1
|
Grabowski GA, Du H. Lysosomal acid lipase: Roles in rare deficiency diseases, myeloid cell biology, innate immunity, and common neutral lipid diseases. CHOLESTEROL 2022:639-673. [DOI: 10.1016/b978-0-323-85857-1.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
3
|
Abstract
Lysosomal acid lipase (LAL), encoded by the lipase A ( LIPA) gene, hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The essential role of LAL in lipid metabolism has been confirmed in mice and human with LAL deficiency. In humans, loss-of-function mutations of LIPA cause rare lysosomal disorders, Wolman disease and cholesteryl ester storage disease, in which LAL enzyme-replacement therapy has shown significant benefits in a phase 3 clinical trial. Recent studies have revealed the regulatory role of lipolytic products of lysosomal lipid hydrolysis in catabolic, anabolic, and signaling pathways. In vivo studies in mice with knockout of Lipa highlight the systemic impact of Lipa deficiency on metabolic homeostasis and immune cell function. Genome-wide association studies and functional genomic studies have identified LIPA as a risk locus for coronary heart disease, but the causal variants and mechanisms remain to be determined. Future studies will continue to focus on the role of LAL in the crosstalk between lipid metabolism and cellular function in health and diseases including coronary heart disease.
Collapse
Affiliation(s)
- Fang Li
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York
| | - Hanrui Zhang
- From the Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York
| |
Collapse
|
4
|
Pajed L, Wagner C, Taschler U, Schreiber R, Kolleritsch S, Fawzy N, Pototschnig I, Schoiswohl G, Pusch LM, Wieser BI, Vesely P, Hoefler G, Eichmann TO, Zimmermann R, Lass A. Hepatocyte-specific deletion of lysosomal acid lipase leads to cholesteryl ester but not triglyceride or retinyl ester accumulation. J Biol Chem 2019; 294:9118-9133. [PMID: 31023823 PMCID: PMC6556574 DOI: 10.1074/jbc.ra118.007201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl ester (CE) and retinyl ester (RE) and triglyceride (TG). Mice globally lacking LAL accumulate CE most prominently in the liver. The severity of the CE accumulation phenotype progresses with age and is accompanied by hepatomegaly and hepatic cholesterol crystal deposition. In contrast, hepatic TG accumulation is much less pronounced in these mice, and hepatic RE levels are even decreased. To dissect the functional role of LAL for neutral lipid ester mobilization in the liver, we generated mice specifically lacking LAL in hepatocytes (hep-LAL-ko). On a standard chow diet, hep-LAL-ko mice exhibited increased hepatic CE accumulation but unaltered TG and RE levels. Feeding the hep-LAL-ko mice a vitamin A excess/high-fat diet (VitA/HFD) further increased hepatic cholesterol levels, but hepatic TG and RE levels in these mice were lower than in control mice. Performing in vitro activity assays with lysosome-enriched fractions from livers of mice globally lacking LAL, we detected residual acid hydrolytic activities against TG and RE. Interestingly, this non-LAL acid TG hydrolytic activity was elevated in lysosome-enriched fractions from livers of hep-LAL-ko mice upon VitA/HFD feeding. In conclusion, the neutral lipid ester phenotype in livers from hep-LAL-ko mice indicates that LAL is limiting for CE turnover, but not for TG and RE turnovers. Furthermore, in vitro hydrolase activity assays revealed the existence of non-LAL acid hydrolytic activities for TG and RE. The corresponding acid lipase(s) catalyzing these reactions remains to be identified.
Collapse
Affiliation(s)
- Laura Pajed
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Carina Wagner
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Renate Schreiber
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Stephanie Kolleritsch
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Nermeen Fawzy
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Isabella Pototschnig
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Gabriele Schoiswohl
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Lisa-Maria Pusch
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II
| | - Beatrix I Wieser
- the Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz
| | - Paul Vesely
- the Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz
| | - Gerald Hoefler
- the Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz.,BioTechMed-Graz, 8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II.,the Center for Explorative Lipidomics, BioTechMed-Graz, and
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II.,BioTechMed-Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstrasse 31/II, .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Wilson DP, Friedman M, Marulkar S, Hamby T, Bruckert E. Sebelipase alfa improves atherogenic biomarkers in adults and children with lysosomal acid lipase deficiency. J Clin Lipidol 2018; 12:604-614. [PMID: 29628368 DOI: 10.1016/j.jacl.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/31/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Measures of atherogenic cholesterol, with and without concomitant use of lipid-lowering medications (LLMs), are reported with up to 52 weeks of sebelipase alfa treatment in children and adults with lysosomal acid lipase deficiency (LAL-D) participating in the phase 3 Acid Lipase Replacement Investigating Safety and Efficacy study (NCT01757184). OBJECTIVE To examine the effects of sebelipase alfa on levels of atherogenic biomarkers in the Acid Lipase Replacement Investigating Safety and Efficacy study. METHODS Data were prospectively collected for LDL particle (LDL-P) number, LDL-C, HDL-C, apolipoprotein B (apoB), apolipoprotein A1 (apoA1), and LDL-P size. Differences at week 20 between the sebelipase alfa and placebo groups were assessed for the overall LAL-D cohort and for patients receiving and not receiving LLMs. Changes from baseline after up to 52 weeks of treatment were also calculated for the overall cohort and separately for patients receiving and not receiving LLMs. RESULTS Baseline values for LDL-C, LDL-P number, and apoB were elevated while HDL-C and apoA1 were low. Treatment with sebelipase alfa for 20 weeks significantly improved atherogenic measures compared with placebo irrespective of LLM usage. The reduction in LDL-C with sebelipase alfa was associated with a reduction in the LDL-P number. Treatment for up to 52 weeks was associated with sustained improvements of LDL-P, LDL-C, HDL-C, apoB, and apoA1, regardless of LLM use. CONCLUSION Patients with LAL-D have high atherogenic risk. It is essential to address the underlying LAL deficiency to restore cholesterol homeostasis in LAL-D patients, as treatment with sebelipase alfa improves atherogenic measures regardless of LLM use and for a sustained period. Sebelipase alfa appears to reduce LDL-C by decreasing the LDL-P number, suggesting improvement in cardiovascular disease risk in LAL-D patients.
Collapse
Affiliation(s)
| | | | | | - Tyler Hamby
- Cook Children's Medical Center, Fort Worth, TX
| | | |
Collapse
|
6
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
7
|
Stein J, Garty BZ, Dror Y, Fenig E, Zeigler M, Yaniv I. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr 2007; 166:663-6. [PMID: 17033804 DOI: 10.1007/s00431-006-0298-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/24/2006] [Indexed: 02/05/2023]
Abstract
Wolman disease is a rapidly fatal lysosomal storage disease caused by the complete absence of lysosomal acid lipase activity. We report the cure of an infant with Wolman disease following transplantation of unrelated HLA-mismatched umbilical cord blood-derived stem cells. Umbilical cord blood was chosen as the stem-cell source because of its immediate availability and reduced tendency to cause graft-versus-host disease. The transplantation resulted in restoration of normal acid lipase levels before the onset of permanent end-organ damage. Four years after transplantation, the patient is thriving and has normal levels of acid lipase in peripheral blood cells. To our knowledge, this is the first report of a successful unrelated cord blood transplant in a patient with Wolman disease. Umbilical cord stem cells transplantation can restore acid lipase levels in Wolman disease, and if performed early, can cure the disease.
Collapse
Affiliation(s)
- Jerry Stein
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology/Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Perona JS, Rodríguez-Rodríguez R, Ruiz-Gutierrez V. Effects of oleic acid rich oils on aorta lipids and lipoprotein lipase activity of spontaneously hypertensive rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:7330-6. [PMID: 16131150 DOI: 10.1021/jf051375c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hypertension development in the spontaneously hypertensive rat (SHR) leads to vascular wall widening by smooth muscle cell proliferation. In these cells, triglycerides (TG) and cholesteryl esters (CE) can accumulate until they become foam cells. We administrated two oleic rich oils, virgin olive (VOO) and high oleic sunflower oils (HOSO), to Wistar-Kyoto rats (WKY) and SHR because these oils have been reported to reduce the risk for coronary heart disease in hypertensive patients and SHR. After 12 weeks of feeding, we analyzed the TG and CE composition and the lipolytic (lipoprotein lipase, LPL, and non-LPL) activity in aortas of these animals. HOSO increased the content of linoleic acid in CE and TG of aortas from both WKY and SHR as compared with animals fed VOO by proportionally decreasing the content of oleic acid. Conversely, VOO reduced the LPL and non-LPL lipolytic activities, hence limiting the free fatty acids available for the synthesis of TG and CE in the vascular wall.
Collapse
Affiliation(s)
- Javier S Perona
- Instituto de la Grasa (CSIC), Av. Padre García Tejero, 4, 41012, Seville, Spain
| | | | | |
Collapse
|
9
|
Sando GN, Zhu H, Weis JM, Richman JT, Wertz PW, Madison KC. Caveolin expression and localization in human keratinocytes suggest a role in lamellar granule biogenesis. J Invest Dermatol 2003; 120:531-41. [PMID: 12648214 DOI: 10.1046/j.1523-1747.2003.12051.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lamellar granules are sphingolipid-enriched organelles, probably intimately related to the tubulo-vesicular elements of the trans-Golgi network, that deliver the precursors of stratum corneum barrier lipids to the extracellular compartment. Caveolins are cholesterol-binding scaffolding proteins that facilitate the assembly of cholesterol- and sphingolipid-enriched membrane domains known as caveolae. Similarities in the composition of lamellar granules and caveolae suggest that caveolins could be involved in lamellar granule assembly, trafficking, and/or function. In order to explore this relationship, we have examined the expression of caveolins in epidermis, keratinocyte cultures, and an isolated lamellar granule fraction using immunolabeling, immunoblotting, and northern blotting. Several antibodies show immunolocalization of caveolin-1 in the basal layer of human epidermis, with a decline in the suprabasal layers and a reemergence of expression at the stratum granulosum/stratum corneum junction. Two of three caveolin-2 antibodies show little basal staining, but strong signal throughout the rest of the epidermis, whereas a third shows a pattern like caveolin-1. An antibody against caveolin-3 shows a strong signal at the stratum granulosum/stratum corneum interface. Caveolins partially colocalize with glucocerebrosidase, an enzyme known to be critical for remodeling of extruded lamellar granule contents, with AE17, a previously described lamellar-granule-associated antibody, and with glucosylceramides, a major lipid component of lamellar granules. Caveolin-1 protein is present in undifferentiated low-calcium-grown keratinocyte cultures, decreases upon induction of differentiation, and then rises to levels above those seen in undifferentiated cultures, consistent with the immunofluorescence findings. Caveolin-1 mRNA expression parallels that of the protein. Caveolin-2 mRNA and protein expression were unchanged over the course of culture differentiation. Keratinocyte caveolin-1 mRNA expression is not induced by an increase in medium calcium level and is markedly reduced by phorbol-ester-mediated protein kinase C induction. Caveolin-1 is enriched in an isolated lamellar granule fraction that is also enriched, as we have previously described, in lysosomal acid lipase and glucocerebrosidase, and localizes to structures consistent with lamellar granules on immunoelectron microscopy. The differentiation-dependent expression of caveolin-1, the colocalization of caveolins with putative lamellar-granule-associated antigens, their enrichment in isolated lamellar granules, and their presence in lamellar-granule-like structures on immunoelectron microscopy, along with their known structural role in the assembly of glycosphingolipid- and cholesterol-enriched domains in other cell types, suggest that caveolins may play a role in lamellar granule assembly, trafficking, and/or function.
Collapse
Affiliation(s)
- G N Sando
- Marshall Dermatology Research Laboratories, Department of Dermatology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City 52242, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Du H, Heur M, Witte DP, Ameis D, Grabowski GA. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther 2002; 13:1361-72. [PMID: 12162818 DOI: 10.1089/104303402760128586] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lysosomal acid lipase (LAL) is the essential enzyme for hydrolysis of triglycerides (TGs) and cholesteryl esters (CEs) in lysosomes. Its deficiency produces two human phenotypes: Wolman disease (WD) and cholesteryl ester storage disease (CESD). The LAL null (lal(-/-)) mouse mimicks aspects of human WD and CESD. The potential for gene therapy of LAL deficiency was tested with first-generation adenoviral vectors containing human LAL cDNA (Ad-hLAL) by intravenous injection into lal(-/-) mice. Compared with phosphate-buffered saline-injected controls, the mice receiving Ad-hLAL had increased hepatic LAL activity, decreased hepatomegaly, and normalization of histopathology. hLAL protein and mRNA were detected by immunohistochemical staining and in situ hybridization in hepatic parenchymal and sinusoid lining cells, splenic sinusoidal cells, lung macrophages, and adrenal cortical cells. Mice showed TG reductions in liver, spleen, and small intestine of 68, 54, and 50%, respectively, and cholesterol reductions of 55, 52, and 34%, respectively, at 20 days postinjection. These studies provide the basis for the use of gene therapy, in the form of gene transfer via intravenously administered adenovirus, to correct deficiency states, such as WD and CESD, and histopathology of a variety of tissues.
Collapse
Affiliation(s)
- Hong Du
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
11
|
Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and cholesterol ester storage disease. Mol Genet Metab 1999; 68:333-45. [PMID: 10562460 DOI: 10.1006/mgme.1999.2904] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanisms producing the divergent phenotypes, Wolman disease (WD) and cholesterol ester storage disease (CESD), associated with the genetic deficiency of human lysosomal acid lipase/cholesterol ester hydrolase (hLAL) function were investigated with the determination of HLAL activity levels, mRNA and protein expression, and defects in structural gene sequences in cells from three WD and five CESD patients. Measured with natural substrates, HLAL activities were all below 2% of normal, regardless of phenotype. Immunoblotting showed a lack of detectable hLAL protein in all mutant fibroblasts. Four CESD, but no WD genomes contained at least one allele with a specific exon 8 splice junction mutation, c.894 G>A, that encodes a shortened form of hLAL mRNA. Other CESD mutations were identical in type to the WD defects: nucleotide deletions (positions 397, 684, 980), insertions (594), or substitutions (193, 347) that result in premature terminations precluding any function. The only exception was a substitution at nucleotide 866 in the CESD case without an exon 8 splicing mutation; expression of the predicted S289C change in a transfection assay produced a low, but clearly measurable, level of acid esterase activity. Although it is not easily demonstrated in conventional assays, CESD is distinct from WD in that at least one mutant allele has the potential to produce enough residual enzymatic function to ameliorate the phenotype; in the majority of CESD cases this may come from a single, easily detected, splicing mutation in one allele.
Collapse
Affiliation(s)
- R A Anderson
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA.
| | | | | |
Collapse
|
12
|
Goto M, Mizunashi K. Calcitonin stimulates lysosomal enzyme release and uptake in LLC-PK1 cells. J Am Soc Nephrol 1999; 10:1640-8. [PMID: 10446931 DOI: 10.1681/asn.v1081640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal tubular targeted hormones increase urinary excretion of a lysosomal enzyme, N-acetyl-beta-D-glucosaminidase (NAG). To elucidate the mechanism of this event, the calcitonin effect on NAG handling by LLC-PK1 cells was examined. Calcitonin (1 nM to 1 microM), phorbol myristate (10 nM to 1 microM), and ionomycin (1 to 10 microM) promoted NAG release without any increase in lactate dehydrogenase release or any reduction of mitochondrial dehydrogenase activity. Treatment with 100 nM calphostin C or 50 microM KN-93 partially reversed the calcitonin effect on NAG release. Calcitonin promoted secretion of fluorescence ceramide, a reporter of protein transport from Golgi apparatus to cell surface. Calcitonin-stimulated NAG release was partially inhibited by 10 microg/ml brefeldin A, a blocker of protein transport through the Golgi apparatus. Calcitonin accelerated cellular uptake of exogenous NAG, which was inhibited by low temperature, 0.1 mM monodansyl cadaverine (receptor-mediated endocytosis inhibitor), and 10 mM mannose-6-phosphate. Furthermore, calcitonin promoted progression of intracellular membranes stained by a fluorescence membrane marker, styryl pyridinium dye, from cell periphery to perinuclear regions (commonly referred to as recycling vesicles) and increased dye release from preloaded cells. Fluorescence release from the cells pre-loaded with FITC-labeled NAG or albumin was also stimulated by calcitonin. These calcitonin effects on endocytotic and re-exocytotic pathways were inhibited by 100 nM cytochalasin D, 100 nM nocodazole, 0.1 to 1 microM bafilomycin A1, or 0.1 mM monodansyl cadaverine. Increased urinary NAG excretion has been considered to reflect renal tubular damage. However, it was demonstrated here that stimulation of secretory and recycling pathways may be an alternative mechanism for calcitonin-induced enzymuria, which will become a new indicator of renal tubular response to this hormone.
Collapse
Affiliation(s)
- M Goto
- Institute of Rehabilitation Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|
13
|
Du H, Witte DP, Grabowski GA. Tissue and cellular specific expression of murine lysosomal acid lipase mRNA and protein. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42005-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:177-94. [PMID: 7640295 DOI: 10.1016/0304-4157(95)00004-b] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mannose 6-phosphate receptors have been intensively studied with regard to their genomic organization, protein structure, ligand binding properties, intracellular trafficking and sorting functions. That their main function is sorting of newly synthesized lysosomal enzymes is commonly accepted, but much more remains to be learned about their precise recycling pathways and the mechanisms which regulate their vesicular transport. Additional functions have been reported, e.g., export of newly synthesized lysosomal enzymes from the cell by MPR 46 or a--probably indirect--participation in growth factor-mediated signal transduction by MPR 300. To understand the physiological relevance of these observations will be a challenge for future research.
Collapse
Affiliation(s)
- A Hille-Rehfeld
- Department of Biochemistry and Molecular Cell Biology, Universität Göttingen, Germany
| |
Collapse
|