhesion strength in the porcine heart tissue model, which was approximately 7.15 times higher than that of the control group of non-treatment. We assessed the effects of silica nanoparticle treatment on in vivo skin wounds by scoring tissue adhesion and inflammation using histological images. Compared to the commercial cyanoacrylate skin adhesive (Dermabond), suppression of inflammatory cytokine levels in the incision wound skin was observed. We further quantified the expression of angiogenic growth factors and connective tissue formation-related proteins. On day 5 after wound closing treatment, the expression levels of PDGF-BB growth factor were significantly higher in SiNP10 treatment (0.64 ± 0.03) compared to Dermabond (0.07 ± 0.05). This stimulated angiogenesis and connective tissue formation in the skin of the incision wound may be associated with the promoting effects of SiNP10 treatment on wound closure and tissue adhesion.
Collapse
Affiliation(s)
- Yeji Jeon
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jae Hyun Park
- Young Chemical Co., Ltd., 80-93, Golden root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Han Sung Youn
- Young Chemical Co., Ltd., 80-93, Golden root-ro, Juchon-myeon, Gimhae 50969, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
44
|
Lai J. Lifestyle Medicine Approach to Wound Management. Am J Lifestyle Med 2024; 18:694-700. [PMID: 39309329 PMCID: PMC11412379 DOI: 10.1177/15598276241242026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Chronic wounds impact 4.5% of the US population, necessitating a comprehensive understanding of their types and underlying mechanisms. Diabetic foot ulcers (DFUs), prevalent in 25% of individuals with diabetes, contribute significantly to lower limb amputations. The pathophysiology involves neuropathy, peripheral arterial disease, impaired immunity, glycemic control, and mechanical stress. Lifestyle medicine emerges as a pivotal aspect of care, offering both prevention and treatment by integrating plant-predominant nutrition, physical activity, stress management, avoidance of harmful substances, restful sleep, and social connectedness. These interventions impact gene interactions, immune function, and tissue regeneration, playing a crucial role in chronic wound management. The standard of care involves a multidisciplinary approach, emphasizing infection and vascular management, pressure offloading, conducive wound healing environments, and lifestyle adjustments. As diabetes prevalence rises, a proactive integration of lifestyle interventions is crucial, offering a promising avenue to alleviate the growing healthcare burden associated with chronic wounds.
Collapse
Affiliation(s)
- Jengyu Lai
- International University of the Health Sciences, Rochester Clinic, PLC, Rochester, MN, USA (JL)
| |
Collapse
|
45
|
Gagnon J, Probst S, Chartrand J, Reynolds E, Lalonde M. Self-supporting wound care mobile applications for nurses: A scoping review. J Adv Nurs 2024; 80:3464-3480. [PMID: 38186080 DOI: 10.1111/jan.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
AIM This study provides an overview of the literature to identify and map the types of available evidence on self-supporting mobile applications used by nurses in wound care regarding their development, evaluation and outcomes for patients, nurses and the healthcare system. DESIGN Scoping review. REVIEW METHOD Joanna Briggs Institute scoping review methodology was used. DATA SOURCES A search was performed using MEDLINE, Embase, CINAHL (via EBSCO), Web of Science, LiSSa (Littérature Scientifique en Santé), Cochrane Wounds, Érudit and grey literature, between April and October 2022, updated in April 2023, to identify literature published in English and French. RESULTS Eleven studies from 14 publications met the inclusion criteria. Mostly descriptive, the included studies presented mobile applications that nurses used, among other things, to assess wounds and support clinical decision-making. The results described how nurses were iteratively involved in the process of developing and evaluating mobile applications using various methods such as pilot tests. The three outcomes most frequently reported by nurses were as follows: facilitating care, documentation on file and access to evidence-based data. CONCLUSION The potential of mobile applications in wound care is within reach. Nurses are an indispensable player in the successful development of these tools. IMPLICATIONS FOR THE PROFESSION AND PATIENT CARE If properly developed and evaluated, mobile applications for wound care could enhance nursing practices and improve patient care. The development of ethical digital competence must be ensured during initial training and continued throughout the professional journey. IMPACT We identified a dearth of studies investigating applications that work without Internet access. More research is needed on the development of mobile applications in wound care and their possible impact on nursing practice in rural areas and the next generation of nurses. REPORTING METHOD The Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Review guidelines were used. PATIENT OR PUBLIC CONTRIBUTION No patient or public contribution.
Collapse
Affiliation(s)
- Julie Gagnon
- School of Nursing, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Département des sciences de la santé, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Sebastian Probst
- HES-SO, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
- Care Directorate, University Hospital Geneva, Geneva, Switzerland
- Faculty of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Julie Chartrand
- School of Nursing, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Emily Reynolds
- School of Nursing, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Michelle Lalonde
- School of Nursing, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort, Montfort Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Aw YB, Chen S, Yeo A, Dangerfield JA, Mok P. Development and functional testing of a novel in vitro delayed scratch closure assay. Histochem Cell Biol 2024; 162:245-255. [PMID: 38713267 PMCID: PMC11322216 DOI: 10.1007/s00418-024-02292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
As the development of chronic wound therapeutics continues to expand, the demand for advanced assay systems mimicking the inflammatory wound microenvironment in vivo increases. Currently, this is performed in animal models or in in vitro cell-based models such as cell culture scratch assays that more closely resemble acute wounds. Here, we describe for the first time a delayed scratch closure model that mimics some features of a chronic wound in vitro. Chronic wounds such as those suffered by later stage diabetic patients are characterised by degrees of slowness to heal caused by a combination of continued localised physical trauma and pro-inflammatory signalling at the wound. To recreate this in a cell-based assay, a defined physical scratch was created and stimulated by combinations of pro-inflammatory factors, namely interferon, the phorbol ester PMA, and lipopolysaccharide, to delay scratch closure. The concentrations of these factors were characterised for commonly used human keratinocyte (HaCaT) and dermal fibroblast (HDF) cell lines. These models were then tested for scratch closure responsiveness to a proprietary healing secretome derived from human Wharton's jelly mesenchymal stem cells (MSCs) previously validated and shown to be highly effective on closure of acute wound models both in vitro and in vivo. The chronically open scratches from HaCaT cells showed closure after exposure to the MSC secretome product. We propose this delayed scratch closure model for academic and industrial researchers studying chronic wounds looking for responsiveness to drugs or biological treatments prior to testing on explanted patient material or in vivo.
Collapse
Affiliation(s)
- Yi Bing Aw
- Celligenics Pte Ltd, Singapore, Singapore
| | - Sixun Chen
- Celligenics Pte Ltd, Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aimin Yeo
- Celligenics Pte Ltd, Singapore, Singapore
| | - John A Dangerfield
- Celligenics Pte Ltd, Singapore, Singapore
- Austrianova Singapore Pte Ltd, Singapore, Singapore
| | - Pamela Mok
- Celligenics Pte Ltd, Singapore, Singapore.
| |
Collapse
|
47
|
Zhang X, Wu Y, Gong H, Xiong Y, Chen Y, Li L, Zhi B, Lv S, Peng T, Zhang H. A Multifunctional Herb-Derived Glycopeptide Hydrogel for Chronic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400516. [PMID: 38686688 DOI: 10.1002/smll.202400516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic wounds constitute an increasingly prevalent global healthcare issue, characterized by recurring bacterial infections, pronounced oxidative stress, compromised functionality of immune cells, unrelenting inflammatory reactions, and deficits in angiogenesis. In response to these multifaceted challenges, the study introduced a stimulus-responsive glycopeptide hydrogel constructed by oxidized Bletilla striata polysaccharide (OBSP), gallic acid-grafted ε-Polylysine (PLY-GA), and paeoniflorin-loaded micelles (MIC@Pae), called OBPG&MP. The hydrogel emulates the structure of glycoprotein fibers of the extracellular matrix (ECM), exhibiting exceptional injectability, self-healing, and biocompatibility. It adapts responsively to the inflammatory microenvironment of chronic wounds, sequentially releasing therapeutic agents to eradicate bacterial infection, neutralize reactive oxygen species (ROS), modulate macrophage polarization, suppress inflammation, and encourage vascular regeneration and ECM remodeling, playing a critical role across the inflammatory, proliferative, and remodeling phases of wound healing. Both in vitro and in vivo studies confirmed the efficacy of OBPG&MP hydrogel in regulating the wound microenvironment and enhancing the regeneration and remodeling of chronic wound skin tissue. This research supports the vast potential for herb-derived multifunctional hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Heng Gong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Yu Chen
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Lin Li
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Biao Zhi
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Saiqun Lv
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Tao Peng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
48
|
Berenguer‐Pérez M, Manzanaro‐García N, González‐de la Torre H, Durán‐Sáenz I, Hernández Martínez‐Esparza E, Diaz Herrera MÁ, González Suárez B, Verdú‐Soriano J. Systematic review and meta-analysis of diagnostic test accuracy in chronic wound's microbiology. Int Wound J 2024; 21:e70063. [PMID: 39313239 PMCID: PMC11419733 DOI: 10.1111/iwj.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE This study aims to assess the diagnostic accuracy of non-culture-based methodologies for detecting microorganisms in chronic wounds. METHODS We systematically reviewed studies that evaluated the diagnostic accuracy of alternative tests in chronic wound samples, excluding studies focused on animal samples or unrelated conditions. The search encompassed PubMed, CINAHL, Scopus and Web of Science databases, employing the QUADAS-2 tool for risk of bias assessment. Our search included the PubMed, CINAHL, Scopus and Web of Science databases, and we assessed the risk of bias using the QUADAS-2 tool. A meta-analysis was conducted on polymerase chain reaction (PCR) and colorimetric methods to determine sensitivity, specificity, diagnostic odds ratio, and summary receiver-operating characteristic (sROC) curves using a random-effects model. For methods not suitable for quantitative synthesis, a narrative synthesis was performed. RESULTS Nineteen studies involving various types of chronic wounds were analysed, revealing diverse diagnostic methods including fluorescence, PCR, colorimetry, voltammetry, electronic nose, biosensors, enzymatic methods, staining and microscopy. Combining fluorescence with clinical signs and symptoms (CSS) versus culture showed significant accuracy. Colorimetry demonstrated low sensitivity but high specificity, with a diagnostic odds ratio of 6.3. PCR generally exhibited good accuracy, although significant heterogeneity was noted, even in subgroup analyses. CONCLUSIONS This study identified a broad spectrum of diagnostic approaches, highlighting the superior diagnostic accuracy achieved when microbiological analysis is combined with clinical assessments. However, the heterogeneity and methodological variations across studies present challenges in meta-analysis. Future research should aim for standardized and homogeneous study designs to enhance the assessment of diagnostic accuracy for alternative methods.
Collapse
Affiliation(s)
- Miriam Berenguer‐Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of ScienceUniversity of AlicanteAlicanteSpain
- WINTER: Wounds, Innovation, ThErapeutics and Research Group, University of AlicanteAlicanteSpain
| | | | - Héctor González‐de la Torre
- WINTER: Wounds, Innovation, ThErapeutics and Research Group, University of AlicanteAlicanteSpain
- Research Support Unit, Insular Maternal and Child University Hospital Complex, Canary Health ServiceLas Palmas de Gran CanariaSpain
- Nursing Department, Faculty of Healthcare ScienceUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Iván Durán‐Sáenz
- Bioaraba, Basque Nurse Education Research Group, Osakidetza Basque Health Service, Araba University Hospital, Vitoria‐Gasteiz School of NursingVitoria‐GasteizSpain
| | | | - Miguel Ángel Diaz Herrera
- Unidad de Heridas Complejas Atención Primaria Metropolitana Sur, ICS, Hospitalet de LlobregatBarcelonaSpain
- Grupo de Investigación en Heridas Complejas GReFeC, Unitat Suport a la Recerca (USR) Costa Ponent Jordi GolBarcelonaSpain
| | - Borja González Suárez
- Department of Community Nursing, Preventive Medicine, Public Health and History of ScienceUniversity of AlicanteAlicanteSpain
- WINTER: Wounds, Innovation, ThErapeutics and Research Group, University of AlicanteAlicanteSpain
| | - José Verdú‐Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of ScienceUniversity of AlicanteAlicanteSpain
- WINTER: Wounds, Innovation, ThErapeutics and Research Group, University of AlicanteAlicanteSpain
| |
Collapse
|
49
|
Kelso MR, Jaros M. Improving Wound Healing and Infection Control in Long-term Care with Bacterial Fluorescence Imaging. Adv Skin Wound Care 2024; 37:471-479. [PMID: 39023985 DOI: 10.1097/asw.0000000000000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND High bacterial burden stalls wound healing and can quickly progress to infection and sepsis in complex, older-adult patients in long-term care (LTC) or skilled nursing facilities (SNFs). OBJECTIVE To investigate the outcomes of point-of-care fluorescence (FL) imaging (MolecuLight i:X) of bacterial loads, which are frequently asymptomatic, to inform customized wound treatment plans for patients in LTC/SNFs. METHODS In this retrospective pre/postinterventional cohort study, the authors compared the healing and infection-associated outcomes of 167 pressure injuries from 100 Medicare beneficiaries before and after implementation of FL imaging. RESULTS Most patient demographics and wound characteristics did not differ significantly between the standard-of-care (SOC; n = 71 wounds) and FL (n = 96 wounds) cohorts. Significantly more wounds (+71.0%) healed by 12 weeks in the FL cohort (38.5%) versus the SoC cohort (22.5%). Wounds in the FL cohort also healed 27.7% faster (-4.8 weeks), on average, and were 1.4 times more likely to heal per Kaplan-Meier survival analysis (hazard ratio = 1.40; 95% CI, 0.90-2.12). Infection-related complications decreased by 75.3% in the FL cohort, and a significant shift from largely systemic to topical antibiotic prescribing was evidenced. CONCLUSIONS Fluorescence-imaging-guided management of wounds significantly improved healing and infection outcomes in highly complex and multimorbid patients in LTC/SNFs. Proactive bacterial infection management via local treatments was enabled by earlier, objective detection. These reported outcome improvements are comparable to randomized controlled trials and cohort studies from less compromised, selectively controlled outpatient populations. Fluorescence imaging supports proactive monitoring and management of planktonic and biofilm-encased bacteria, improving patient care in a complex, real-world setting.
Collapse
Affiliation(s)
- Martha R Kelso
- Martha R. Kelso, RN, CWHS, HBOT, is Founder and Chief Executive Officer, Wound Care Plus LLC, Blue Springs, Missouri, USA. Mark Jaros, PhD, is Senior Vice President, Summit Analytical, Denver, Colorado, USA
| | | |
Collapse
|
50
|
Iyun AO, Isamah CP, Ademola SA, Olawoye OA, Michael AI, Aderibigbe RO, Oluwatosin OM. The incidence and prevalence of chronic wounds from a major plastic surgery service from a metropolitan city in south western Nigeria: A sixteen-year retrospective review. J Tissue Viability 2024:S0965-206X(24)00129-3. [PMID: 39181782 DOI: 10.1016/j.jtv.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Chronic wound presents a burden to the patient due to the effect on their quality of life and cost of care. The exact prevalence is difficult to assess due to insufficient data, different study designs, and deferent study definitions of chronic wounds. There is limited data on the prevalence and the burden of chronic wound in our subregion. This study was therefore carried out to establish the burden of chronic wound in order to document a baseline data for monitoring progress, as well as provide information for advocacy on equitable distribution of resources for wound care. METHOD This was a retrospective review between January 2007 and December 2022. Data was analysed using SPSS. RESULT A total of 866 patients with new chronic wounds were seen at an average of 54 cases per year. An average of 330 old and new chronic wounds are seen yearly. Chronic ulcers are developing at a rate of 1.2/1000 population, and the prevalence of chronic ulcer is 3.3/1000 population. Most patients were males (57.2 %), with a mean age of 41.7years ± 20.6. Post traumatic wound is the leading aetiology. Age correlates positively with aetiology, p=<0.001. Sickle cell and venous wounds are predominantly on the legs, p=<0.001. There is a correlation between increasing age and occurrence of chronic wound in the leg, p=<0.001. CONCLUSION Post traumatic wound is the leading cause of chronic wound in our subregion. There is a need to improve care of acute wounds to reduce the burden of chronic wounds.
Collapse
Affiliation(s)
- Ayodele Olukayode Iyun
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Nigeria
| | - Chinsunum Peace Isamah
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria.
| | - Samuel Adesina Ademola
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Nigeria
| | - Olayinka Adebanji Olawoye
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Nigeria
| | - Afieharo Igbibia Michael
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Nigeria
| | - Rotimi Opeyemi Aderibigbe
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria
| | - Odunayo Moronfoluwa Oluwatosin
- Department of Plastic, Reconstructive, & Aesthetic Surgery, University College Hospital Ibadan, Nigeria; Department of Surgery, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|