1
|
Stick R, Peter A. CaaX-less lamins: Lophotrochozoa provide a glance at the playground of evolution. PROTOPLASMA 2023; 260:741-756. [PMID: 36102949 PMCID: PMC10125929 DOI: 10.1007/s00709-022-01809-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Nuclear lamins are the main components of the nuclear lamina in many eukaryotes. They are members of the intermediate filament (IF) protein family. Lamins differ from cytoplasmic IF proteins by the presence of a nuclear localisation sequence (NLS) and a C-terminal tetrapeptide, the CaaX motif. The CaaX motif is target of post-translational modifications including isoprenylation, proteolytic processing, and carboxyl-methylation. These modifications, in conjunction with the NLS, direct lamins to the inner nuclear membrane where they assemble into filaments. Lamins lacking a CaaX motif are unable to associate independently with nuclear membranes and remain in the nucleoplasm. So far, three species have been reported to exclusively express CaaX-less lamins. All three belong to the lophotrochozoan lineage. To find out whether they represent rare exceptions, we analysed lamins of representatives of 17 lophotrochozoan phyla. Here we report that all four clades of Rotifera as well as individual taxa of Mollusca and Annelida lack CaaX-lamins, but express lamins with alternative C-termini. Of note, the respective mollusc and annelid groups occupy very different phylogenetic ranks. Most of these alternative C-termini are rich in aromatic residues. A possible function of these residues in membrane association is discussed. Alternative splicing of terebellid lamin transcripts gives rise to two lamin variants, one with a CaaX motif and one with an alternative C-terminus. A similar situation is found in Arenicolidae, Opheliidae, Capitellidae, and Echiura. This points a way, how the switch from lamins carrying a CaaX motif to lamins with alternative C-termini may have occurred.
Collapse
Affiliation(s)
- Reimer Stick
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| | - Annette Peter
- Department of Cell Biology, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| |
Collapse
|
2
|
Kmiec D, Lista MJ, Ficarelli M, Swanson CM, Neil SJD. S-farnesylation is essential for antiviral activity of the long ZAP isoform against RNA viruses with diverse replication strategies. PLoS Pathog 2021; 17:e1009726. [PMID: 34695163 PMCID: PMC8568172 DOI: 10.1371/journal.ppat.1009726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/04/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is a broad inhibitor of virus replication. Its best-characterized function is to bind CpG dinucleotides present in viral RNAs and, through the recruitment of TRIM25, KHNYN and other cofactors, target them for degradation or prevent their translation. The long and short isoforms of ZAP (ZAP-L and ZAP-S) have different intracellular localization and it is unclear how this regulates their antiviral activity against viruses with different sites of replication. Using ZAP-sensitive and ZAP-insensitive human immunodeficiency virus type I (HIV-1), which transcribe the viral RNA in the nucleus and assemble virions at the plasma membrane, we show that the catalytically inactive poly-ADP-ribose polymerase (PARP) domain in ZAP-L is essential for CpG-specific viral restriction. Mutation of a crucial cysteine in the C-terminal CaaX box that mediates S-farnesylation and, to a lesser extent, the residues in place of the catalytic site triad within the PARP domain, disrupted the activity of ZAP-L. Addition of the CaaX box to ZAP-S partly restored antiviral activity, explaining why ZAP-S lacks antiviral activity for CpG-enriched HIV-1 despite conservation of the RNA-binding domain. Confocal microscopy confirmed the CaaX motif mediated localization of ZAP-L to vesicular structures and enhanced physical association with intracellular membranes. Importantly, the PARP domain and CaaX box together jointly modulate the interaction between ZAP-L and its cofactors TRIM25 and KHNYN, implying that its proper subcellular localisation is required to establish an antiviral complex. The essential contribution of the PARP domain and CaaX box to ZAP-L antiviral activity was further confirmed by inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, which replicates in double-membrane vesicles derived from the endoplasmic reticulum. Thus, compartmentalization of ZAP-L on intracellular membranes provides an essential effector function in ZAP-L-mediated antiviral activity against divergent viruses with different subcellular replication sites.
Collapse
Affiliation(s)
- Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - María José Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Post-Translational Modification and Subcellular Compartmentalization: Emerging Concepts on the Regulation and Physiopathological Relevance of RhoGTPases. Cells 2021; 10:cells10081990. [PMID: 34440759 PMCID: PMC8393718 DOI: 10.3390/cells10081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.
Collapse
|
4
|
Abstract
Lamin proteins are major constituents of the nuclear lamina. They are required for fundamental nuclear activities, as evidenced by the large number of laminopathies. Mutations in the human lamin A/C gene exhibit a broad spectrum of clinical manifestations. Most non-vertebrates including the nearest relatives of the vertebrates have only a single lamin gene. In jawed vertebrates (Gnathostomata), four lamin subtypes (B1, B2, LIII, and A) are found. Lampreys and hagfish form the two orders of jawless vertebrates, Agnatha, which represent the sister group of the Gnathostomata at the base of the vertebrate lineage. Lamin sequence information of lampreys and hagfish sheds light on the evolution of the lamin protein family at the base of the vertebrate lineage. In the genomes of the lamprey (Petromyzon marinus) and the hagfish (Eptatretus burgeri), only three lamin genes are present, a lamin A gene is lacking. The presence of an LIII gene in both, lampreys and hagfish, proves that the distinguishing features of this gene had been established before the agnathan/gnathostome split. The other two agnathan lamins, LmnI and LmnII, deviate strongly in their sequences from those of the gnathostome lamins. For none of these two agnathan lamins can orthology be established to one of the gnathostome lamin types. In the direct chromosomal neighbourhood of all three hagfish lamin genes, a MARCH3 paralog is found. This can be interpreted as further evidence that the vertebrate lamin genes have arisen in the course of the two rounds of whole genome duplication that took place at the base of the vertebrate lineage.
Collapse
|
5
|
Grafe M, Batsios P, Meyer I, Lisin D, Baumann O, Goldberg MW, Gräf R. Supramolecular Structures of the Dictyostelium Lamin NE81. Cells 2019; 8:cells8020162. [PMID: 30781468 PMCID: PMC6406624 DOI: 10.3390/cells8020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.
Collapse
Affiliation(s)
- Marianne Grafe
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Petros Batsios
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Daria Lisin
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Otto Baumann
- Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK.
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Wang X, Bakanina Kissanga GM, Li E, Li Q, Yao J. The catalytic mechanism of S-acyltransferases: acylation is triggered on by a loose transition state and deacylation is turned off by a tight transition state. Phys Chem Chem Phys 2019; 21:12163-12172. [DOI: 10.1039/c9cp02248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of S-acyltransferase is characterized by a loose transition state.
Collapse
Affiliation(s)
- Xia Wang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | | | - E. Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Qiang Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Jianzhuang Yao
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
7
|
Theisen U, Hennig C, Ring T, Schnabel R, Köster RW. Neurotransmitter-mediated activity spatially controls neuronal migration in the zebrafish cerebellum. PLoS Biol 2018; 16:e2002226. [PMID: 29300740 PMCID: PMC5754045 DOI: 10.1371/journal.pbio.2002226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022] Open
Abstract
Neuronal migration during embryonic development contributes to functional brain circuitry. Many neurons migrate in morphologically distinct stages that coincide with differentiation, requiring tight spatial regulation. It had been proposed that neurotransmitter-mediated activity could exert this control. Here, we demonstrate that intracellular calcium transients occur in cerebellar neurons of zebrafish embryos during migration. We show that depolarization increases and hyperpolarization reduces the speed of tegmental hindbrain neurons using optogenetic tools and advanced track analysis optimized for in vivo migration. Finally, we introduce a compound screening assay to identify acetylcholine (ACh), glutamate, and glycine as regulators of migration, which act regionally along the neurons’ route. We summarize our findings in a model describing how different neurotransmitters spatially interact to control neuronal migration. The high evolutionary conservation of the cerebellum and hindbrain makes it likely that polarization state-driven motility constitutes an important principle in building a functional brain. Postmitotic neurons migrate from their site of origin to their final destination in the developing brain to form functional structures. These neurons typically follow defined routes through the tissue. Previous studies investigating progress along such route have identified neurotransmitters—chemicals that transmit the signals between neurons—as important regulators in neuronal migration using mostly rodent brain slice cultures and cultivated neurons. In this study, we use live zebrafish embryos to test the influence of neurotransmitters on migrating hindbrain neurons. First, we demonstrate that calcium transients can be measured in these neurons using genetically encoded reporters. Next, we use optogenetic channels to specifically de- or hyperpolarize the plasma membrane of the neurons to show that the polarization state is linked to migratory speed. Finally, we use a screening method to identify the neurotransmitter systems involved in migration progress control. We summarize these findings in a model that suggests that there are regions of influence for different neurotransmitters that act successively on the neurons to ensure their timely arrival at their destination.
Collapse
Affiliation(s)
- Ulrike Theisen
- Technische Universität Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Christian Hennig
- Technische Universität Braunschweig, Institute for Genetics, Braunschweig, Germany
| | - Tobias Ring
- Technische Universität Braunschweig, Institute for Engineering Design, Vibroacoustics, Braunschweig, Germany
| | - Ralf Schnabel
- Technische Universität Braunschweig, Institute for Genetics, Braunschweig, Germany
| | - Reinhard W. Köster
- Technische Universität Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
8
|
Abstract
The nuclear lamina is involved in fundamental nuclear functions and provides mechanical stability to the nucleus. Lamin filaments form a meshwork closely apposed to the inner nuclear membrane and a small fraction of lamins exist in the nuclear interior. Mutations in lamin genes cause severe hereditary diseases, the laminopathies. During vertebrate evolution the lamin protein family has expanded. While most vertebrate genomes contain 4 lamin genes, encoding the lamins A, B1, B2, and LIII, the majority of non-vertebrate genomes harbor only a single lamin gene. We have collected lamin gene and cDNA sequence information for representatives of the major vertebrate lineages. With the help of RNA-seq data we have determined relative lamin expression levels for representative tissues for species of 9 different gnathostome lineages. Here we report that the level of lamin A expression is low in cartilaginous fishes and ancient fishes and increases toward the mammals. Lamin B1 expression shows an inverse tendency to that of lamin A. Possible implications for the change in the lamin A to B ratio is discussed in the light of its role in nuclear mechanics.
Collapse
Affiliation(s)
- Reimer Stick
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| | - Annette Peter
- a FB2 Biology/Chemistry, University of Bremen , Bremen , Germany
| |
Collapse
|
9
|
Peter A, Khandekar S, Deakin JE, Stick R. A peculiar lamin in a peculiar mammal: Expression of lamin LIII in platypus (Ornithorhynchus anatinus). Eur J Cell Biol 2015. [PMID: 26213206 DOI: 10.1016/j.ejcb.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platypus (Ornithorhynchus anatinus) holds a unique phylogenetic position at the base of the mammalian lineage due to an amalgamation of mammalian and sauropsid-like features. Here we describe the set of four lamin genes for platypus. Lamins are major components of the nuclear lamina, which constitutes a main component of the nucleoskeleton and is involved in a wide range of nuclear functions. Vertebrate evolution was accompanied by an increase in the number of lamin genes from a single gene in their closest relatives, the tunicates and cephalochordates, to four genes in the vertebrate lineage. Of the four genes the LIII gene is characterized by the presence of two alternatively spliced CaaX-encoding exons. In amphibians and fish LIII is the major lamin protein in oocytes and early embryos. The LIII gene is conserved throughout the vertebrate lineage, with the notable exception of marsupials and placental mammals, which have lost the LIII gene. Here we show that platypus has retained an LIII gene, albeit with a significantly altered structure and with a radically different expression pattern. The platypus LIII gene contains only a single CaaX-encoding exon and the head domain together with coil 1a and part of coil1b of the platypus LIII protein is replaced by a novel short non-helical N-terminus. It is expressed exclusively in the testis. These features resemble those of male germ cell-specific lamins in placental mammals, in particular those of lamin C2. Our data suggest (i) that the specific functions of LIII, which it fulfills in all other vertebrates, is no longer required in mammals and (ii) once it had been freed from these functions has undergone structural alterations and has adopted a new functionality in monotremes.
Collapse
Affiliation(s)
- Annette Peter
- Department of Cell Biology, FB2, University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany
| | - Shaunak Khandekar
- Cellular and Molecular Pharmacology, Louvain Drug Research Institute, Université catholique de Louvain, avenue E. Mounier 73 bte B1.73.05, B-1200 Brussels, Belgium.
| | - Janine E Deakin
- Research School of Biology, ANU College of Medicine, Biology and Environment, Canberra, Australia.
| | - Reimer Stick
- Department of Cell Biology, FB2, University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
10
|
Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells. Cell Death Differ 2014; 22:801-14. [PMID: 25361079 DOI: 10.1038/cdd.2014.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 12/24/2022] Open
Abstract
The Wnt/β-catenin signaling pathway has emerged as a key regulator of complex biological processes, such as embryonic development, cell proliferation, cell fate decision and tumorigenesis. Recent studies have shown that the deregulation of Wnt/β-catenin signaling is frequently observed and leads to abnormal cell growth in human breast cancer cells. In this study, we identified a novel regulatory mechanism of Wnt/β-catenin signaling through RARRES3 that targets and modulates the acylation status of Wnt proteins and co-receptor low-density lipoprotein receptor-related protein 6, resulting in the suppression of epithelial-mesenchymal transition and cancer stem cell properties. Mutation of the conserved active site residues of RARRES3 indicates that RARRES3 serves as an acyl protein thioesterase that tethers its target proteins and modulates their acylation status. Furthermore, the functions of p53 in cell proliferation and Wnt/β-catenin signaling are significantly associated with the induction of RARRES3. Thus our findings provide a new insight into the molecular link between p53, protein acylation and Wnt/β-catenin signaling whereby RARRES3 plays a pivotal role in modulating the acylation status of signaling proteins.
Collapse
|
11
|
Schilf P, Peter A, Hurek T, Stick R. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family. Eur J Cell Biol 2014; 93:308-21. [DOI: 10.1016/j.ejcb.2014.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022] Open
|
12
|
Abstract
Lamins are the major components of the nuclear lamina, a filamentous layer found at the interphase between chromatin and the inner nuclear membrane. The lamina supports the nuclear envelope and provides anchorage sites for chromatin. Lamins and their associated proteins are required for most nuclear activities, mitosis, and for linking the nucleoskeleton to the network of cytoskeletal filaments. Mutations in lamins and their associated proteins give rise to a wide range of diseases, collectively called laminopathies. This review focuses on the evolution of the lamin protein family. Evolution from basal metazoans to man will be described on the basis of protein sequence comparisons and analyses of their gene structure. Lamins are the founding members of the family of intermediate filament proteins. How genes encoding cytoplasmic IF proteins could have arisen from the archetypal lamin gene progenitor, can be inferred from a comparison of the respective gene structures. The lamin/IF protein family seems to be restricted to the metazoans. In general, invertebrate genomes harbor only a single lamin gene encoding a B-type lamin. The archetypal lamin gene structure found in basal metazoans is conserved up to the vertebrate lineage. The completely different structure of lamin genes in Caenorhabditis and Drosophila are exceptions rather than the rule within their systematic groups. However, variation in the length of the coiled-coil forming central domain might be more common than previously anticipated. The increase in the number of lamin genes in vertebrates can be explained by two rounds of genome duplication. The origin of lamin A by exon shuffling might explain the processing of prelamin A to the mature non-isoprenylated form of lamin A. By alternative splicing the number of vertebrate lamin proteins has increased even further. Lamin C, an alternative splice form of the LMNA gene, is restricted to mammals. Amphibians and mammals express germline-specific lamins that differ in their protein structure from that of somatic lamins. Evidence is provided that there exist lamin-like proteins outside the metazoan lineage.
Collapse
Affiliation(s)
- Annette Peter
- Department for Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
13
|
Goulbourne CN, Malhas AN, Vaux DJ. The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-α. J Cell Sci 2011; 124:4253-66. [PMID: 22223883 PMCID: PMC3258109 DOI: 10.1242/jcs.091009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 12/24/2022] Open
Abstract
Farnesylated prelamin A accumulates when the final endoproteolytic maturation of the protein fails to occur and causes a dysmorphic nuclear phenotype; however, the morphology and mechanisms of biogenesis of these changes remain unclear. We show here that acute prelamin A accumulation after reduction in the activity of the ZMPSTE24 endoprotease by short interfering RNA knockdown, results in the generation of a complex nucleoplasmic reticulum that depends for its formation on the enzyme CTP:phosphocholine-cytidylyltransferase-α (CCT-α, also known as choline-phosphate cytidylyltransferase A). This structure can form during interphase, confirming that it is independent of mitosis and therefore not a consequence of disordered nuclear envelope assembly. Serial-section dual-axis electron tomography reveals that these invaginations can take two forms: one in which the inner nuclear membrane infolds alone with an inter membrane space interior, and the other in which an invagination of both nuclear membranes occurs, enclosing a cytoplasmic core. Both types of invagination can co-exist in one nucleus and both are frequently studded with nuclear pore complexes (NPC), which reduces NPC abundance on the nuclear surface.
Collapse
Affiliation(s)
- Chris N. Goulbourne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ashraf N. Malhas
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - David J. Vaux
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
14
|
Kupke T, Di Cecco L, Müller HM, Neuner A, Adolf F, Wieland F, Nickel W, Schiebel E. Targeting of Nbp1 to the inner nuclear membrane is essential for spindle pole body duplication. EMBO J 2011; 30:3337-52. [PMID: 21785410 DOI: 10.1038/emboj.2011.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/30/2011] [Indexed: 12/29/2022] Open
Abstract
Spindle pole bodies (SPBs), like nuclear pore complexes, are embedded in the nuclear envelope (NE) at sites of fusion of the inner and outer nuclear membranes. A network of interacting proteins is required to insert a cytoplasmic SPB precursor into the NE. A central player of this network is Nbp1 that interacts with the conserved integral membrane protein Ndc1. Here, we establish that Nbp1 is a monotopic membrane protein that is essential for SPB insertion at the inner face of the NE. In vitro and in vivo studies identified an N-terminal amphipathic α-helix of Nbp1 as a membrane-binding element, with crucial functions in SPB duplication. The karyopherin Kap123 binds to a nuclear localization sequence next to this amphipathic α-helix and prevents unspecific tethering of Nbp1 to membranes. After transport into the nucleus, Nbp1 binds to the inner nuclear membrane. These data define the targeting pathway of a SPB component and suggest that the amphipathic α-helix of Nbp1 is important for SPB insertion into the NE from within the nucleus.
Collapse
Affiliation(s)
- Thomas Kupke
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Heffernan C, Whiley PAF, Milionis A, Verma PJ, Holland MK, Jans DA, D'Cruz NT. Lineage-specific expression of heterochromatin protein 1gamma in post-compaction, in vitro-produced bovine embryos. Reprod Fertil Dev 2010; 22:1022-31. [PMID: 20591336 DOI: 10.1071/rd09265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/01/2010] [Indexed: 01/27/2023] Open
Abstract
Heterochromatin protein 1gamma (HP1gamma) is a highly conserved regulator of euchromatic and heterochromatic gene expression. Mammalian HP1gamma is essential for both successful preimplantation embryo development and maintenance of pluripotency in embryonic stem cells in vitro. Here, we describe HP1gamma protein localisation in matured (MII) bovine oocytes and IVF preimplantation embryos at defined developmental stages. HP1gamma is expressed in post-compaction embryos in a highly lineage-specific pattern. In embryonic stages preceding the maternal to embryonic transition (MET), HP1gamma protein was primarily cytoplasmic, whereas in 8-16-cell embryos (post MET), HP1gamma was primarily nuclear. Lineage-specific patterns of HP1gamma protein localisation become evident from compaction, being restricted to peripheral, extraembryonic cells at the morula and blastocyst stages (Days 7-9). Surprisingly, we detected HP1gamma mRNA in both embryonic and extraembryonic cells in blastocysts by fluorescence in situ hybridisation. In trophectoderm cells, HP1gamma protein was localised in specific patterns at the mitotic and interphase stages of the cell cycle. These results demonstrate lineage- and cell cycle-specific patterns of HP1gamma protein localisation in the post-compaction, preimplantation bovine embryo and raise interesting questions about the role of HP1gamma in early embryo development.
Collapse
Affiliation(s)
- Corey Heffernan
- Monash Institute of Medical Research, Monash University, Clayton, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Dahl KN, Kalinowski A, Pekkan K. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics. Microcirculation 2010; 17:179-91. [PMID: 20374482 DOI: 10.1111/j.1549-8719.2009.00016.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, related to Hutchinson-Gilford progeria syndrome, is reviewed specifically as the mutation results in altered nuclear structure and stiffer nuclei; animal models also suggest significantly altered vascular structure. Nuclear and cellular deformation of endothelial cells in response to shear stress provides partial understanding of possible mechanical regulation in the microcirculation. Increasing sophistication of fluid flow simulations inside the vessel is also an emerging area relevant to the microcirculation as visualization in situ is difficult. This integrated approach to study--including medicine, molecular and cell biology, biophysics and engineering--provides a unique understanding of multi-scale interactions in the microcirculation.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
17
|
Linde N, Stick R. Intranuclear membranes induced by lipidated proteins are derived from the nuclear envelope. Nucleus 2010; 1:343-53. [PMID: 21327083 DOI: 10.4161/nucl.1.4.12352] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 04/28/2010] [Indexed: 01/12/2023] Open
Abstract
Association of nuclear lamins with the inner nuclear membrane (INM) is mediated by lipid modifications: either by C-terminal isoprenylation or N-terminal myristoylation. Overexpression of lamins or other lipidated nuclear proteins induces the formation of intranuclear membrane-like arrays. Lamin-induced intranuclear array formation has been observed in Xenopus oocytes as well as in mammalian tissue culture cells. With the use of a membrane-specific fluorescence dye we show here that these arrays are made up of typical lipid membranes. While continuity between these intranuclear membranes and the INM has not been observed so far the presence of integral as well as luminal marker proteins of the endoplasmic reticulum (ER) indicates that these membranes are derived from the nuclear membrane/ER compartment. Earlier studies demonstrated that overexpression of integral membrane proteins of the INM can induce formation of intranuclear membranes, which bud from the INM. Integral membrane proteins reach the INM via the pore membranes while lipidated proteins are imported into the nucleoplasm via the classical NLS pathway where they interact with the INM via their lipid moieties. Together with the previously published data our results show that the formation of intranuclear membranes follows similar routes irrespective of whether the proteins triggering membrane formation are integral membrane or lipidated proteins.
Collapse
Affiliation(s)
- Nina Linde
- Department of Cell Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
18
|
Peter A, Stick R. Ectopic expression of prelamin A in early Xenopus embryos induces apoptosis. Eur J Cell Biol 2009; 87:879-91. [PMID: 18675490 DOI: 10.1016/j.ejcb.2008.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/23/2008] [Accepted: 06/11/2008] [Indexed: 01/24/2023] Open
Abstract
Lamin proteins are components of metazoan cell nuclei. During evolution, two classes of lamin proteins evolved, A- and B-type lamins. B-type lamins are expressed in nearly all cell types and in all developmental stages and are thought to be indispensable for cellular survival. In contrast, A-type lamins have a more restricted expression pattern. They are expressed in differentiated cells and appear late in embryogenesis. In the earliest steps of mammalian development, A-type lamins are present in oocytes, pronuclei and during the first cleavage stages of the developing embryo. But latest after the 16-cell stage, A-type lamin proteins are not any longer detectable in embryonic cells. Amphibian oocytes and early embryos do not express lamin A. Moreover, extracts of Xenopus oocytes and eggs have the ability to selectively remove A-type lamins from somatic nuclei. This observation and the restricted expression pattern suggest that the presence of lamin A might interfere with developmental processes in the early phase of embryogenesis. To test this, we ectopically expressed lamin A during early embryonic development of Xenopus laevis by microinjection of synthetic mRNA. Here, we show that introducing mature lamin A does not interfere with normal development. However, expression of prelamin A or lamin A variants that cannot be fully processed cause severe disturbances and lead to apoptosis during gastrulation. The toxic effect is due to lack of the conversion of prenylated prelamin A to its mature form. Remarkably, even a cytoplasmic prelamin A variant that is excluded from the nucleus drives embryos into apoptosis.
Collapse
Affiliation(s)
- Annette Peter
- Department of Cell Biology, University of Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany
| | | |
Collapse
|
19
|
Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R. Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 2008; 121:215-25. [PMID: 18187453 DOI: 10.1242/jcs.022020] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lamins are intermediate filament proteins and the major component of the nuclear lamina. Current views of the lamina are based on the remarkably regular arrangement of lamin LIII in amphibian oocyte nuclei. We have re-examined the LIII lamina and propose a new interpretation of its organization. Rather than consisting of two perpendicular arrays of parallel filaments, we suggest that the oocyte lamina consists of parallel filaments that are interconnected in register to give the impression of a second set of perpendicular filaments. We have also used the oocyte system to investigate the organization of somatic lamins. Currently, it is not feasible to examine the organization of somatic lamins in situ because of their tight association with chromatin. It is also difficult to assemble vertebrate lamin filaments in vitro. Therefore, we have used the oocyte system, where exogenously expressed somatic B-type and A-type lamins assemble into filaments. Expression of B-type lamins induces the formation of intranuclear membranes that are covered by single filament layers. LIII filaments appear identical to the endogenous lamina, whereas lamin B2 assembles into filaments that are organized less precisely. Lamin A induces sheets of thicker filaments on the endogenous lamina and significantly increases the rigidity of the nuclear envelope.
Collapse
Affiliation(s)
- Martin W Goldberg
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
A wide variety of signaling proteins are modified by covalently linked fatty acids and/or prenyl groups. These hydrophobic moieties, which include myristate, palmitate, farnesyl and geranylgeranyl, are more than just fat: they provide distinct information that modulates the specificity and efficiency of signal transduction. Recent studies show that lipid modification influences the movement of a signaling protein within the cell and its final destination. Protein lipidation can also confer reversible association with membranes and other signaling proteins. These findings provide new insights into the biochemical and biophysical mechanisms that regulate membrane targeting, trafficking and signaling by lipid-modified proteins.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 143, New York, New York 10021, USA.
| |
Collapse
|
21
|
Wang Q, Du X, Cai Z, Greene MI. Characterization of the structures involved in localization of the SUN proteins to the nuclear envelope and the centrosome. DNA Cell Biol 2006; 25:554-62. [PMID: 17132086 DOI: 10.1089/dna.2006.25.554] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nuclear envelope forms a selective barrier that separates the cytoplasm from the nucleus. During mitosis the nuclear envelope breaks down so that the microtubule network can form contacts with the kinetochore and guide chromosome segregation. Previous studies have suggested a model in which the centrosome and the microtubule network may play a role in nuclear envelope breakdown through as yet unidentified interactions with proteins localized to the nuclear envelope. In the current study we characterized a nuclear envelope protein SUN2 and identified a substructure involved in its localization to the nuclear envelope. We found that a structurally related protein, SUN1, may be localized to the nuclear envelope through a different mechanism. Furthermore, the SUN2 protein can form different assemblies, including homodimers and heterodimers with SUN1. Finally, we provide evidence indicating that SUN1 and SUN2 may form a physical interaction between the nuclear envelope and the centrosome.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
22
|
Shimojo M, Hersh LB. Characterization of the REST/NRSF-interacting LIM domain protein (RILP): localization and interaction with REST/NRSF. J Neurochem 2006; 96:1130-8. [PMID: 16417580 DOI: 10.1111/j.1471-4159.2005.03608.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We previously identified a nuclear envelope protein repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF)-interacting Lin-11, Isl-1 and Mec-3 (LIM) domain protein (RILP) that we proposed functions in the nuclear translocation of the transcriptional repressor REST/NRSF. In this study we assessed the functionality of the prenylation motif, protein kinase A (PKA) phosphorylation sites and nuclear localization sequences (NLSs) of RILP. [(3)H]-mevalonolactone labeled endogenous RILP, showing that RILP is indeed prenylated, while phosphorylation analysis showed that the two PKA sites are phosphorylated. Blocking RILP prenylation, mutating the NLSs or mutating the PKA phosphorylation sites caused RILP to mislocalize to the cytosol. Concurrent with this mislocalization of RILP, REST/NRSF and REST4, which are normally found in the nucleus, co-localized in the cytosol with the RILP mutants. This provides additional evidence that RILP interacts with REST/NRSF and REST4 in vivo, and is involved in the nuclear localization of REST/NRSF and REST4. Reporter gene analysis using the promoter region of the human cholinergic gene locus revealed that these RILP mutants prevented repression of the reporter gene. By trapping REST/NRSF in the cytosol, the RILP mutants prevented translocation to the nucleus where REST/NRSF binds to an RE-1/NRSE element to repress gene transcription. These results show that RILP is required for REST/NRSF nuclear targeting and function.
Collapse
Affiliation(s)
- Masahito Shimojo
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
23
|
Reents R, Wagner M, Schlummer S, Kuhlmann J, Waldmann H. Synthesis and application of fluorescent ras proteins for live-cell imaging. Chembiochem 2005; 6:86-94. [PMID: 15637662 DOI: 10.1002/cbic.200400233] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Semisynthetic Ras proteins are efficient probes for cell-biology experiments. With a Bodipy FL fluorophore introduced at an appropriate site on the Ras peptide by solid-phase synthesis, the resulting Ras chimera is processed by the cellular machinery and the intracellular localization of the protein can then be visualized by means of confocal laser fluorescence microscopy at relatively low concentrations. The absence of a large N-terminal protein tag overcomes possible interferences in the interaction with cellular partner proteins. The fluorescence emission from Bodipy FL is continuous and disappears only after irreversible bleaching. These characteristics make Ras proteins with nonprotein fluorophores suitable for biophysical analysis. The easy accessibility of the lipopeptide moiety by chemical synthesis opens up numerous options for further biological investigations.
Collapse
Affiliation(s)
- Reinhard Reents
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
24
|
Prüfert K, Alsheimer M, Benavente R, Krohne G. The myristoylation site of meiotic lamin C2 promotes local nuclear membrane growth and the formation of intranuclear membranes in somatic cultured cells. Eur J Cell Biol 2005; 84:637-46. [PMID: 16032931 DOI: 10.1016/j.ejcb.2004.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Lamin C2 is a splice product of the mammalian lamin A gene and expressed in primary spermatocytes where it is distributed in the form of discontinuous plaques at the nuclear envelope. We have previously shown that the aminoterminal hexapetide GNAEGR of lamin C2 following the start methionine is essential for its association with the nuclear envelope and that the aminoterminal glycine of the hexapeptide is myristoylated. Here we have analyzed the ultrastructural changes induced in COS-7 and Xenopus A6 cells by overexpressing rat lamin C2 or a human lamin C mutant possessing the lamin C2-specific hexapeptide at its aminoterminus. Both lamins were targeted to the nuclear envelope of mammalian and amphibian cells and induced the formation of intranuclear membranes, whereas wild-type human lamin C and a lamin C2 mutant, that both lack this lipid moiety, did not. Our data indicate that the myristoyl group of lamin C2 has besides its demonstrated role in nuclear envelope association additional functions during spermatogenesis. Our present study complements previously published results where we have shown that the CxxM motif of lamins promotes nuclear membrane growth (Prüfert et al., 2004. J. Cell Sci. 117, 6105-6116).
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
25
|
Celton-Morizur S, Bordes N, Fraisier V, Tran PT, Paoletti A. C-terminal anchoring of mid1p to membranes stabilizes cytokinetic ring position in early mitosis in fission yeast. Mol Cell Biol 2004; 24:10621-35. [PMID: 15572668 PMCID: PMC533969 DOI: 10.1128/mcb.24.24.10621-10635.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mid1p is a key factor for the central positioning of the cytokinetic ring in Schizosaccharomyces pombe. In interphase and early mitosis, mid1p forms a medial cortical band overlying the nucleus, which may represent a landmark for cytokinetic ring assembly. It compacts before anaphase into a tight ring with other cytokinetic ring components. We show here that mid1p binds to the medial cortex by at least two independent means. First, mid1p C-terminus association with the cortex requires a putative amphipathic helix adjacent to mid1p nuclear localization sequence (NLS), which is predicted to insert directly into the lipid bilayer. This association is stabilized by the polybasic NLS. mid1p mutated within the helix and the NLS forms abnormal filaments in early mitosis that are not properly anchored to the medial cortex. Misplaced rings assemble in late mitosis, indicating that mid1p C-terminus binding to membranes stabilizes cytokinetic ring position. Second, the N terminus of mid1p has the ability to associate faintly with the medial cortex and is sufficient to form tight rings. In addition, we show that mid1p oligomerizes. We propose that membrane-bound oligomers of mid1p assemble recruitment "platforms" for cytokinetic ring components at the medial cortex and stabilize the ring position during its compaction.
Collapse
|
26
|
Abstract
We analyzed the influence of lamins on nuclear envelope growth in cultured Xenopus A6 cells by the overexpression of human lamin A, Xenopus and zebrafish lamins B2 and Drosophila lamins Dm0 and C as GFP fusion proteins. Lamins containing a CxxM motif in their primary sequence (lamins A, B2, Dm0) induced the formation of lobulated nuclei with multi-membrane-layered, highly folded nuclear membranes and intranuclear membrane assemblies, as observed by electron microscopy. Such morphological alterations were not observed with Drosophila lamin C, a lamin without this motif or with a lamin B2 mutant (B2-SxxM) where the cysteine of the CxxM motif is replaced by a serine. Drosophila lamin C mutants containing a CxxM motif behaved like B-type lamins thus confirming that this tetrapeptide is directly involved in the morphological changes we observed. Nuclear membrane proliferation could also be induced by lamin B2 in COS-7 cells and in zebrafish embryos but not by human lamin A in COS-7 cells. We speculate that the human lamin A is incompletely processed in Xenopus A6 cells and therefore behaves in this cell line like a B-type lamin. Our results indicate that the CxxM motif of B-type lamins has a dual function: it mediates lamin targeting to the inner nuclear membrane thereby promoting nuclear membrane growth.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter of the University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | |
Collapse
|
27
|
Ralle T, Grund C, Franke WW, Stick R. Intranuclear membrane structure formations by CaaX-containing nuclear proteins. J Cell Sci 2004; 117:6095-104. [PMID: 15546917 DOI: 10.1242/jcs.01528] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the nuclear envelope. Association of lamins with the inner nuclear membrane is mediated by specific modifications in the CaaX motif at their C-termini. B-type lamins are permanently isoprenylated whereas lamin A loses its modification by a lamin A-specific processing step after incorporation into the lamina. Lamins are differentially expressed during development and tissue differentiation. Here we show that an increased synthesis of lamins B1 and B2 in amphibian oocytes induces the formation of intranuclear membrane structures that form extensive arrays of stacked cisternae. These 'lamin membrane arrays' are attached to the inner nuclear membrane but are not continuous with it. Induction of this membrane proliferation depends on CaaX-specific posttranslational modification. Moreover, in transfected HeLa cells, chimeric GFP containing a nuclear localization signal and a C-terminal CaaX motif of N-Ras induces intranuclear membrane stacks that resemble those induced by lamins and ER-like cisternae that are induced in the cytoplasm upon increased synthesis of integral ER membrane proteins. Implications for the synthesis of CaaX-containing proteins are discussed and the difference from intranuclear fibrous lamina annulate lamellae formations is emphasized.
Collapse
Affiliation(s)
- Thorsten Ralle
- Department of Cell Biology, University of Bremen, PO Box 33 04 40, 28334 Bremen, Germany
| | | | | | | |
Collapse
|
28
|
Lanning CC, Daddona JL, Ruiz-Velasco R, Shafer SH, Williams CL. The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J Biol Chem 2004; 279:44197-210. [PMID: 15304504 DOI: 10.1074/jbc.m404977200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.
Collapse
Affiliation(s)
- Cathy Cole Lanning
- Molecular Pharmacology Laboratory, Guthrie Research Institute, Sayre, Pennsylvania 18840, USA
| | | | | | | | | |
Collapse
|
29
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Okeley NM, Gelb MH. A designed probe for acidic phospholipids reveals the unique enriched anionic character of the cytosolic face of the mammalian plasma membrane. J Biol Chem 2004; 279:21833-40. [PMID: 15007075 DOI: 10.1074/jbc.m313469200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that the cytosolic face of the plasma membrane of mammalian cells is enriched in acidic phospholipids due to an asymmetric distribution of neutral and anionic phospholipids in the two bilayer leaflets. However, the phospholipid asymmetry across intracellular membranes is not known. Two models have been proposed for the selective targeting of K-Ras4B, which contains a C-terminal farnesyl cysteine methyl ester adjacent to a polybasic peptide segment, to the cytosolic face of the plasma membrane. One involves electrostatic interaction of the lipidated polybasic domain with anionic phospholipids in the plasma membrane, and the other involves binding of K-Ras4B to a specific protein receptor. To address this issue, we prepared by semi-synthesis a green fluorescent protein variant that is linked to a farnesylated, polybasic peptide corresponding to the K-Ras4B C terminus as well as a variant that contains an all-d amino acid version of the K-Ras4B peptide. As expected based on electrostatics, both constructs showed preferential in vitro binding to anionic phospholipid vesicles versus those composed only of zwitterionic phospholipid. Both constructs fully targeted to the plasma membrane when microinjected into live Chinese hamster ovary and Madin-Darby canine kidney cells. Because the all-d amino acid peptide should be devoid of binding affinity to a putative highly specific K-Ras membrane receptor, these results support an electrostatic basis for the targeting of K-Ras4B to the plasma membrane, and they support an intracellular landscape of phospholipids in which the cytosolic face of the plasma membrane is the most enriched in acidic phospholipids.
Collapse
Affiliation(s)
- Nicole M Okeley
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
31
|
Williams CL. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell Signal 2003; 15:1071-80. [PMID: 14575862 DOI: 10.1016/s0898-6568(03)00098-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases.
Collapse
Affiliation(s)
- Carol L Williams
- Molecular Pharmacology Laboratory, Guthrie Research Institute, One Guthrie Square, Sayre, PA 18840, USA.
| |
Collapse
|
32
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Luo RZ, Fang X, Marquez R, Liu SY, Mills GB, Liao WSL, Yu Y, Bast RC. ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Oncogene 2003; 22:2897-909. [PMID: 12771940 DOI: 10.1038/sj.onc.1206380] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our group recently identified Ras homolog member I (ARHI), a novel maternally imprinted tumor suppressor gene that encodes a 26 kDa GTP-binding protein with high homology to Ras and Rap. Unlike other Ras family members, ARHI exhibits several unusual structural and functional properties. ARHI contains a unique 34 amino-acid extension at the N-terminus, and differs from Ras in residues critical for GTPase activity and in its putative effector domain. Like Ras, ARHI can bind to GTP with high affinity but has low intrinsic GTPase activity. In addition, while Ras is an oncogene, ARHI functions as an inhibitor for cell growth. (32)Phosphorus labeling showed that ARHI is maintained in a constitutively activated GTP-bound state in resting cells, possibly because of impaired GTPase activity. ARHI is associated at the cell membrane through its prenylation at the C-terminal cysteine residue. Mutation of the conserved CAAX box at the C-terminus led to a loss of its membrane association and a decreased ability to inhibit cell growth. Conversion of Ser(51) to Asn decreased GTP binding and reduced ARHI's biological activity. Mutation of Ala(46) to Val increased the ability of ARHI to inhibit cell growth, associated with a further decrease of its intrinsic GTPase activity. Moreover, conversion of residues in ARHI that are conserved in the Ras family for GTPase activity partially restored the GTPase activity in ARHI. Most strikingly, deletion of ARHI's unique N-terminal extension nearly abolished its inhibitory effect on cell growth, suggesting its importance in ARHI's inhibitory function. Thus, ARHI is a unique Ras family member that retains basic small GTPase function, but exhibits many unusual features. In contrast to most other Ras family members, ARHI has a long N-terminal extension, modest GTPase activity, and constitutive GTP binding in resting cells. Furthermore, unlike the Ras oncogene, ARHI inhibits cell growth, and loss of its expression in cells may contribute to the development of breast and ovarian cancers.
Collapse
Affiliation(s)
- Robert Z Luo
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mani SS, Rajagopal R, Garfinkel AB, Fan X, Wolfner MF. A hydrophilic lamin-binding domain from the Drosophila YA protein can target proteins to the nuclear envelope. J Cell Sci 2003; 116:2067-72. [PMID: 12679383 DOI: 10.1242/jcs.00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The nuclear lamina provides an architectural framework for the nuclear envelope and an attachment site for interphase chromatin. In Drosophila eggs and early embryos its major constituent, lamin Dm0, interacts with a lamina protein called YA. When the lamin-interaction region of YA is deleted, YA still enters nuclei but fails to localize to nuclear envelopes, suggesting that lamin interaction targets YA to the nuclear envelope. Here, we show that C-terminal lamin-interacting region of YA is sufficient to target the heterologous soluble protein GFP-NLS to the nuclear periphery in Drosophila tissue culture cells. Yeast two-hybrid analysis and transient transfection assays further defined this domain: residues 556-696 of YA are sufficient for both lamin Dm0 interaction and the targeting of GFP-NLS to the nuclear periphery. This region of YA is hydrophilic and lacks any transmembrane domain or known membrane-targeting motifs. We propose that the localization of YA to the nuclear lamina involves interaction with polymerized lamin Dm0 mediated by the lamin-targeting domain of YA. This hydrophilic YA domain might provide a useful molecular tool for targeting heterologous non-membrane-associated proteins to the nuclear envelope.
Collapse
Affiliation(s)
- Shobana S Mani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
35
|
Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP. Nuclear lamins: building blocks of nuclear architecture. Genes Dev 2002; 16:533-47. [PMID: 11877373 DOI: 10.1101/gad.960502] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Robert D Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
36
|
Hofemeister H, Kuhn C, Franke WW, Weber K, Stick R. Conservation of the gene structure and membrane-targeting signals of germ cell-specific lamin LIII in amphibians and fish. Eur J Cell Biol 2002; 81:51-60. [PMID: 11893082 DOI: 10.1078/0171-9335-00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeting of nuclear lamins to the inner nuclear membrane requires CaaX motif-dependent posttranslational isoprenylation and carboxyl methylation. We previously have shown that two variants of lamin LIII (i.e., LIII and LIIIb) in amphibian oocytes are generated by alternative splicing and differ greatly in their membrane association. An extra cysteine residue (as a potential palmitoylation site) and a basic cluster in conjunction with the CaaX motif function as secondary targeting signals responsible for stable membrane association of lamin LIIIb. cDNA sequencing and genomic analysis of the zebrafish Danio rerio lamin LIII uncovers a remarkable conservation of the genomic organization and of the two secondary membrane-targeting signals in amphibians and fish. The expression pattern of lamin LIII genes is also conserved between amphibians and fish. Danio lamin LIII is expressed in diplotene oocytes. It is absent from male germ cells but is expressed in Sertoli cells of the testis. In addition, we provide sequence information of the entire coding sequence of zebrafish lamin A, which allows comparison of all major lamins from representatives of the four classes of vertebrates.
Collapse
|