1
|
Marquina M, Lambea E, Carmona M, Sánchez-Marinas M, López-Aviles S, Ayte J, Hidalgo E, Aligue R. A new negative feedback mechanism for MAPK pathway inactivation through Srk1 MAPKAP kinase. Sci Rep 2022; 12:19501. [PMID: 36376357 PMCID: PMC9663701 DOI: 10.1038/s41598-022-23970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The fission yeast mitogen-activated kinase (MAPK) Sty1 is essential for cell survival in response to different environmental insults. In unstimulated cells, Sty1 forms an inactive ternary cytoplasmatic complex with the MAPKK Wis1 and the MAPKAP kinase Srk1. Wis1 phosphorylates and activates Sty1, inducing the nuclear translocation of the complex. Once in the nucleus, Sty1 phosphorylates and activates Srk1, which in turns inhibits Cdc25 and cell cycle progression, before being degraded in a proteasome-dependent manner. In parallel, active nuclear Sty1 activates the transcription factor Atf1, which results in the expression of stress response genes including pyp2 (a MAPK phosphatase) and srk1. Despite its essentiality in response to stress, persistent activation of the MAPK pathway can be deleterious and induces cell death. Thus, timely pathway inactivation is essential to ensure an appropriate response and cell viability. Here, uncover a role for the MAPKAP kinase Srk1 as an essential component of a negative feedback loop regulating the Sty1 pathway through phosphorylation and inhibition of the Wis1 MAPKK. This feedback regulation by a downstream kinase in the pathway highlights an additional mechanism for fine-tuning of MAPK signaling. Thus, our results indicate that Srk1 not only facilitates the adaptation to stress conditions by preventing cell cycle progression, but also plays an instrumental role regulating the upstream kinases in the stress MAPK pathway.
Collapse
Affiliation(s)
- Maribel Marquina
- grid.5841.80000 0004 1937 0247Department of Biomedical Science, University of Barcelona, CIBERonc, Barcelona, Spain ,grid.440832.90000 0004 1766 8613Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain
| | - Eva Lambea
- grid.5841.80000 0004 1937 0247Department of Biomedical Science, University of Barcelona, CIBERonc, Barcelona, Spain ,grid.425602.70000 0004 1765 2224Present Address: Diagnostic Grifols SA., Barcelona, Spain
| | - Mercé Carmona
- grid.5612.00000 0001 2172 2676Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Sánchez-Marinas
- grid.5841.80000 0004 1937 0247Department of Biomedical Science, University of Barcelona, CIBERonc, Barcelona, Spain ,Present Address: RPD. SL, Barcelona, Spain
| | - Sandra López-Aviles
- grid.5510.10000 0004 1936 8921Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - José Ayte
- grid.5612.00000 0001 2172 2676Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- grid.5612.00000 0001 2172 2676Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa Aligue
- grid.5841.80000 0004 1937 0247Department of Biomedical Science, University of Barcelona, CIBERonc, Barcelona, Spain
| |
Collapse
|
2
|
Hu Y, Luo Y, Yin D, Zhao L, Wang Y, Yao R, Zhang P, Wu X, Li M, Hidalgo E, Huang Y. Schizosaccharomyces pombe MAP kinase Sty1 promotes survival of Δppr10 cells with defective mitochondrial protein synthesis. Int J Biochem Cell Biol 2022; 152:106308. [PMID: 36174923 DOI: 10.1016/j.biocel.2022.106308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Deletion of the Schizosaccharomyces pombe pentatricopeptide repeat gene ppr10 severely impairs mitochondrial translation, resulting in defective oxidative phosphorylation (OXPHOS). ppr10 deletion also induces iron starvation response, resulting in increased reactive oxygen species (ROS) production and reduced viability under fermentative conditions. S. pombe has two principal stress-response pathways, which are mediated by the mitogen-activated protein kinase Sty1 and the basic leucine zipper transcription factor Pap1, respectively. In this study, we examined the roles of Sty1 and Pap1 in the cellular response to the mitochondrial translation defect caused by ppr10 deletion. We found that ppr10 deletion resulted in two waves of stress protein activation. The early response occurred in exponential phase and resulted in the expression of a subset of stress proteins including Gst2 and Obr1. The upregulation of some of these stress proteins in Δppr10 cells in early response is dependent on the basal nuclear levels of Sty1 or Pap1. The late response occurred in early stationary phase and coincided with the stable localization of Sty1 and Pap1 in the nucleus, presumably resulting in persistent activation of a large set of stress proteins. Deletion of sty1 in Δppr10 cells caused severe defects in cell division and growth, and further impaired cell viability. Deletion of the mitochondrial superoxide dismutase gene sod2 whose expression is controlled by Sty1 severely inhibited the growth of Δppr10 cells. Overexpression of sod2 improves the viability of Δppr10 cells. Our results support an important role for Sty1 in counteracting stress induced by ppr10 deletion under fermentative growth conditions.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Yin
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lan Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Wu
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Minjie Li
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Elena Hidalgo
- Departament de Ciènces Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genetics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Cansado J, Soto T, Franco A, Vicente-Soler J, Madrid M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J Fungi (Basel) 2021; 8:jof8010032. [PMID: 35049972 PMCID: PMC8781887 DOI: 10.3390/jof8010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
The survival of eukaryotic organisms during environmental changes is largely dependent on the adaptive responses elicited by signal transduction cascades, including those regulated by the Mitogen-Activated Protein Kinase (MAPK) pathways. The Cell Integrity Pathway (CIP), one of the three MAPK pathways found in the simple eukaryote fission of yeast Schizosaccharomyces pombe, shows strong homology with mammalian Extracellular signal-Regulated Kinases (ERKs). Remarkably, studies over the last few decades have gradually positioned the CIP as a multi-faceted pathway that impacts multiple functional aspects of the fission yeast life cycle during unperturbed growth and in response to stress. They include the control of mRNA-stability through RNA binding proteins, regulation of calcium homeostasis, and modulation of cell wall integrity and cytokinesis. Moreover, distinct evidence has disclosed the existence of sophisticated interplay between the CIP and other environmentally regulated pathways, including Stress-Activated MAP Kinase signaling (SAPK) and the Target of Rapamycin (TOR). In this review we present a current overview of the organization and underlying regulatory mechanisms of the CIP in S. pombe, describe its most prominent functions, and discuss possible targets of and roles for this pathway. The evolutionary conservation of CIP signaling in the dimorphic fission yeast S. japonicus will also be addressed.
Collapse
|
4
|
Ma X, Huang X, Jiao Z, He L, Li Y, Ow DW. Overproduction of plant nuclear export signals enhances diamide tolerance in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2020; 531:335-340. [PMID: 32800339 DOI: 10.1016/j.bbrc.2020.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
The nuclear export signal (NES) endows a protein nuclear export ability. Surprisingly, our previous study shows that just the NES peptide of Schizosaccharomyces pombe Oxs1 (SpOxs1NES) can confer diamide tolerance by competing with transcription factor Pap1 for nuclear transport. This finding intrigued us to test the function of NESs from heterologous organisms. The Arabidopsis thaliana zinc finger transcription factor OXIDATIVE STRESS 2 (AtOXS2) is a nucleocytoplasmic shuttling protein and nearly all OXS2 members from maize and rice contain an NES. In this study, we find that the plant OXS2 members and their C-terminus (AT3 peptide) can confer diamide tolerance due to their NESs, and amino acids in non-conserved as well as conserved positions are necessary for the diamide tolerance. As in SpOxs1NES, the enhanced tolerance to diamide in fission yeast depends on Pap1. Like SpOxs1NES, OXS2 family NESs appear to compete for nuclear transport of the Pap1-like Arabidopsis protein bZIP10, as when overproduced in Arabidopsis protoplasts, bZIP10 is retained in the nucleus.
Collapse
Affiliation(s)
- Xiaoling Ma
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xing Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengli Jiao
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lilong He
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Hibi T, Ohtsuka H, Shimasaki T, Inui S, Shibuya M, Tatsukawa H, Kanie K, Yamamoto Y, Aiba H. Tschimganine and its derivatives extend the chronological life span of yeast via activation of the Sty1 pathway. Genes Cells 2018; 23:620-637. [PMID: 29900664 DOI: 10.1111/gtc.12604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Most antiaging factors or life span extenders are associated with calorie restriction (CR). Very few of these factors function independently of, or additively with, CR. In this study, we focused on tschimganine, a compound that was reported to extend chronological life span (CLS). Although tschimganine led to the extension of CLS, it also inhibited yeast cell growth. We acquired a Schizosaccharomyces pombe mutant with a tolerance for tschimganine due to the gene crm1. The resulting Crm1 protein appears to export the stress-activated protein kinase Sty1 from the nucleus to the cytosol even under stressful conditions. Furthermore, we synthesized two derivative compounds of tschimganine, α-hibitakanine and β-hibitakanine; these derivatives did not inhibit cell growth, as seen with tschimganine. α-hibitakanine extended the CLS, not only in S. pombe but also in Saccharomyces cerevisiae, indicating the possibility that life span regulation by tschimganine derivative may be conserved across various yeast species. We found that the longevity induced by tschimganine was dependent on the Sty1 pathway. Based on our results, we propose that tschimganine and its derivatives extend CLS by activating the Sty1 pathway in fission yeast, and CR extends CLS via two distinct pathways, one Sty1-dependent and the other Sty1-independent. These findings provide the potential for creating an additive life span extension effect when combined with CR, as well as a better understanding of the mechanism of CLS.
Collapse
Affiliation(s)
- Takahide Hibi
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Shougo Inui
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Masatoshi Shibuya
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hideki Tatsukawa
- Laboratory of Cellular Biochemistry, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kei Kanie
- Laboratory of Cell and Molecular Bioengineering, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yoshihiko Yamamoto
- Laboratory of Molecular Design, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
6
|
Sartagul W, Zhou X, Yamada Y, Ma N, Tanaka K, Furuyashiki T, Ma Y. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress. PLoS One 2014; 9:e111936. [PMID: 25372384 PMCID: PMC4221157 DOI: 10.1371/journal.pone.0111936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.
Collapse
Affiliation(s)
- Wugangerile Sartagul
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (XZ); (YM)
| | - Yuki Yamada
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ning Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsunori Tanaka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail: (XZ); (YM)
| |
Collapse
|
7
|
Bellini A, Girard PM, Tessier L, Sage E, Francesconi S. Fission yeast Rad52 phosphorylation restrains error prone recombination pathways. PLoS One 2014; 9:e95788. [PMID: 24748152 PMCID: PMC3991707 DOI: 10.1371/journal.pone.0095788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/30/2014] [Indexed: 11/21/2022] Open
Abstract
Rad52 is a key protein in homologous recombination (HR), a DNA repair pathway dedicated to double strand breaks and recovery of blocked or collapsed replication forks. Rad52 allows Rad51 loading on single strand DNA, an event required for strand invasion and D-loop formation. In addition, Rad52 functions also in Rad51 independent pathways because of its ability to promote single strand annealing (SSA) that leads to loss of genetic material and to promote D-loops formation that are cleaved by Mus81 endonuclease. We have previously reported that fission yeast Rad52 is phosphorylated in a Sty1 dependent manner upon oxidative stress and in cells where the early step of HR is impaired because of lack of Rad51. Here we show that Rad52 is also constitutively phosphorylated in mus81 null cells and that Sty1 partially impinges on such phosphorylation. As upon oxidative stress, the Rad52 phosphorylation in rad51 and mus81 null cells appears to be independent of Tel1, Rad3 and Cdc2. Most importantly, we show that mutating serine 365 to glycine (S365G) in Rad52 leads to loss of the constitutive Rad52 phosphorylation observed in cells lacking Rad51 and to partial loss of Rad52 phosphorylation in cells lacking Mus81. Contrariwise, phosphorylation of Rad52-S365G protein is not affected upon oxidative stress. These results indicate that different Rad52 residues are phosphorylated in a Sty1 dependent manner in response to these distinct situations. Analysis of spontaneous HR at direct repeats shows that mutating serine 365 leads to an increase in spontaneous deletion-type recombinants issued from mitotic recombination that are Mus81 dependent. In addition, the recombination rate in the rad52-S365G mutant is further increased by hydroxyurea, a drug to which mutant cells are sensitive.
Collapse
Affiliation(s)
- Angela Bellini
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Bât. 110, Centre Universitaire, Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Bât. 110, Centre Universitaire, Orsay, France
| | - Ludovic Tessier
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Bât. 110, Centre Universitaire, Orsay, France
| | - Evelyne Sage
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Bât. 110, Centre Universitaire, Orsay, France
| | - Stefania Francesconi
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS UMR 3348, Bât. 110, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
8
|
Sánchez-Mir L, Franco A, Madrid M, Vicente-Soler J, Villar-Tajadura MA, Soto T, Pérez P, Gacto M, Cansado J. Biological significance of nuclear localization of mitogen-activated protein kinase Pmk1 in fission yeast. J Biol Chem 2012; 287:26038-51. [PMID: 22685296 DOI: 10.1074/jbc.m112.345611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways play a fundamental role in the response of eukaryotic cells to environmental changes. Also, much evidence shows that the stimulus-dependent nuclear targeting of this class of regulatory kinases is crucial for adequate regulation of distinct cellular events. In the fission yeast Schizosaccharomyces pombe, the cell integrity MAPK pathway, whose central element is the MAPK Pmk1, regulates multiple processes such as cell wall integrity, vacuole fusion, cytokinesis, and ionic homeostasis. In non-stressed cells Pmk1 is constitutively localized in both cytoplasm and nucleus, and its localization pattern appears unaffected by its activation status or in response to stress, thus questioning the biological significance of the presence of this MAPK into the nucleus. We have addressed this issue by characterizing mutants expressing Pmk1 versions excluded from the cell nucleus and anchored to the plasma membrane in different genetic backgrounds. Although nuclear Pmk1 partially regulates cell wall integrity at a transcriptional level, membrane-tethered Pmk1 performs many of the biological functions assigned to wild type MAPK like regulation of chloride homeostasis, vacuole fusion, and cellular separation. However, we found that down-regulation of nuclear Pmk1 by MAPK phosphatases induced by the stress activated protein kinase pathway is important for the fine modulation of extranuclear Pmk1 activity. These results highlight the importance of the control of MAPK activity at subcellular level.
Collapse
Affiliation(s)
- Laura Sánchez-Mir
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología. Universidad de Murcia, 30071 Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou X, Ma Y, Kato T, Kuno T. A measurable activation of the bZIP transcription factor Atf1 in a fission yeast strain devoid of stress-activated and cell integrity mitogen-activated protein kinase (MAPK) activities. J Biol Chem 2012; 287:23434-9. [PMID: 22661707 DOI: 10.1074/jbc.c111.338715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Schizosaccharomyces pombe, the stress-activated Sty1 MAPK pathway is essential for cell survival under stress conditions. The Sty1 MAPK regulates Atf1 transcription factor to elicit stress responses in extreme conditions of osmolarity and reactive oxygen species-generating agents such as hydrogen peroxide, heat, low glucose, and heavy metal. Herein, using a newly developed Renilla luciferase reporter assay with enhanced detection sensitivity and accuracy, we show that distinct signaling pathways respond to cadmium and other reactive oxygen species-generating agents for the activation of Atf1. Also, surprisingly, a measurable activation of Atf1 transcription factor was still observed devoid of Sty1 MAPK activity. Further genetic and biological analyses revealed that the residual activation is caused by the activation of the cell wall integrity Pmk1 MAPK pathway and a redox-mediated activation of Atf1.
Collapse
Affiliation(s)
- Xin Zhou
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | |
Collapse
|
10
|
Sansó M, Vargas-Pérez I, García P, Ayté J, Hidalgo E. Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol Microbiol 2011; 82:542-54. [DOI: 10.1111/j.1365-2958.2011.07851.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Lara-Rojas F, Sánchez O, Kawasaki L, Aguirre J. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 2011; 80:436-54. [PMID: 21320182 PMCID: PMC3108070 DOI: 10.1111/j.1365-2958.2011.07581.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2011] [Indexed: 12/16/2022]
Abstract
Fungi utilize a phosphorelay system coupled to a MAP kinase module for sensing and processing environmental signals. In Aspergillus nidulans, response regulator SskA transmits osmotic and oxidative stress signals to the stress MAPK (SAPK) SakA. Using a genetic approach together with GFP tagging and molecular bifluorescence we show that SakA and ATF/CREB transcription factor AtfA define a general stress-signalling pathway that plays differential roles in oxidative stress responses during growth and development. AtfA is permanently localized in the nucleus, while SakA accumulates in the nucleus in response to oxidative or osmotic stress signals or during normal spore development, where it physically interacts with AtfA. AtfA is required for expression of several genes, the conidial accumulation of SakA and the viability of conidia. Furthermore, SakA is active (phosphorylated) in asexual spores, remaining phosphorylated in dormant conidia and becoming dephosphorylated during germination. SakA phosphorylation in spores depends on certain (SskA) but not other (SrrA and NikA) components of the phosphorelay system. Constitutive phosphorylation of SakA induced by the fungicide fludioxonil prevents both, germ tube formation and nuclear division. Similarly, Neurospora crassa SakA orthologue OS-2 is phosphorylated in intact conidia and gets dephosphorylated during germination. We propose that SakA-AtfA interaction regulates gene expression during stress and conidiophore development and that SAPK phosphorylation is a conserved mechanism to regulate transitions between non-growing (spore) and growing (mycelia) states.
Collapse
Affiliation(s)
- Fernando Lara-Rojas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Olivia Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Laura Kawasaki
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| | - Jesús Aguirre
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoApartado Postal 70-242, 04510, México, D.F., México
| |
Collapse
|
12
|
Nitta RT, Badal SS, Wong AJ. Measuring the constitutive activation of c-Jun N-terminal kinase isoforms. Methods Enzymol 2011; 484:531-48. [PMID: 21036249 DOI: 10.1016/b978-0-12-381298-8.00026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-Jun N-terminal kinases (JNK) are important regulators of cell growth, proliferation, and apoptosis. JNKs are typically activated by a sequence of events that include phosphorylation of its T-P-Y motif by an upstream kinase, followed by homodimerization and translocation to the nucleus. Constitutive activation of JNK has been found in a variety of cancers including non-small cell lung carcinomas, gliomas, and mantle cell lymphoma. In vitro studies show that constitutive activation of JNK induces a transformed phenotype in fibroblasts and enhances tumorigenicity in a variety of cell lines. Interestingly, a subset of JNK isoforms was recently found to autoactivate rendering the proteins constitutively active. These constitutively active JNK proteins were found to play a pivotal role in activating transcription factors that increase cellular growth and tumor formation in mice. In this chapter, we describe techniques and methods that have been successfully used to study the three components of JNK activation. Use of these techniques may lead to a better understanding of the components of JNK pathways and how JNK is activated in cancer cells.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Neurosurgery, Cancer Biology Program, Stanford University Medical Center, Stanford, California, USA
| | | | | |
Collapse
|
13
|
Zhou X, Ma Y, Sugiura R, Kobayashi D, Suzuki M, Deng L, Kuno T. MAP kinase kinase kinase (MAPKKK)-dependent and -independent activation of Sty1 stress MAPK in fission yeast. J Biol Chem 2010; 285:32818-32823. [PMID: 20729203 DOI: 10.1074/jbc.m110.135764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In fission yeast, the Sty1/Spc1/Phh1 mitogen-activated protein kinase (MAPK) pathway is known to be involved in multiple-stress responses. It is currently thought that the Sty1 MAPK cascade is mediated by histidine kinases and phosphorelay proteins in response to oxidative stress signals. However, studies of the exact transduction mechanism of multiple-stress responses are lacking. Thus, in response to various stimuli, we monitored the Sty1 MAPK pathway through the downstream transcription factor Atf1 in living cells using a highly sensitive luciferase reporter gene. Surprisingly, in cadmium and low glucose (LG) medium, Atf1 activation was observed even in the absence of all of the four fission yeast MAPK kinase kinases (MAPKKKs); whereas in osmotic stress, Atf1 activation was abolished. Thus, the osmotic stress likely mediates the MAPK activation via MAPKKKs, whereas a cadmium or LG condition activates the MAPK in a MAPKKK-independent manner. On the other hand, knockout of tyrosine phosphatase gene pyp1(+) abolished the Atf1 response to cadmium and LG, but not to osmotic stress, suggesting that Pyp1 is a sensor for cadmium and LG.
Collapse
Affiliation(s)
- Xin Zhou
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Yan Ma
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashi-Osaka, 577-8502, Japan
| | - Daiki Kobayashi
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Suzuki
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Lu Deng
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan
| | - Takayoshi Kuno
- From the Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
14
|
Hartmuth S, Petersen J. Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 2009; 122:1737-46. [PMID: 19417002 DOI: 10.1242/jcs.049387] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR signalling coordinates growth and division to control cell size. Inhibition of Schizosaccharomyces pombe Tor1, in response to a reduction in the quality of the nitrogen source (nutrient stress), promotes mitotic onset through activation of the mitogen-activated protein kinase (MAPK) Sty1 (also known as Spc1). Here we show that ;nutrient starvation' (complete withdrawal of nitrogen or leucine) blocks mitotic commitment by altering Sty1 signalling and that different degrees of Sty1 activation determine these differences in mitotic commitment decisions. Mammals contain one TOR kinase, whereas yeasts contain two. In each case, they comprise two distinct complexes: TORC1 and TORC2. We find that nutrient-stress-induced control of mitotic onset, through Tor1, is regulated through changes in TORC1 signalling. In minimal medium, Tor1 interacts with the TORC1 component Mip1 (raptor), and overexpression of tor1+ generates growth defects reminiscent of TORC1 mutants. Strains lacking the TORC2-specific components Sin1 and Ste20 (rictor) still advance mitotic onset in response to nutrient stress. By contrast, Mip1 and the downstream effector Gad8 (a S6K kinase homologue), like Tor1, are essential for nutrient stress to advance mitotic onset. We conclude that S. pombe Tor1 and Tor2 can both act in TORC1. However, it is the inhibition of Tor1 as part of TORC1 that promotes mitosis following nutrient stress.
Collapse
Affiliation(s)
- Sonya Hartmuth
- University of Manchester, Faculty of Life Sciences, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
15
|
Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. PLANT PHYSIOLOGY 2009; 149:760-74. [PMID: 19052154 PMCID: PMC2633824 DOI: 10.1104/pp.108.132217] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors important for plant growth and development. Comprehensive information on monocot CRYs is currently only available for rice (Oryza sativa). We report here the molecular and functional characterization of two CRY genes, TaCRY1a and TaCRY2, from the monocot wheat (Triticum aestivum). The expression of TaCRY1a was most abundant in seedling leaves and barely detected in roots and germinating embryos under normal growth conditions. The expression of TaCRY2 in germinating embryos was equivalent to that in leaves and much higher than the TaCRY1a counterpart. Transition from dark to light slightly affected the expression of TaCRY1a and TaCRY2 in leaves, and red light produced a stronger induction of TaCRY1a. Treatment of seedlings with high salt, polyethylene glycol, and abscisic acid (ABA) up-regulated TaCRY2 in roots and germinating embryos. TaCRY1a displays a light-responsive nucleocytoplasmic shuttling pattern similar to that of Arabidopsis (Arabidopsis thaliana) CRY1, contains nuclear localization domains in both the N and C termini, and includes information for nuclear export in its N-terminal domain. TaCRY2 was localized to the nucleus in the dark. Expression of TaCRY1a-green fluorescent protein or TaCRY2-green fluorescent protein in Arabidopsis conferred a shorter hypocotyl phenotype under blue light. These transgenic Arabidopsis plants showed higher sensitivity to high-salt, osmotic stress, and ABA treatment during germination and postgermination development, and they displayed altered expression of stress/ABA-responsive genes. The primary root growth in transgenic seedlings was less tolerant of ABA. These observations indicate that TaCRY1 and TaCRY2 might be involved in the ABA signaling pathway in addition to their role in primary blue light signal transduction.
Collapse
Affiliation(s)
- Pei Xu
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Jiangsu 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Subj 2008; 1780:1217-35. [DOI: 10.1016/j.bbagen.2007.12.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
|
17
|
Nitta RT, Chu AH, Wong AJ. Constitutive activity of JNK2 alpha2 is dependent on a unique mechanism of MAPK activation. J Biol Chem 2008; 283:34935-45. [PMID: 18940813 DOI: 10.1074/jbc.m804970200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) are part of the mitogen-activated protein kinase (MAPK) family and are important regulators of cell growth, proliferation, and apoptosis. Typically, a sequential series of events are necessary for MAPK activation: phosphorylation, dimerization, and then subsequent translocation to the nucleus. Interestingly, a constitutively active JNK isoform, JNK2alpha2, possesses the ability to autophosphorylate and has been implicated in several human tumors, including glioblastoma multiforme. Because overexpression of JNK2alpha2 enhances several tumorigenic phenotypes, including cell growth and tumor formation in mice, we studied the mechanisms of JNK2alpha2 autophosphorylation and autoactivation. We find that JNK2alpha2 dimerization in vitro and in vivo occurs independently of its autophosphorylation but is dependent on nine amino acids, known as the alpha-region. Alanine scanning mutagenesis of the alpha-region reveals that five specific mutants (L218A, K220A, G221A, I224A, and F225A) prevent JNK2alpha2 dimerization rendering JNK2alpha2 inactive and incapable of stimulating tumor formation. Previous studies coupled with additional mutagenesis of neighboring isoleucines and leucines (I208A, I214A, I231A, and I238A) suggest that a leucine zipper may play an important role in JNK2alpha2 homodimerization. We also show that a kinase-inactive JNK2alpha2 mutant can interact with and inhibit wild type JNK2alpha2 autophosphorylation, suggesting that JNK2alpha2 undergoes trans-autophosphorylation. Together, our results demonstrate that JNK2alpha2 differs from other MAPK proteins in two major ways; its autoactivation/autophosphorylation is dependent on dimerization, and dimerization most likely precedes autophosphorylation. In addition, we show that dimerization is essential for JNK2alpha2 activity and that prevention of dimerization may decrease JNK2alpha2 induced tumorigenic phenotypes.
Collapse
Affiliation(s)
- Ryan T Nitta
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
18
|
Reiter W, Watt S, Dawson K, Lawrence CL, Bähler J, Jones N, Wilkinson CR. Fission yeast MAP kinase Sty1 is recruited to stress-induced genes. J Biol Chem 2008; 283:9945-56. [PMID: 18252721 PMCID: PMC3668131 DOI: 10.1074/jbc.m710428200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The stress-induced expression of many fission yeast genes is dependent upon the Sty1 mitogen-activated protein kinase (MAPK) and Atf1 transcription factor. Atf1 is phosphorylated by Sty1 yet this phosphorylation is not required for stress-induced gene expression, suggesting another mechanism exists whereby Sty1 activates transcription. Here we show that Sty1 associates with Atf1-dependent genes and is recruited to both their promoters and coding regions. This occurs in response to various stress conditions coincident with the kinetics of the activation of Sty1. Association with promoters is not a consequence of increased nuclear accumulation of Sty1 nor does it require the phosphorylation of Atf1. However, recruitment is completely abolished in a mutant lacking Sty1 kinase activity. Both Atf1 and its binding partner Pcr1 are required for association of Sty1 with Atf1-dependent promoters, suggesting that this heterodimer must be intact for optimal recruitment of the MAPK. However, many Atf1-dependent genes are still expressed in a pcr1Delta mutant but with significantly delayed kinetics, thus providing an explanation for the relatively mild stress sensitivity displayed by pcr1Delta. Consistent with this delay, Sty1 and Atf1 cannot be detected at these promoters in this condition, suggesting that their association with chromatin is weak or transient in the absence of Pcr1.
Collapse
Affiliation(s)
- Wolfgang Reiter
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Stephen Watt
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Keren Dawson
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Clare L. Lawrence
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Nic Jones
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Caroline R.M. Wilkinson
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
19
|
Transcription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation. EUKARYOTIC CELL 2008; 7:826-35. [PMID: 18375616 DOI: 10.1128/ec.00465-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. Upon stress activation, Sty1 reversibly accumulates in the nucleus, where it stimulates gene expression via the Atf1 transcription factor. The Atf1 protein forms a heterodimer with Pcr1, but the specific role of this association is controversial. We have carried out a comparative analysis of strains lacking these proteins individually. We demonstrate that Atf1 and Pcr1 have similar but not identical roles in S. pombe, since cells lacking Pcr1 do not share all the phenotypes reported for Deltaatf1 cells. Northern blot and microarray analyses demonstrate that the responses to specific stresses of cells lacking either Pcr1 or Atf1 do not fully overlap, and even though most Atf1-dependent genes induced by osmotic stress are also Pcr1 dependent, a subset of genes require only the presence of Atf1 for their induction. Whereas binding of Atf1 to most stress-dependent genes requires the presence of Pcr1, we demonstrate here that Atf1 can bind to the Pcr1-independent promoters in a Deltapcr1 strain in vivo. Furthermore, these analyses show that both proteins have a global repressive effect on stress-dependent and stress-independent genes.
Collapse
|
20
|
Abstract
Unicellular fungi thrive in diverse niches around the world, and many of these niches present unique and stressful challenges that must be contended with by their inhabitants. Numerous studies have investigated the genomic expression responses to environmental stress in 'model' ascomycete fungi, including Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe. This review presents a comparative-genomics perspective on the environmental stress response, a common response to diverse stresses. Implications for the role of this response, based on its presence or absence in fungi from disparate ecological niches, are discussed.
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Madrid M, Núñez A, Soto T, Vicente-Soler J, Gacto M, Cansado J. Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases. Mol Biol Cell 2007; 18:4405-19. [PMID: 17761528 PMCID: PMC2043569 DOI: 10.1091/mbc.e07-05-0484] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/11/2007] [Accepted: 08/15/2007] [Indexed: 01/21/2023] Open
Abstract
Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process.
Collapse
Affiliation(s)
- Marisa Madrid
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | - Andrés Núñez
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | - Teresa Soto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | - Jero Vicente-Soler
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | - Mariano Gacto
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| |
Collapse
|
22
|
TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol 2007; 9:1263-72. [PMID: 17952063 DOI: 10.1038/ncb1646] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/10/2007] [Indexed: 12/26/2022]
Abstract
The coupling of growth to cell cycle progression allows eukaryotic cells to divide at particular sizes depending on nutrient availability. In fission yeast, this coupling involves the Spc1/Sty1 mitogen-activated protein kinase (MAPK) pathway working through Polo kinase recruitment to the spindle pole bodies (SPBs). Here we report that changes in nutrients influence TOR signalling, which modulates Spc1/Sty1 activity. Rapamycin-induced inhibition of TOR signalling advanced mitotic onset, mimicking the reduction in cell size at division seen after shifts to poor nitrogen sources. Gcn2, an effector of TOR signalling and modulator of translation, regulates the Pyp2 phosphatase that in turn modulates Spc1/Sty1 activity. Rapamycin- or nutrient-induced stimulation of Spc1/Sty1 activity promotes Polo kinase SPB recruitment and Cdc2 activation to advance mitotic onset. This advanced mitotic onset is abolished in cells depleted of Gcn2, Pyp2, or Spc1/Sty1 or on blockage of Spc1/Sty1-dependent Polo SPB recruitment. Therefore, TOR signalling modulates mitotic onset through the stress MAPK pathway via the Pyp2 phosphatase.
Collapse
|
23
|
Vivancos AP, Jara M, Zuin A, Sansó M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics 2006; 276:495-502. [PMID: 17043891 DOI: 10.1007/s00438-006-0175-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 09/20/2006] [Indexed: 01/27/2023]
Abstract
Schizosaccharomyces pombe triggers different signalling pathways depending on the severity of the oxidative stress exerted, the main ones being the Pap1 and the Sty1 pathways. The Pap1 transcription factor is more sensitive to hydrogen peroxide (H(2)O(2)) than the MAP kinase Sty1 pathway, and is designed to induce adaptation, rather than survival, responses. The peroxiredoxin Tpx1 acts as a H(2)O(2) sensor and the upstream activator of the Pap1 pathway. Therefore, sensitivity to H(2)O(2) depends on this thioredoxin peroxidase. In order to achieve maximal activation of the MAP kinase pathway, the concentration of H(2)O(2) needs to be at least fivefold higher than that to fully activate Pap1. Tpx1 is a H(2)O(2) scavenger, thus its peroxidase activity is essential for aerobic growth. As described for other eukaryotic peroxiredoxins, high doses of H(2)O(2) temporarily inactivate Tpx1 and delay Pap1 activation, whereas the Sty1 pathway remains fully functional under these conditions. As part of the Sty1-dependent transcriptional response, the expression of Srx1 is induced and this reductase re-activates the over-oxidised Tpx1. Therefore, the antioxidant pathways of the fission yeast are perfectly designed so that the transcriptional programs triggered by the different signalling pathways never overlap.
Collapse
Affiliation(s)
- Ana P Vivancos
- Cell Signalling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 80, Barcelona, 08003, Spain
| | | | | | | | | |
Collapse
|
24
|
Clement M, Boncompagni E, de Almeida-Engler J, Herouart D. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule. PLANT, CELL & ENVIRONMENT 2006; 29:1841-52. [PMID: 16913873 DOI: 10.1111/j.1365-3040.2006.01558.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Symbiotic N(2) fixation of legume crops is highly sensitive to drought, which results in a dramatic drop of N accumulation and yield. The symbiosis between soybean (Glycine max) and Bradyrhizobium japonicum, because of its extreme sensitivity to drought, was chosen as a model to analyse the response to drought stress at a molecular level. The mRNA differential display technique was performed to isolate cDNA markers differentially expressed in well-watered [100% of N(2) fixation capacity (NFC)] and drought-stressed nodules (40% NFC). One gene noted, G93, appeared strongly down-regulated by drought and fully recovered after rehydration. In situ hybridization showed that G93 transcripts were localized in N(2)-fixing cells of mature nodules, indicating that G93 could be considered as a late nodulin. However, G93 expression was not directly correlated to N(2) fixation but mainly responded to osmotic stress. Other stresses that lead to decrease of N(2) fixation did not affect G93 expression. Sequence analyses showed that G93 presented a strong homology with two soybean expressed sequence tags (ESTs) and with the ZR1 protein of Medicago sativa. Putative roles of this nodulin in adaptation of soybean nodule to osmotic stress are proposed.
Collapse
Affiliation(s)
- Mathilde Clement
- Unité Mixte de Recherche (UMR) 'Interactions Plantes Microorganimes et Santé Végétale' INRA1064-CNRS 6192-Université de Nice-Sophia Antipolis, Institut Sophia Agrobiotech, 400 Routes des Chappes, 06903 Sophia-Antipolis Cedex, France
| | | | | | | |
Collapse
|
25
|
Sprowles A, Robinson D, Wu YM, Kung HJ, Wisdom R. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases. Exp Cell Res 2005; 308:459-68. [PMID: 15950217 DOI: 10.1016/j.yexcr.2005.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/04/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.
Collapse
Affiliation(s)
- Amy Sprowles
- Division of Hematology/Oncology and The UC Davis Cancer Center, Research Building III, Room 1100, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
26
|
Sharma P, Mondal AK. Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p. Biochem Biophys Res Commun 2005; 328:906-13. [PMID: 15707964 DOI: 10.1016/j.bbrc.2005.01.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Indexed: 11/20/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus. In baker's yeast external high osmolarity activates high osmolarity glycerol (HOG) MAPK pathway which consists of two upstream branches (SHO1 and SLN1) and common downstream elements Pbs2p MAPKK and Hog1p MAPK. Activation of this pathway causes rapid nuclear accumulation of Hog1p, essentially leading to the expression of target genes. Previously we have isolated a PBS2 homologue (DPBS2) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that partially complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show that by replacing C-terminal region of Dpbs2p with the homologous region of Pbs2p we could abrogate partial complementation exhibited by Dpbs2p and this was achieved due to increase in nuclear translocation of Hog1p. Thus, our result showed that in HOG pathway, MAPKK has important role in nuclear translocation of Hog1p.
Collapse
Affiliation(s)
- Pratima Sharma
- Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | | |
Collapse
|
27
|
Yedavalli VSRK, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004; 119:381-92. [PMID: 15507209 DOI: 10.1016/j.cell.2004.09.029] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 08/18/2004] [Accepted: 08/23/2004] [Indexed: 01/19/2023]
Abstract
A single transcript in its unspliced and spliced forms directs the synthesis of all HIV-1 proteins. Although nuclear export of intron-containing cellular transcripts is restricted in mammalian cells, HIV-1 has evolved the viral Rev protein to overcome this restriction for viral transcripts. Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA. Here, we present evidence that Rev/CRM1 activity utilizes the ATP-dependent DEAD box RNA helicase, DDX3. We show that DDX3 is a nucleo-cytoplasmic shuttling protein, which binds CRM1 and localizes to nuclear membrane pores. Knockdown of DDX3 using either antisense vector or dominant-negative mutants suppressed Rev-RRE-function in the export of incompletely spliced HIV-1 RNAs. Plausibly, DDX3 is the human RNA helicase which functions in the CRM1 RNA export pathway analogously to the postulated role for Dbp5p in yeast mRNA export.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Park SM, Choi ES, Kim MJ, Cha BJ, Yang MS, Kim DH. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol Microbiol 2004; 51:1267-77. [PMID: 14982623 DOI: 10.1111/j.1365-2958.2004.03919.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the biological function of cpmk1, which encodes a MAPK of Cryphonectria parasitica, and its regulation by mycovirus. Sequence comparisons revealed that cpmk1 had highest homology with osm1, a hog1-homologue from Magnaporthe grisea. A growth defect was observed in the cpmk1-null mutant under hyperosmotic conditions, indicating that cpmk1 functionally belongs to a hog1 subfamily. Immunoblot analyses indicated that the CpMK1 pathway was affected specifically in hyperosmotic conditions by the hypovirus CHV1-EP713. Moreover, the virus-infected hypovirulent UEP1 strain also exhibited severe osmosensitivity compared to the virus-free isogenic strain EP155/2, thus providing additional evidence for viral regulation of cpmk1 in response to a hypertonic stress. Besides osmosensitivity, disruption of cpmk1 resulted in several, but not all, hypovirulence-associated changes, such as reduced pigmentation, conidiation, laccase production and cryparin expression. However, the cpmk1-null mutant exhibited an increased accumulation of pheromone gene transcripts. Virulence assays of the cpmk1-null mutant revealed reduced canker area, but not as severe as that of UEP1. These results suggest that mycoviruses modulate the MAPK and thereby provoke the aberrant expression of target genes, some of which are likely to be implicated in viral symptom development.
Collapse
Affiliation(s)
- Seung-Moon Park
- Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University, Dukjindong 664-14, Jeonju, Chonbuk 561-756, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Rodríguez-Gabriel MA, Burns G, McDonald WH, Martín V, Yates JR, Bähler J, Russell P. RNA-binding protein Csx1 mediates global control of gene expression in response to oxidative stress. EMBO J 2004; 22:6256-66. [PMID: 14633985 PMCID: PMC291838 DOI: 10.1093/emboj/cdg597] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fission yeast Spc1 (Sty1), a stress-activated mitogen-activated protein kinase (MAPK) homologous to human p38, orchestrates global changes in gene expression in response to diverse forms of cytotoxic stress. This control is partly mediated through Atf1, a transcription factor homologous to human ATF2. How Spc1 controls Atf1, and how the cells tailor gene expression patterns to different forms of stress, are unknown. Here we describe Csx1, a novel protein crucial for survival of oxidative but not osmotic stress. Csx1 associates with and stabilizes atf1+ mRNA in response to oxidative stress. Csx1 controls expression of the majority of the genes induced by oxidative stress, including most of the genes regulated by Spc1 and Atf1. These studies reveal a novel mechanism controlling MAPK-regulated transcription factors and suggest how gene expression patterns can be customized to specific forms of stress. Csx1-like proteins in humans may perform similar tasks.
Collapse
|
30
|
Julien C, Coulombe P, Meloche S. Nuclear export of ERK3 by a CRM1-dependent mechanism regulates its inhibitory action on cell cycle progression. J Biol Chem 2003; 278:42615-24. [PMID: 12915405 DOI: 10.1074/jbc.m302724200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase family of serine/threonine kinases. Little is known on the regulation of ERK3 function. Here, we report that ERK3 is constitutively localized in the cytoplasmic and nuclear compartments. In contrast to other mitogen-activated protein kinases, the cellular distribution of ERK3 remains unchanged in response to common mitogenic or stress stimuli and is independent of the enzymatic activity or phosphorylation of the kinase. The cytoplasmic localization of ERK3 is directed by a CRM1-dependent nuclear export mechanism. Treatment of cells with leptomycin B causes the nuclear accumulation of ERK3 in a high percentage of cells. Moreover, ectopic expression of CRM1 promotes the cytoplasmic relocalization of ERK3, whereas overexpression of snurportin 1, which binds CRM1 with high affinity, inhibits the nuclear export of ERK3. We also show that CRM1 binds to ERK3 in vitro. Importantly, we show that enforced localization of ERK3 in the nucleus or cytoplasm markedly attenuates the ability of the kinase to induce cell cycle arrest in fibroblasts. Our results suggest that nucleocytoplasmic shuttling of ERK3 is required for its negative regulatory effect on cell cycle progression.
Collapse
Affiliation(s)
- Catherine Julien
- Institut de Recherches Cliniques de Montréal, Université de Montréal, 110 Pine Avenue West, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
31
|
Castillo EA, Vivancos AP, Jones N, Ayte J, Hidalgo E. Schizosaccharomyces pombe cells lacking the Ran-binding protein Hba1 show a multidrug resistance phenotype due to constitutive nuclear accumulation of Pap1. J Biol Chem 2003; 278:40565-72. [PMID: 12896976 DOI: 10.1074/jbc.m305859200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Schizosaccharomyces pombe, the transcription factor Pap1, and the mitogen-activated protein kinase Sty1 are excluded from the nucleus in a Crm1-dependent manner under non-stressed conditions. Upon oxidant treatment, both Sty1 and Pap1 concentrate into the nucleus, due to an enhanced import or an impaired export. Hba1, a protein that when overexpressed confers brefeldin A resistance, contains a Ran binding domain. The purpose of this project was to understand at the molecular level the role of Hba1 in the S. pombe oxidative stress response. Fluorescent and confocal microscopy studies demonstrate that Hba1 is located at the nucleoplasm and not at the nuclear envelope. We also demonstrate that either multiple copies or deletion of the hba1 gene induces nuclear accumulation of Pap1 and Sty1. We propose that Hba1 assists Crm1 to export some nuclear export signal-containing proteins. Pap1 nuclear accumulation is sufficient for constitutive activation of its specific antioxidant response. On the contrary, constitutive nuclear localization of Sty1 in the Deltahba1 strain does not trigger the Sty1-specific, Atf1-dependent antioxidant response in the absence of stress. We conclude that the increased multidrug resistance of strains lacking or overexpressing Hba1 is due to the accumulation of Pap1 in the nucleus under non-stressed conditions.
Collapse
Affiliation(s)
- Esther A Castillo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
32
|
Tatebe H, Shiozaki K. Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol Cell Biol 2003; 23:5132-42. [PMID: 12861001 PMCID: PMC165716 DOI: 10.1128/mcb.23.15.5132-5142.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells utilize multiple mitogen-activated protein kinases (MAPKs) to transmit various extracellular stimuli to the nucleus. A subfamily of MAPKs that mediates environmental stress stimuli is also called stress-activated protein kinase (SAPK), which has crucial roles in cellular survival under stress conditions as well as inflammatory responses. Here we report that Cdc37, an evolutionarily conserved kinase-specific chaperone, is a positive regulator of Spc1 SAPK in the fission yeast Schizosaccharomyces pombe. Through a genetic screen, we have identified cdc37 as a mutation that compromises signaling through Spc1 SAPK. The Cdc37 protein physically interacts with Spc1, and the cdc37 mutation affects both the cellular level of the Spc1 protein and stress-induced Spc1 phosphorylation by Wis1 MAPK kinase (MAPKK). Consistently, expression of the stress response genes regulated by the Spc1 pathway is compromised in cdc37 mutant cells. On the other hand, a mutation in Hsp90, which often cooperates with Cdc37 in chaperoning protein kinases, does not affect Spc1 SAPK. These results suggest that Spc1 SAPK is a novel client protein for the Cdc37 chaperone, and the Cdc37 function is important to maintain the stability of the Spc1 protein and to facilitate stress signaling from Wis1 MAPKK to Spc1 SAPK.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Section of Microbiology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
33
|
|
34
|
Affiliation(s)
- Christoph Schüller
- Vienna Biocenter, Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Ludwig Boltzmann-Forschungsstelle für Biochemie, Wien, Austria
| | | |
Collapse
|
35
|
Nguyen AN, Ikner AD, Shiozaki M, Warren SM, Shiozaki K. Cytoplasmic localization of Wis1 MAPKK by nuclear export signal is important for nuclear targeting of Spc1/Sty1 MAPK in fission yeast. Mol Biol Cell 2002; 13:2651-63. [PMID: 12181336 PMCID: PMC117932 DOI: 10.1091/mbc.02-03-0043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.
Collapse
|
36
|
Aplin AE, Hogan BP, Tomeu J, Juliano RL. Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 2002; 115:2781-90. [PMID: 12077368 DOI: 10.1242/jcs.115.13.2781] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells decide whether to undergo processes, such as proliferation,differentiation and apoptosis, based upon the cues they receive from both circulating factors and integrin-mediated adhesion to the extracellular matrix. Integrins control the activation of the early signaling pathways. For example, growth factor activation of the ERK cascade is enhanced when cells are adherent. In addition, adhesion receptors oversee the cellular localization of critical signaling components. We have recently shown that ERK signaling to the nucleus is regulated by cell adhesion at the level of nucleocytoplasmic trafficking. Since the ERKs are only one class of MAP kinase, we extended these studies to include both JNK and p38 MAP kinases. We have rendered JNK and p38 activation in NIH 3T3 fibroblasts anchorage-independent either by treatment with anisomycin or by expression of upstream activators. Under conditions whereby JNK activation is anchorage-independent, we show that localization of JNK to the nucleus and JNK-mediated phosphorylation of c-Jun and Elk-1 is not altered by loss of adhesion. Likewise, the ability of activated p38 to accumulate in the nucleus was similar in suspended and adherent cells. Finally, we show that expression of a form of ERK, which is activated and resistant to nuclear export, reverses the adhesion-dependency of ERK phosphorylation of Elk-1. Thus, adhesion differentially regulates the nucleocytoplasmic distribution of MAP kinase members; ERK accumulation in the nucleus occurs more efficiently in adherent cells, whereas nuclear accumulation of active p38 and active JNK are unaffected by changes in adhesion.
Collapse
Affiliation(s)
- Andrew E Aplin
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
38
|
Quinn J, Findlay VJ, Dawson K, Millar JBA, Jones N, Morgan BA, Toone WM. Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 2002; 13:805-16. [PMID: 11907263 PMCID: PMC99600 DOI: 10.1091/mbc.01-06-0288] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission yeast Schizosaccharomyces pombe. We find that H(2)O(2) activates the Sty1 pathway in a dose-dependent manner via at least two sensing mechanisms. At relatively low levels of H(2)O(2), a two component-signaling pathway, which feeds into either of the two stress-activated mitogen-activated protein kinase kinase kinases Wak1 or Win1, regulates Sty1 phosphorylation. In contrast, at high levels of H(2)O(2), Sty1 activation is controlled predominantly by a two-component independent mechanism and requires the function of both Wak1 and Win1. Individual transcription factors were also found to function within a limited range of H(2)O(2) concentrations. Pap1 activates target genes primarily in response to low levels of H(2)O(2), whereas Atf1 primarily controls the transcriptional response to high concentrations of H(2)O(2). Our results demonstrate that S. pombe uses a combination of stress-responsive regulatory proteins to gauge and effect the appropriate transcriptional response to increasing concentrations of H(2)O(2).
Collapse
Affiliation(s)
- Janet Quinn
- School of Biochemistry and Genetics, The Medical School, University of Newcastle, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Nguyen AN, Shiozaki K. MAPping Stress Survival in Yeasts: From the Cell Surface to the Nucleus. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1568-1254(02)80008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
40
|
Affiliation(s)
- M S Cyert
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
41
|
Stochaj U, Rassadi R, Chiu J. Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB J 2000; 14:2130-2. [PMID: 11024003 DOI: 10.1096/fj.99-0751fje] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.
Collapse
Affiliation(s)
- U Stochaj
- Department of Physiology, McGill University, Montreal, PQ, Canada, H3G 1Y6.
| | | | | |
Collapse
|
42
|
Mattison CP, Ota IM. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 2000. [DOI: 10.1101/gad.14.10.1229] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The MAP kinase Hog1 transiently accumulates in the nucleus upon activation. Although Hog1 nuclear export correlates with its dephosphorylation, we find that dephosphorylation is not necessary for export. Unexpectedly, a strain lacking the nuclear protein tyrosine phosphatase, Ptp2, showed decreased Hog1 nuclear retention, while a strain lacking the cytoplasmic Ptp3 showed prolonged Hog1 nuclear accumulation, consistent with Ptp2 being a nuclear tether for Hog1 and Ptp3 being a cytoplasmic anchor. In support of this result PTP2overexpression sequestered Hog1 in the nucleus while PTP3overexpression restricted Hog1 to the cytoplasm. Thus, Ptp2 and Ptp3 regulate Hog1 localization by binding Hog1.
Collapse
|
43
|
Mattison CP, Ota IM. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 2000; 14:1229-35. [PMID: 10817757 PMCID: PMC316617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1999] [Accepted: 03/27/2000] [Indexed: 02/16/2023]
Abstract
The MAP kinase Hog1 transiently accumulates in the nucleus upon activation. Although Hog1 nuclear export correlates with its dephosphorylation, we find that dephosphorylation is not necessary for export. Unexpectedly, a strain lacking the nuclear protein tyrosine phosphatase, Ptp2, showed decreased Hog1 nuclear retention, while a strain lacking the cytoplasmic Ptp3 showed prolonged Hog1 nuclear accumulation, consistent with Ptp2 being a nuclear tether for Hog1 and Ptp3 being a cytoplasmic anchor. In support of this result PTP2 overexpression sequestered Hog1 in the nucleus while PTP3 overexpression restricted Hog1 to the cytoplasm. Thus, Ptp2 and Ptp3 regulate Hog1 localization by binding Hog1.
Collapse
Affiliation(s)
- C P Mattison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
44
|
Mattison CP, Ota IM. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev 2000. [PMID: 10817757 DOI: 10.1101/grad.14.10.1229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The MAP kinase Hog1 transiently accumulates in the nucleus upon activation. Although Hog1 nuclear export correlates with its dephosphorylation, we find that dephosphorylation is not necessary for export. Unexpectedly, a strain lacking the nuclear protein tyrosine phosphatase, Ptp2, showed decreased Hog1 nuclear retention, while a strain lacking the cytoplasmic Ptp3 showed prolonged Hog1 nuclear accumulation, consistent with Ptp2 being a nuclear tether for Hog1 and Ptp3 being a cytoplasmic anchor. In support of this result PTP2 overexpression sequestered Hog1 in the nucleus while PTP3 overexpression restricted Hog1 to the cytoplasm. Thus, Ptp2 and Ptp3 regulate Hog1 localization by binding Hog1.
Collapse
Affiliation(s)
- C P Mattison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
45
|
Fasken MB, Saunders R, Rosenberg M, Brighty DW. A leptomycin B-sensitive homologue of human CRM1 promotes nuclear export of nuclear export sequence-containing proteins in Drosophila cells. J Biol Chem 2000; 275:1878-86. [PMID: 10636888 DOI: 10.1074/jbc.275.3.1878] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rev protein of human immunodeficiency virus is a nuclear shuttling protein that promotes nuclear export of mRNAs that encode the viral structural proteins Gag, Pol, and Env. Rev binds to a highly structured RNA motif, the Rev-responsive element (RRE), that is present in all Rev-responsive viral transcripts and facilitates their entry into a nuclear export pathway by recruiting cellular export factors. In mammalian and yeast cells, the principal export receptor engaged by Rev has been identified as the importin/transportin family member CRM1/exportin 1. CRM1 binds directly to a leucine-rich nuclear export sequence (NES) present in Rev, and similar motifs have been identified in a variety of cellular nuclear shuttling proteins. We and our colleagues previously demonstrated that, in transfected Drosophila cells, HIV-1 Rev is fully functional and promotes expression of the viral envelope glycoprotein. We now demonstrate that the fundamental mechanism of Rev action in insect cells is identical to that observed in the mammalian systems. In particular, we show that Drosophila cells express a leptomycin B-sensitive homologue of human CRM1 that supports Rev-dependent gene expression and is required for nuclear export of NES-containing proteins in insect cells.
Collapse
Affiliation(s)
- M B Fasken
- The Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, Scotland
| | | | | | | |
Collapse
|
46
|
Ferrigno P, Silver PA. Regulated nuclear localization of stress-responsive factors: how the nuclear trafficking of protein kinases and transcription factors contributes to cell survival. Oncogene 1999; 18:6129-34. [PMID: 10557104 DOI: 10.1038/sj.onc.1203132] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The details of nuclear transport mechanisms are emerging rapidly, largely through work with model organisms. Here, we briefly describe these advances, with an emphasis on the remaining challenges. We then address the nuclear transport of some high profile cellular regulators, including p53 and the proto-oncogene PKB/Akt. We discuss the mechanisms that contribute to the differential subcellular localization of these proteins. Finally, we analyse the provocative patterns that emerge from our overview.
Collapse
Affiliation(s)
- P Ferrigno
- Department of Cancer Biology, The Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
47
|
Nguyen AN, Shiozaki K. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev 1999; 13:1653-63. [PMID: 10398679 PMCID: PMC316851 DOI: 10.1101/gad.13.13.1653] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic species from yeast to human, stress-activated protein kinases (SAPKs), members of a MAP kinase (MAPK) subfamily, regulate the transcriptional response to various environmental stress. It is poorly understood how diverse forms of stress are sensed and transmitted to SAPKs. Here, we report the heat shock regulation of the fission yeast Spc1 SAPK, a homolog of human p38 and budding yeast Hog1p. Although osmostress and oxidative stress induce strong activation of the Wis1 MAPK kinase (MEK), which activates Spc1 through Thr-171/Tyr-173 phosphorylation, activation of Wis1 upon heat shock is relatively weak and transient. However, in heat-shocked cells, Pyp1, the major tyrosine phosphatase that dephosphorylates and inactivates Spc1, is inhibited for its interaction with Spc1, which leads to strong activation of Spc1. Subsequently, Spc1 activity is rapidly attenuated by Thr-171 dephosphorylation, whereas Tyr-173 remains phosphorylated. Thr-171 dephosphorylation is compromised in a strain lacking functional type 2C serine/threonine phosphatases (PP2C), Ptc1 and Ptc3. Moreover, Ptc1 and Ptc3 can dephosphorylate Thr-171 of Spc1 both in vivo and in vitro. These observations strongly suggest that PP2C enzymes play an important role in the attenuation of Spc1 activity in heat-shocked cells. Thus, transient activation of Spc1 upon heat shock is ensured by differential regulation of threonine and tyrosine phosphorylation.
Collapse
Affiliation(s)
- A N Nguyen
- Section of Microbiology, University of California, Davis, California 95616, USA
| | | |
Collapse
|