1
|
Howell LM, Gracie NP, Newsome TP. Single-cell analysis of VACV infection reveals pathogen-driven timing of early and late phases and host-limited dynamics of virus production. PLoS Pathog 2024; 20:e1012423. [PMID: 39093901 PMCID: PMC11347022 DOI: 10.1371/journal.ppat.1012423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/26/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The extent and origin of variation in the replication dynamics of complex DNA viruses is not well-defined. Here, we investigate the vaccinia virus (VACV) infection cycle at the single-cell level, quantifying the temporal dynamics of early and post(dna)-replicative phase gene expression across thousands of infections. We found that viral factors determine the initiation time of these phases, and this is influenced by the multiplicity of infection (MOI). In contrast, virus production dynamics are largely constrained by the host cell. Additionally, between-cell variability in infection start time and virus production rate were strongly influenced by MOI, providing evidence for cooperativity between infecting virions. Blocking programmed cell death by pan-caspase inhibition increased infection frequency but not virus production at the population level due to a concurrent attenuation of per-cell virus yield, suggesting a dual role for caspase signaling in VACV infection. Our findings provide key insights into the pivotal factors influencing heterogeneity in the infection cycle of a large DNA virus at the single-cell level.
Collapse
Affiliation(s)
- Liam Michael Howell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Nicholas Peter Gracie
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Timothy Peter Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Liu J, Corroyer-Dulmont S, Pražák V, Khusainov I, Bahrami K, Welsch S, Vasishtan D, Obarska-Kosińska A, Thorkelsson SR, Grünewald K, Quemin ERJ, Turoňová B, Locker JK. The palisade layer of the poxvirus core is composed of flexible A10 trimers. Nat Struct Mol Biol 2024; 31:1105-1113. [PMID: 38316878 PMCID: PMC11257942 DOI: 10.1038/s41594-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.
Collapse
Affiliation(s)
- Jiasui Liu
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Simon Corroyer-Dulmont
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Karola Bahrami
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany
- University Clinic Frankfurt, Frankfurt am Main, Germany
| | - Sonja Welsch
- Max Planck Institute of Biophysics, Central Electron Microscopy Facility, Frankfurt am Main, Germany
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Sigurdur R Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- University of Hamburg, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Université Paris-Saclay, CEA, Gif-sur-Yvette, France.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany.
- Justus Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
4
|
Li M, Peng D, Cao H, Yang X, Li S, Qiu HJ, Li LF. The Host Cytoskeleton Functions as a Pleiotropic Scaffold: Orchestrating Regulation of the Viral Life Cycle and Mediating Host Antiviral Innate Immune Responses. Viruses 2023; 15:1354. [PMID: 37376653 PMCID: PMC10301361 DOI: 10.3390/v15061354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Viruses are obligate intracellular parasites that critically depend on their hosts to initiate infection, complete replication cycles, and generate new progeny virions. To achieve these goals, viruses have evolved numerous elegant strategies to subvert and utilize different cellular machinery. The cytoskeleton is often one of the first components to be hijacked as it provides a convenient transport system for viruses to enter the cell and reach the site of replication. The cytoskeleton is an intricate network involved in controlling the cell shape, cargo transport, signal transduction, and cell division. The host cytoskeleton has complex interactions with viruses during the viral life cycle, as well as cell-to-cell transmission once the life cycle is completed. Additionally, the host also develops unique, cytoskeleton-mediated antiviral innate immune responses. These processes are also involved in pathological damages, although the comprehensive mechanisms remain elusive. In this review, we briefly summarize the functions of some prominent viruses in inducing or hijacking cytoskeletal structures and the related antiviral responses in order to provide new insights into the crosstalk between the cytoskeleton and viruses, which may contribute to the design of novel antivirals targeting the cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
5
|
da Silva ES, Naghavi MH. Microtubules and viral infection. Adv Virus Res 2023; 115:87-134. [PMID: 37173066 DOI: 10.1016/bs.aivir.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
6
|
Abstract
Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew D Greseth
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA;
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA; .,Department of Microbiology and Immunology, The Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Wood JJ, White IJ, Samolej J, Mercer J. Acrylamide inhibits vaccinia virus through vimentin-independent anti-viral granule formation. Cell Microbiol 2021; 23:e13334. [PMID: 33792166 PMCID: PMC11478914 DOI: 10.1111/cmi.13334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The replication and assembly of vaccinia virus (VACV), the prototypic poxvirus, occurs exclusively in the cytoplasm of host cells. While the role of cellular cytoskeletal components in these processes remains poorly understood, vimentin-a type III intermediate filament-has been shown to associate with viral replication sites and to be incorporated into mature VACV virions. Here, we employed chemical and genetic approaches to further investigate the role of vimentin during the VACV lifecycle. The collapse of vimentin filaments, using acrylamide, was found to inhibit VACV infection at the level of genome replication, intermediate- and late-gene expression. However, we found that CRISPR-mediated knockout of vimentin did not impact VACV replication. Combining these tools, we demonstrate that acrylamide treatment results in the formation of anti-viral granules (AVGs) known to mediate translational inhibition of many viruses. We conclude that vimentin is dispensable for poxvirus replication and assembly and that acrylamide, as a potent inducer of AVGs during VACV infection, serves to bolster cell's anti-viral response to poxvirus infection.
Collapse
Affiliation(s)
- Jennifer J. Wood
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Ian J. White
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Jerzy Samolej
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
8
|
Yaakov LB, Mutsafi Y, Porat Z, Dadosh T, Minsky A. Kinetics of Mimivirus Infection Stages Quantified Using Image Flow Cytometry. Cytometry A 2019; 95:534-548. [PMID: 31017743 PMCID: PMC6593739 DOI: 10.1002/cyto.a.23770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Due to the heterogeneity of viruses and their hosts, a comprehensive view of viral infection is best achieved by analyzing large populations of infected cells. However, information regarding variation in infected cell populations is lost in bulk measurements. Motivated by an interest in the temporal progression of events in virally infected cells, we used image flow cytometry (IFC) to monitor changes in Acanthamoeba polyphaga cells infected with Mimivirus. This first use of IFC to study viral infection required the development of methods to preserve morphological features of adherent amoeba cells prior to detachment and analysis in suspension. It also required the identification of IFC parameters that best report on key events in the Mimivirus infection cycle. The optimized IFC protocol enabled the simultaneous monitoring of diverse processes including generation of viral factories, transport, and fusion of replication centers within the cell, accumulation of viral progeny, and changes in cell morphology for tens of thousands of cells. After obtaining the time windows for these processes, we used IFC to evaluate the effects of perturbations such as oxidative stress and cytoskeletal disruptors on viral infection. Accurate dose‐response curves could be generated, and we found that mild oxidative stress delayed multiple stages of virus production, but eventually infection processes occurred with approximately the same amplitudes. We also found that functional actin cytoskeleton is required for fusion of viral replication centers and later for the production of viral progeny. Through this report, we demonstrate that IFC offers a quantitative, high‐throughput, and highly robust approach to study viral infection cycles and virus–host interactions. © The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Liran Ben Yaakov
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yael Mutsafi
- Biochemistry and Biophysics Center, NHLBI, NIH, 50 South Drive, 20892, Bethesda, Maryland, USA
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
9
|
Abstract
Microtubules (MTs) form a rapidly adaptable network of filaments that radiate throughout the cell. These dynamic arrays facilitate a wide range of cellular processes, including the capture, transport, and spatial organization of cargos and organelles, as well as changes in cell shape, polarity, and motility. Nucleating from MT-organizing centers, including but by no means limited to the centrosome, MTs undergo rapid transitions through phases of growth, pause, and catastrophe, continuously exploring and adapting to the intracellular environment. Subsets of MTs can become stabilized in response to environmental cues, acquiring distinguishing posttranslational modifications and performing discrete functions as specialized tracks for cargo trafficking. The dynamic behavior and organization of the MT array is regulated by MT-associated proteins (MAPs), which include a subset of highly specialized plus-end-tracking proteins (+TIPs) that respond to signaling cues to alter MT behavior. As pathogenic cargos, viruses require MTs to transport to and from their intracellular sites of replication. While interactions with and functions for MT motor proteins are well characterized and extensively reviewed for many viruses, this review focuses on MT filaments themselves. Changes in the spatial organization and dynamics of the MT array, mediated by virus- or host-induced changes to MT regulatory proteins, not only play a central role in the intracellular transport of virus particles but also regulate a wider range of processes critical to the outcome of infection.
Collapse
|
10
|
Milrot E, Mutsafi Y, Fridmann-Sirkis Y, Shimoni E, Rechav K, Gurnon JR, Van Etten JL, Minsky A. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus. Cell Microbiol 2015; 18:3-16. [PMID: 26248343 DOI: 10.1111/cmi.12486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022]
Abstract
The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway.
Collapse
Affiliation(s)
- Elad Milrot
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Mutsafi
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Fridmann-Sirkis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - James R Gurnon
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
| | - Abraham Minsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
11
|
The vaccinia virus E6 protein influences virion protein localization during virus assembly. Virology 2015; 482:147-56. [PMID: 25863879 DOI: 10.1016/j.virol.2015.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a "pre-nucleocapsid", and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly.
Collapse
|
12
|
Jesus DM, Moussatche N, McFadden BBD, Nielsen CP, D'Costa SM, Condit RC. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4. Virology 2015; 481:1-12. [PMID: 25765002 DOI: 10.1016/j.virol.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid.
Collapse
Affiliation(s)
- Desyree Murta Jesus
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Baron B D McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Casey Paulasue Nielsen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
14
|
Infection cycles of large DNA viruses: Emerging themes and underlying questions. Virology 2014; 466-467:3-14. [DOI: 10.1016/j.virol.2014.05.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/20/2022]
|
15
|
Vaccinia virus mutations in the L4R gene encoding a virion structural protein produce abnormal mature particles lacking a nucleocapsid. J Virol 2014; 88:14017-29. [PMID: 25253347 DOI: 10.1128/jvi.02126-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the mechanisms of vaccinia virus core-directed transcription. The present study represents our second attempt to understand the structure and biological significance of the nucleocapsid. We demonstrate the importance of the protein L4 for the formation of the nucleocapsid and reveal in addition that the nucleocapsid and the core wall may be associated, suggesting a higher level of complexity of the nucleocapsid than predicted. In addition, we prove the utility of high-pressure freezing in preserving the vaccinia virus nucleocapsid.
Collapse
|
16
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
17
|
Ward BM. The taking of the cytoskeleton one two three: how viruses utilize the cytoskeleton during egress. Virology 2011; 411:244-50. [PMID: 21241997 PMCID: PMC3049855 DOI: 10.1016/j.virol.2010.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 11/30/2022]
Abstract
The final assembly of nonlytic envelope viruses requires the coordinated transport of either subviral particles or fully formed virions to the plasma membrane for release from the cell. Recent research has delved into the mechanisms viruses employ to hijack the host cell's cytoskeletal system for active transport to the site of final assembly and release. This review will look at recent findings that relate to the transport of virions to the cell periphery and out of the cell.
Collapse
Affiliation(s)
- Brian M Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
Abstract
Many viruses that replicate in the cytoplasm compartmentalize their genome replication and transcription in organelle-like structures that enhance replication efficiency and protection from host defenses. In particular, recent studies with diverse positive-strand RNA viruses have further elucidated the ultrastructure of membrane-bound RNA replication complexes and how these complexes function in close coordination with virion assembly and budding. The structure, function, and assembly of some positive-strand RNA virus replication complexes have parallels and potential evolutionary links with the replicative cores of double-strand RNA virus and retrovirus virions and more general similarities with the replication factories of cytoplasmic DNA viruses.
Collapse
|
19
|
Jayagopal A, Halfpenny KC, Perez JW, Wright DW. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells. J Am Chem Soc 2010; 132:9789-96. [PMID: 20586450 PMCID: PMC2927968 DOI: 10.1021/ja102585v] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A strategy is presented for the live cell imaging of messenger RNA using hairpin DNA-functionalized gold nanoparticles (hAuNP). hAuNP improve upon technologies for studying RNA trafficking by their efficient internalization within live cells without transfection reagents, improved resistance to DNase degradation, low cytotoxicity, and the incorporation of hairpin DNA molecular beacons to confer high specificity and sensitivity to the target mRNA sequence. Furthermore, the targeted nanoparticle-beacon construct, once bound to the target mRNA sequence, remains hybridized to the target, enabling spatial and temporal studies of RNA trafficking and downstream analysis. Targeted hAuNP exhibited high specificity for glyceraldehyde 3-phosphate dehydrogenase (GADPH) mRNA in live normal HEp-2 cells and respiratory syncytial virus (RSV) mRNA in live RSV-infected HEp-2 cells with high target to background ratios. Multiplexed fluorescence imaging of distinct mRNAs in live cells and simultaneous imaging of mRNAs with immunofluorescently stained protein targets in fixed cells was enabled by appropriate selection of molecular beacon fluorophores. Pharmacologic analysis suggested that hAuNP were internalized within cells via membrane-nanoparticle interactions. hAuNP are a promising approach for the real-time analysis of mRNA transport and processing in live cells for elucidation of biological processes and disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Jonas W. Perez
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - David W. Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
20
|
Mutsafi Y, Zauberman N, Sabanay I, Minsky A. Vaccinia-like cytoplasmic replication of the giant Mimivirus. Proc Natl Acad Sci U S A 2010; 107:5978-82. [PMID: 20231474 PMCID: PMC2851855 DOI: 10.1073/pnas.0912737107] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poxviruses are considered to be unique among all DNA viruses, because their infection cycle is carried out exclusively in the host cytoplasm. Such an infection strategy is of interest, because it necessitates generation of elaborate factories in which viral replication and assembly are promoted. By using diverse imaging techniques, we show that the infection cycle of the largest virus currently identified, the Acanthamoeba polyphaga Mimivirus, similarly occurs exclusively in the host cytoplasm. We further show that newly synthesized mRNAs accumulate at discrete cytoplasmic sites that are distinct from the sites where viral replication occurs, and this is observed in vaccinia infection. By revealing substantial physiologic similarity between poxviruses and Mimivirus and thus, implying that an entirely cytoplasmic viral replication might be more common than generally considered, these findings underscore the ability of DNA viruses to generate large and elaborate replication factories.
Collapse
Affiliation(s)
| | | | - Ilana Sabanay
- Electron Microscopy Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
21
|
Activation of the PI3K/Akt pathway early during vaccinia and cowpox virus infections is required for both host survival and viral replication. J Virol 2009; 83:6883-99. [PMID: 19386722 DOI: 10.1128/jvi.00245-09] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to >/=90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.
Collapse
|
22
|
Simon M, Johansson C, Lundkvist A, Mirazimi A. Microtubule-dependent and microtubule-independent steps in Crimean-Congo hemorrhagic fever virus replication cycle. Virology 2009; 385:313-22. [PMID: 19150104 DOI: 10.1016/j.virol.2008.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/25/2008] [Accepted: 11/05/2008] [Indexed: 01/28/2023]
Abstract
Following binding and entry many viruses exploit the host cell cytoskeleton to ensure intracellular transport, assembly or egress. For Crimean-Congo hemorrhagic fever virus (CCHFV), the causative agent of a severe hemorrhagic disease, virus-host interactions are poorly investigated. In this study we demonstrated that drug-induced suppression of microtubule dynamics and especially microtubule disassembly, impaired CCHFV biogenesis. Our results showed that intact microtubules were required early during virus internalization, and late, during virus assembly and egress. Furthermore, disruption of microtubules resulted in reduced levels of viral RNA while preservation of microtubule dynamics was most important during viral egress. Finally, although CCHFV proteins were redistributed in drug-treated cells, the glycoprotein remained associated with the Golgi apparatus, the organelle of virus budding. Taken together, our results suggest that manipulation of microtubules affects CCHFV entry, replication, assembly and egress.
Collapse
Affiliation(s)
- Melinda Simon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
23
|
A novel cellular protein, VPEF, facilitates vaccinia virus penetration into HeLa cells through fluid phase endocytosis. J Virol 2008; 82:7988-99. [PMID: 18550675 DOI: 10.1128/jvi.00894-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus is a large DNA virus that infects many cell cultures in vitro and animal species in vivo. Although it has been used widely as a vaccine, its cell entry pathway remains unclear. In this study, we showed that vaccinia virus intracellular mature virions bound to the filopodia of HeLa cells and moved toward the cell body and entered the cell through an endocytic route that required a dynamin-mediated pathway but not a clathrin- or caveola-mediated pathway. Moreover, virus penetration required a novel cellular protein, vaccinia virus penetration factor (VPEF). VPEF was detected on cell surface lipid rafts and on vesicle-like structures in the cytoplasm. Both vaccinia virus and dextran transiently colocalized with VPEF, and, importantly, knockdown of VPEF expression blocked vaccinia virus penetration as well as intracellular transport of dextran, suggesting that VPEF mediates vaccinia virus entry through a fluid uptake endocytosis process in HeLa cells. Intracellular VPEF-containing vesicles did not colocalize with Rab5a or caveolin but partially colocalized with Rab11, supporting the idea that VPEF plays a role in vesicle trafficking and recycling in HeLa cells. In summary, this study characterized the mechanism by which vaccinia virus enters HeLa cells and identified a cellular factor, VPEF, that is exploited by vaccinia virus for cell entry through fluid phase endocytosis.
Collapse
|
24
|
Katsafanas GC, Moss B. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2007; 2:221-8. [PMID: 18005740 DOI: 10.1016/j.chom.2007.08.005] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/15/2007] [Accepted: 08/27/2007] [Indexed: 12/17/2022]
Abstract
Poxviruses are large DNA viruses that include the causal agent of human smallpox and vaccinia virus. Poxviruses replicate in cytoplasmic foci known as DNA factories. Here we show that a virus-encoded transcription factor, viral mRNA, cellular RNA-binding protein heterodimer G3BP/Caprin-1 (p137), translation initiation factors eIF4E and eIF4G, and ribosomal proteins are concentrated in the same subdomains of cytoplasmic DNA factories. Furthermore, a cell coinfected with two recombinant vaccinia viruses expressing a virus core protein fused to cyan or yellow fluorescent protein displayed separate cyan and yellow factories, indicating that each factory formed from a single genome and was the site of transcription and translation as well as DNA replication. Hijacking of the host translation apparatus within the factory likely enhances the efficiency of virus replication and contributes to the suppression of host protein synthesis, thereby facilitating poxvirus subjugation of the cell.
Collapse
Affiliation(s)
- George C Katsafanas
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
25
|
Abstract
Virus replication and virus assembly often occur in virus inclusions or virus factories that form at pericentriolar sites close to the microtubule organizing center or in specialized nuclear domains called ND10/PML bodies. Similar inclusions called aggresomes form in response to protein aggregation. Protein aggregates are toxic to cells and are transported along microtubules to aggresomes for immobilization and subsequent degradation by proteasomes and/or autophagy. The similarity between aggresomes and virus inclusions raises the possibility that viruses use aggresome pathways to concentrate cellular and viral proteins to facilitate replication and assembly. Alternatively, aggresomes may be part of an innate cellular response that recognizes virus components as foreign or misfolded and targets them for storage and degradation. Insights into the possible roles played by aggresomes during virus assembly are emerging from an understanding of how virus inclusions form and how viral proteins are targeted to them.
Collapse
Affiliation(s)
- Thomas Wileman
- Infection and Immunity, School of Medicine, Faculty of Health, University of East Anglia, Norfolk NR4 7TJ, United Kingdom.
| |
Collapse
|
26
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
27
|
Balinsky CA, Delhon G, Afonso CL, Risatti GR, Borca MV, French RA, Tulman ER, Geary SJ, Rock DL. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence. J Virol 2007; 81:11392-401. [PMID: 17686843 PMCID: PMC2045533 DOI: 10.1128/jvi.01093-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sheeppox virus (SPPV), a member of the Capripoxvirus genus of the Poxviridae, is the etiologic agent of a significant disease of sheep in the developing world. Genomic analysis of pathogenic and vaccine capripoxviruses identified genes with potential roles in virulence and host range, including three genes with similarity to kelch-like genes of other poxviruses and eukaryotes. Here, a mutant SPPV with a deletion in the SPPV-019 kelch-like gene, DeltaKLP, was derived from the pathogenic strain SPPV-SA. DeltaKLP exhibited in vitro growth characteristics similar to those of SPPV-SA and revertant virus (RvKLP). DeltaKLP-infected cells exhibited a reduction in Ca(2+)-independent cell adhesion, suggesting that SPPV-019 may modulate cellular adhesion. When inoculated in sheep by the intranasal or intradermal routes, DeltaKLP was markedly attenuated, since all DeltaKLP-infected lambs survived infection. In contrast, SPPV-SA and RvKLP induced mortality approaching 100%. Lambs inoculated with DeltaKLP exhibited marked reduction or delay in fever response, gross lesions, viremia, and virus shedding compared to parental and revertant viruses. Together, these findings indicate that SPPV-019 is a significant SPPV virulence determinant in sheep.
Collapse
Affiliation(s)
- C A Balinsky
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schepis A, Stauber T, Krijnse Locker J. Kinesin-1 plays multiple roles during the vaccinia virus life cycle. Cell Microbiol 2007; 9:1960-73. [PMID: 17394562 DOI: 10.1111/j.1462-5822.2007.00927.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytoplasmic distribution of cellular structures is known to depend on the balance between plus- and minus-end-directed motor complexes. Among the plus-end-directed kinesins, kinesin-1 and -2 have been implicated in the outward movement of many organelles. To test for a role of kinesin-1 previous studies mostly relied on the overexpression of dominant-negative kinesin-1 constructs. The latter are often cytotoxic, modify the microtubule network and indirect effects related to altered microtubule dynamics should be excluded. In the present study we present a novel kinesin-1 construct, encompassing the first 330 amino acids of kinesin heavy chain fused to GFP (kin330-GFP) that does not alter microtubules upon its overexpression. Kin330-GFP functionally inhibits kinesin-1 because it induces the peri-nuclear accumulation of mitochondria and intermediate filaments. Using this construct and previously established siRNA-mediated knock-down of kinesin-2 function, we assess the role of both motors in the subcellular distribution of distinct steps of the vaccinia virus (VV) life cycle. We show that kinesin-1, but not kinesin-2, contributes to the specific cytoplasmic distribution of three of the four steps of VV morphogenesis tested. These results are discussed with respect to the possible regulation of kinesin-1 during VV infection.
Collapse
Affiliation(s)
- Antonino Schepis
- European Molecular Biology Laboratory, Cell Biology and Biophysics Program, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
29
|
Grünewald K, Cyrklaff M. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr Opin Microbiol 2006; 9:437-42. [PMID: 16829161 DOI: 10.1016/j.mib.2006.06.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022]
Abstract
In microbiology, and in particular in virus research, electron microscopy (EM) is an important tool, offering a broad approach for investigating viral structure throughout their intracellular and extracellular life cycles. Currently, molecular tools and rapid developments in advanced light microscopy dominate the field and supply an enormous amount of information concerning virus biology. In recent years, numerous fascinating high-resolution EM structures obtained by single-particle electron cryo microscopy (cryo-EM) were revealed for viral particles that possess icosahedral symmetry. However, no comprehensive three-dimensional analysis of complex viruses or viruses within cells has yet been achieved using EM. Recent developments in electron cryo-tomography render this a proficient tool for the analysis of complex viruses and viruses within cells in greater detail.
Collapse
Affiliation(s)
- Kay Grünewald
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | | |
Collapse
|
30
|
Schepis A, Schramm B, de Haan CAM, Locker JK. Vaccinia virus-induced microtubule-dependent cellular rearrangements. Traffic 2006; 7:308-23. [PMID: 16497225 DOI: 10.1111/j.1600-0854.2005.00381.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although infection with vaccinia virus (VV) is known to affect the cytoskeleton, it is not known how this affects the cellular architecture or whether the attenuated modified VV ankara (MVA) behaves similar to wild-type VV (wtVV). In the present study, we therefore compared effects of wtVV and MVA infection on the cellular architecture. WtVV-infection induces cell rounding early in infection, which coincides with the retraction of microtubules (MTs) and intermediate filaments from the cellular periphery, whereas mitochondria and late endosomes cluster around the nucleus. Nocodazole treatment demonstrates that cell rounding and organelle clustering require intact MTs. At the onset of virus assembly late in infection, cells reflatten, a process that coincides with the regrowth of MTs into the cellular periphery. We find that the actin network undergoes several rearrangements that occur sequentially in time and that closely follow the cell-shape changes. Unexpectedly, these actin changes are blocked or reversed upon nocodazole treatment, indicating that intact MTs are also responsible for the wtVV-induced actin rearrangements. Finally, MVA infection does not induce any of these cellular changes. Because this virus lacks a substantial number of VV genes, MVA opens up a system to search for the molecules involved in wtVV-induced cellular changes; in particular, those that may regulate actin/MT interactions.
Collapse
Affiliation(s)
- Antonino Schepis
- European Molecular Biology Laboratory, Cell biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
31
|
Russo A, Russo G, Cuccurese M, Garbi C, Pietropaolo C. The 3'-untranslated region directs ribosomal protein-encoding mRNAs to specific cytoplasmic regions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:833-43. [PMID: 16839621 DOI: 10.1016/j.bbamcr.2006.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 04/21/2006] [Accepted: 05/10/2006] [Indexed: 11/30/2022]
Abstract
mRNA localization is a conserved post-transcriptional process crucial for a variety of systems. We have analyzed the subcellular distribution of mRNAs encoding human cytosolic and mitochondrial ribosomal proteins. Biochemical fractionation experiments showed that the transcripts for cytosolic ribosomal proteins associate preferentially with the cytoskeleton via actin microfilaments. Transfection in HeLa cells of a GFP reporter construct containing the cytosolic ribosomal protein L4 3'-UTR showed that the 3'-UTR is necessary for the association of the transcript to the cytoskeleton. Using confocal analysis we demonstrate that the chimeric transcript is specifically associated with the perinuclear cytoskeleton. We also show that mRNA for mitochondrial ribosomal protein S12 is asymmetrically distributed in the cytoplasm. In fact, this transcript was localized mainly in the proximity of mitochondria, and the localization was 3'-UTR-dependent. In summary, ribosomal protein mRNAs constitute a new class of localized transcripts that share a common localization mechanism.
Collapse
Affiliation(s)
- Annapina Russo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Napoli 80131, Italy
| | | | | | | | | |
Collapse
|
32
|
Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 2006; 8:387-400. [PMID: 16469052 DOI: 10.1111/j.1462-5822.2005.00679.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The actin and microtubule cytoskeleton play important roles in the life cycle of every virus. During attachment, internalization, endocytosis, nuclear targeting, transcription, replication, transport of progeny subviral particles, assembly, exocytosis, or cell-to-cell spread, viruses make use of different cellular cues and signals to enlist the cytoskeleton for their mission. Viruses induce rearrangements of cytoskeletal filaments so that they can utilize them as tracks or shove them aside when they represent barriers. Viral particles recruit molecular motors in order to hitchhike rides to different subcellular sites which provide the proper molecular environment for uncoating, replicating and packaging viral genomes. Interactions between subviral components and cytoskeletal tracks also help to orchestrate virus assembly, release and efficient cell-to-cell spread. There is probably not a single virus that does not use cytoskeletal and motor functions in its life cycle. Being well informed intracellular passengers, viruses provide us with unique tools to decipher how a particular cargo recruits one or several motors, how these are activated or tuned down depending on transport needs, and how cargoes switch from actin tracks to microtubules to nuclear pores and back.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
33
|
Rodriguez D, Bárcena M, Möbius W, Schleich S, Esteban M, Geerts WJC, Koster AJ, Griffiths G, Locker JK. A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cell Microbiol 2006; 8:427-37. [PMID: 16469055 DOI: 10.1111/j.1462-5822.2005.00632.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly of the intracellular mature virus (IMV) of vaccinia virus (VV), the prototype member of the poxviridae, is poorly understood and controversial. We have previously proposed that the IMV is composed of a continuous double-membraned cisterna derived from the smooth ER, whereby the genome-containing core is enwrapped by a part of this cisterna. In the present study we characterize a mutant virus in which the synthesis of the major core protein A10L can be conditionally expressed. Without A10L, IMVs are not made; immature viruses (IVs) and regularly stacked membrane structures that contain viral DNA, accumulate instead. By immunolabelling of thawed cryo-sections these stacks contain most of the viral core proteins and low levels of viral membrane proteins. Importantly, the stacked membranes could be labelled with antibodies to an ER marker protein, implying that they are derived from this cellular compartment. By electron tomography (ET) on semi-thin cryo-sections we show that the membranes of the stacks are continuous with the membranes of the IVs. Direct continuities with ER cisternae, to which the stacks are tightly apposed, were, however, not unequivocally seen. Finally, ET revealed how the IV membranes separated to become two-membrane profiles. Taken together, this study shows that VV core proteins and the viral DNA can coassemble onto ER-derived membranes that are continuous with the membranes of the IVs.
Collapse
Affiliation(s)
- Dolores Rodriguez
- Centro Nacional de Biotecnología, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bradley RR, Terajima M. Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein. Virus Res 2005; 114:104-12. [PMID: 16039000 DOI: 10.1016/j.virusres.2005.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 06/01/2005] [Accepted: 06/01/2005] [Indexed: 11/20/2022]
Abstract
The K1L protein of vaccinia virus is required for its growth in certain cell lines (RK-13 and human). The cowpox host-range protein CP77 has been shown to complement K1L function in RK-13 cells, despite a lack of homology between the two proteins except for ankyrin repeats. We investigated the role of ankyrin repeats of K1L protein in RK-13 cells. The growth of a recombinant vaccinia virus, with K1L gene mutated in the most conserved ankyrin repeat, was severely impaired. Infection with the mutant virus caused shutdown of cellular and viral protein synthesis early in infection. We also investigated the interaction of K1L protein with cellular proteins and found that K1L interacts with the rabbit homologue of human ACAP2, a GTPase-activating protein with ankyrin repeats. Our result suggests the importance of ankyrin repeat for host-range function of K1L in RK-13 cells and identifies ACAP2 as a cellular protein, which may be interacting with K1L.
Collapse
Affiliation(s)
- Ritu R Bradley
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
35
|
Abstract
Poxviruses, a family of large DNA viruses, are unique among DNA viruses, because they carry out DNA replication in the cytoplasm rather than the nucleus. This process does not occur randomly, but instead, these viruses create cytoplasmic 'mini-nuclei', distinct sites that are surrounded by membranes derived from the rough endoplasmic reticulum (ER) that support viral replication. This review summarizes how distinct steps preceding cytoplasmic DNA replication, as well as replication itself, operate in the host cell. The collective data point to an important role for both the rough ER and the microtubules and indicate that these cellular structures help to co-ordinate the virus life cycle to ensure that individual steps occur at the right time and place. In a broader sense, they emphasize how viruses have evolved sophisticated ways to use host cells to optimize their life cycles to ensure efficient production of infectious progeny.
Collapse
Affiliation(s)
- Birgit Schramm
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
36
|
Abstract
Upon infection, virions or subviral nucleoprotein complexes are transported from the cell surface to the site of viral transcription and replication. During viral egress, particles containing viral proteins and nucleic acids again move from the site of their synthesis to that of virus assembly and further to the plasma membrane. Because free diffusion of molecules larger than 500 kDa is restricted in the cytoplasm, viruses as well as cellular organelles employ active, energy-consuming enzymes for directed transport. This is particularly evident in the case of neurotropic viruses that travel long distances in the axon during retrograde or anterograde transport. Viruses use two strategies for intracellular transport: Viral components either hijack the cytoplasmic membrane traffic or they interact directly with the cytoskeletal transport machinery. In this review we describe how viruses--particularly members of the Herpesviridae, Adenoviridae, Parvoviridae, Poxviridae, and Baculoviridae--make use of the microtubule and the actin cytoskeleton. Analysing the underlying principles of viral cytosolic transport will be helpful in the design of viral vectors to be used in research as well as human gene therapy, and in the identification of new antiviral target molecules.
Collapse
Affiliation(s)
- K Döhner
- Department of Virology, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | |
Collapse
|
37
|
Döhner K, Nagel CH, Sodeik B. Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 2005; 13:320-7. [PMID: 15950476 DOI: 10.1016/j.tim.2005.05.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 04/20/2005] [Accepted: 05/20/2005] [Indexed: 11/21/2022]
Abstract
Incoming viral particles move from the cell surface to sites of viral transcription and replication. By contrast, during assembly and egress, subviral nucleoprotein complexes and virions travel back to the plasma membrane. Because diffusion of large molecules is severely restricted in the cytoplasm, viruses use ATP-hydrolyzing molecular motors of the host for propelling along the microtubules, which are the intracellular highways. Recent studies have revealed that, besides travelling inside endocytic or exocytic vesicles, viral proteins interact directly with dynein or kinesin motors. Understanding the molecular mechanisms of cytoplasmic viral transport will aid in the construction of viral vectors for human gene therapy and the search for new antiviral targets.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, D-30623 Hannover, Germany
| | | | | |
Collapse
|
38
|
Palacios S, Perez LH, Welsch S, Schleich S, Chmielarska K, Melchior F, Locker JK. Quantitative SUMO-1 modification of a vaccinia virus protein is required for its specific localization and prevents its self-association. Mol Biol Cell 2005; 16:2822-35. [PMID: 15800065 PMCID: PMC1142427 DOI: 10.1091/mbc.e04-11-1005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccinia virus (VV), the prototype member of the Poxviridae, a family of large DNA viruses, carries out DNA replication in specialized cytoplasmic sites that are enclosed by the rough endoplasmic reticulum (ER). We show that the VV gene product of A40R is quantitatively modified by SUMO-1, which is required for its localization to the ER-enclosed replication sites. Expression of A40R lacking SUMO-1 induced the formation of rod-shaped cytoplasmic aggregates. The latter likely consisted of polymers of nonsumoylated protein, because unmodified A40R interacted with itself, but not with the SUMO-1-conjugated protein. Using a bacterial sumoylation system, we furthermore show that unmodified A40R is mostly insoluble, whereas the modified form is completely soluble. By electron microscopy, the A40R rods seen in cells were associated with the cytosolic side of the ER and induced the apposition of several ER cisternae. A40R is the first example of a poxvirus protein to acquire SUMO-1. Its quantitative SUMO-1 modification is required for its proper localization to the viral "mini-nuclei" and prevents its self-association. The ability of the nonsumoylated A40R to bring ER membranes close together could suggest a role in the fusion of ER cisternae when these coalesce to enclose the VV replication sites.
Collapse
Affiliation(s)
- Silvia Palacios
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Vaccinia virus (VACV) is the prototypic member of the Poxviridae a group of large DNA viruses that replicate in the cell cytoplasm. The entry and exit of VACV are complicated by the existence of two distinct forms of virus, intracellular mature virus (IMV) and extracellular enveloped virus (EEV), that are surrounded by different numbers of lipid membranes and have different surface proteins. Here the mechanisms used by these different forms of VACV to leave the infected cell are reviewed. Whereas some enveloped viruses complete virus assembly by budding through the plasma membrane, infectious poxvirus particles (IMV) are produced within the cytoplasm. These particles are either further enveloped by intracellular membranes to form intracellular enveloped virus (IEV) that are transported to the cell surface on microtubules and exposed on the cell surface by exocytosis, or are released after cell lysis. If the enveloped virion remains attached to the cell surface it is called cell-associated enveloped virus (CEV) and is propelled into surrounding cells by growing actin tails beneath the plasma membrane. Alternatively, the surface virion may be released as EEV.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
40
|
Cyrklaff M, Risco C, Fernández JJ, Jiménez MV, Estéban M, Baumeister W, Carrascosa JL. Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci U S A 2005; 102:2772-7. [PMID: 15699328 PMCID: PMC549483 DOI: 10.1073/pnas.0409825102] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4-6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of approximately 360 x 270 x 250 nm. The outer layer was consistent with a lipid membrane (5-6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA-protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of approximately 18-19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Andrade A, Silva P, Pereira A, de Sousa L, Ferreira P, Gazzinelli R, Kroon E, Ropert C, Bonjardim C. The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 2004; 381:437-46. [PMID: 15025565 PMCID: PMC1133850 DOI: 10.1042/bj20031375] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 02/19/2004] [Accepted: 03/16/2004] [Indexed: 12/17/2022]
Abstract
Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353-38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.
Collapse
Affiliation(s)
- Anderson A. Andrade
- *Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Patrícia N. G. Silva
- *Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Anna C. T. C. Pereira
- *Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P. de Sousa
- *Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo C. P. Ferreira
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Gazzinelli
- ‡Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- §Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Erna G. Kroon
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Catherine Ropert
- §Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudio A. Bonjardim
- *Grupo de Transdução de Sinal, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- †Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brazil
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
42
|
Abstract
Vaccinia virus (VV), the virus smallpox vaccine, replicates in the cytoplasm of infected cells. The intracellular movement of this large virus would be inefficient without specific transport mechanisms; therefore, VV uses microtubules for movement during both entry and egress. In addition, the dissemination of virus from infected cells to adjacent cells is promoted by the polymerization of actin beneath cell surface virions to drive virus particles away from the cell. Last, the roles of different VV particles in virus movement within and between hosts are discussed.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, The Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom.
| | | | | |
Collapse
|
43
|
Gallego-Gómez JC, Risco C, Rodríguez D, Cabezas P, Guerra S, Carrascosa JL, Esteban M. Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells. J Virol 2003; 77:10606-22. [PMID: 12970445 PMCID: PMC228399 DOI: 10.1128/jvi.77.19.10606-10622.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live recombinants based on attenuated modified vaccinia virus Ankara (MVA) are potential vaccine candidates against a broad spectrum of diseases and tumors. To better understand the efficacy of MVA as a human vaccine, we analyzed by confocal and electron microscopy approaches MVA-induced morphological changes and morphogenetic stages during infection of human HeLa cells in comparison to other strains of vaccinia virus (VV): the wild-type Western Reserve (WR), Ankara, and the New York City Board of Health (NYCBH) strains. Confocal microscopy studies revealed that MVA infection alters the cytoskeleton producing elongated cells (bipolar), which do not form the characteristic actin tails. Few virions are detected in the projections connecting neighboring cells. In contrast, cells infected with the WR, Ankara, and NYCBH strains exhibit a stellated (multipolar) or rounded morphology with actin tails. A detailed transmission electron microscopy analysis of HeLa cells infected with MVA showed important differences in fine ultrastructure and amounts of the viral intermediates compared to cells infected with the other VV strains. In HeLa cells infected with MVA, the most abundant viral forms are intracellular immature virus, with few intermediates reaching the intracellular mature virus (IMV) form, at various stages of maturation, which exhibit a more rounded shape than IMVs from cells infected with the other VV strains. The "IMVs" from MVA-infected cells have an abnormal internal structure ("atypical" viruses) with potential alterations in the core-envelope interactions and are unable to significantly acquire the additional double envelope to render intracellular envelope virus. The presence of potential cell-associated envelope virus is very scarce. Our findings revealed that MVA in human cells promotes characteristic morphological changes to the cells and is able to reach the IMV stage, but these virions were not structurally normal and the subsequent steps in the morphogenetic pathway are blocked.
Collapse
Affiliation(s)
- Juan Carlos Gallego-Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Carter GC, Rodger G, Murphy BJ, Law M, Krauss O, Hollinshead M, Smith GL. Vaccinia virus cores are transported on microtubules. J Gen Virol 2003; 84:2443-2458. [PMID: 12917466 DOI: 10.1099/vir.0.19271-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with Vaccinia virus (VV) produces several distinct virions called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). In this report, we have investigated how incoming virus cores derived from IMV are transported within the cell. To do this, recombinant VVs (vA5L-EGFP-N and vA5L-EGFP-C) were generated in which the A5L virus core protein was fused with the enhanced green fluorescent protein (EGFP) at the N or C terminus. These viruses were viable, induced formation of actin tails and had a plaque size similar to wild-type. Immunoblotting showed the A5L-EGFP fusion protein was present in IMV particles and immunoelectron microscopy showed that the fusion protein was incorporated into VV cores. IMV made by vA5L-EGFP-N were used to follow the location and movement of cores after infection of PtK(2) cells. Confocal microscopy showed that virus cores were stained with anti-core antibody only after they had entered the cell and, once intracellular, were negative for the IMV surface protein D8L. These cores co-localized with microtubules and moved in a stop-start manner with an average speed of 51.8 (+/-3.9) microm min(-1), consistent with microtubular movement. Treatment of cells with nocodazole or colchicine inhibited core movement, but addition of cytochalasin D did not. These data show that VV cores derived from IMV use microtubules for intracellular transport after entry.
Collapse
Affiliation(s)
- Gemma C Carter
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gaener Rodger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Brendan J Murphy
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Mansun Law
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Oliver Krauss
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Michael Hollinshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
45
|
Welsch S, Doglio L, Schleich S, Krijnse Locker J. The vaccinia virus I3L gene product is localized to a complex endoplasmic reticulum-associated structure that contains the viral parental DNA. J Virol 2003; 77:6014-28. [PMID: 12719593 PMCID: PMC154049 DOI: 10.1128/jvi.77.10.6014-6028.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus (VV) I3L gene product is a single-stranded DNA-binding protein made early in infection that localizes to the cytoplasmic sites of viral DNA replication (S. C. Rochester and P. Traktman, J. Virol. 72:2917-2926, 1998). Surprisingly, when replication was blocked, the protein localized to distinct cytoplasmic spots (A. Domi and G. Beaud, J. Gen. Virol. 81:1231-1235, 2000). Here these I3L-positive spots were characterized in more detail. By using an anti-I3L peptide antibody we confirmed that the protein localized to the cytoplasmic sites of viral DNA replication by both immunofluorescence and electron microscopy (EM). Before replication had started or when replication was inhibited with hydroxyurea or cytosine arabinoside, I3L localized to distinct cytoplasmic punctate structures of homogeneous size. We show that these structures are not incoming cores or cytoplasmic sites of VV early mRNA accumulation. Instead, morphological and quantitative data indicate that they are specialized sites where the parental DNA accumulates after its release from incoming viral cores. By EM, these sites appeared as complex, electron-dense structures that were intimately associated with the cellular endoplasmic reticulum (ER). By double labeling of cryosections we show that they contain DNA and a viral early protein, the gene product of E8R. Since E8R is a membrane protein that is able to bind to DNA, the localization of this protein to the I3L puncta suggests that they are composed of membranes. The results are discussed in relation to our previous data showing that the process of viral DNA replication also occurs in close association with the ER.
Collapse
Affiliation(s)
- Sonja Welsch
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
46
|
Doglio L, De Marco A, Schleich S, Roos N, Krijnse Locker J. The Vaccinia virus E8R gene product: a viral membrane protein that is made early in infection and packaged into the virions' core. J Virol 2002; 76:9773-86. [PMID: 12208956 PMCID: PMC136492 DOI: 10.1128/jvi.76.19.9773-9786.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VV), a member of the poxvirus family, is unique among most other DNA viruses in that both transcription and DNA replication occur in the cytoplasm of the host cell. It was recently shown by electron microscopy (EM) that soon after viral DNA synthesis is initiated in HeLa cells, the replication sites become enwrapped by the membrane of the endoplasmic reticulum (ER). In the same study, a novel VV membrane protein, the E8R gene product, that may play a role in the ER wrapping process was identified (N. Tolonen, L. Doglio, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:2031-2046, 2001). In the present study, the gene product of E8R was characterized both biochemically and morphologically. We show that E8R is made predominantly early in infection but is packaged into the virion. On two-dimensional gel electrophoresis, the protein appeared as a single spot throughout the VV life cycle; however, in the assembled virion, the protein underwent several modifications which resulted in a change in its molecular weight and its isoelectric point. EM of labeled cryosections of infected HeLa cells showed that the protein localized to the ER and to membranes located on one side of the Golgi complex as early as 1 h postinfection. Late in infection, E8R was additionally associated with membranes of immature virions and with intracellular mature viruses. Although E8R is predominantly associated with membranes, we show that the protein is associated with viral cores; the protein is present in cores made with NP-40-dithiothreitol as well as in incoming cores, the result of the viral entry process, early in infection. Finally, we show that E8R can be phosphorylated in vitro by the viral kinase F10L. It is able to bind DNA in vitro, and this binding may be modulated by phosphorylation by F10L. A putative role of the E8R gene product throughout the VV life cycle is discussed.
Collapse
Affiliation(s)
- Laura Doglio
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
47
|
Sancho MC, Schleich S, Griffiths G, Krijnse-Locker J. The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J Virol 2002; 76:8318-34. [PMID: 12134037 PMCID: PMC155139 DOI: 10.1128/jvi.76.16.8318-8334.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that upon infection of HeLa cells with modified vaccinia virus Ankara (MVA), assembly is blocked at a late stage of infection and immature virions (IVs) accumulate (G. Sutter and B. Moss, Proc. Natl. Acad. Sci. USA 89:10847-10851, 1992). In the present study the morphogenesis of MVA in HeLa cells was studied in more detail and compared to that under two conditions that permit the production of infectious particles: infection of HeLa cells with the WR strain of vaccinia virus (VV) and infection of BHK cells with MVA. Using several quantitative and qualitative assays, we show that early in infection, MVA in HeLa cells behaves in a manner identical to that under the permissive conditions. By immunofluorescence microscopy (IF) at late times of infection, the labelings for an abundant membrane protein of the intracellular mature virus, p16/A14L, and the viral DNA colocalize under permissive conditions, whereas in HeLa cells infected with MVA these two structures do not colocalize to the same extent. In both permissive and nonpermissive infection, p16-labeled IVs first appear at 5 h postinfection. In HeLa cells infected with MVA, IVs accumulated predominantly outside the DNA regions, whereas under permissive conditions they were associated with the viral DNA. At 4 h 30 min, the earliest time at which p16 is detected, the p16 labeling was found predominantly in a small number of distinct puncta by IF, which were distinct from the sites of DNA in both permissive and nonpermissive infection. By electron microscopy, no crescents or IVs were found at this time, and the p16-labeled structures were found to consist of membrane-rich vesicles that were in continuity with the cellular endoplasmic reticulum. Over the next 30 min of infection, a large number of p16-labeled crescents and IVs appeared abruptly under both permissive and nonpermissive conditions. Under permissive conditions, these IVs were in close association with the sites of DNA, and a significant amount of these IVs engulfed the viral DNA. In contrast, under nonpermissive conditions, the IVs and DNA were mostly in separate locations and relatively few IVs acquired DNA. Our data show that in HeLa cells MVA forms normal DNA replication sites and normal viral precursor membranes but the transport between these two structures is inhibited.
Collapse
Affiliation(s)
- M Carmen Sancho
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
48
|
Mallardo M, Leithe E, Schleich S, Roos N, Doglio L, Krijnse Locker J. Relationship between vaccinia virus intracellular cores, early mRNAs, and DNA replication sites. J Virol 2002; 76:5167-83. [PMID: 11967332 PMCID: PMC136133 DOI: 10.1128/jvi.76.10.5167-5183.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus assembly, a late event in the life cycle of vaccinia virus (VV), is preceded by a number of steps that all occur in the cytoplasm of the infected host cell: virion entry, delivery of the viral core into the cytoplasm, and transcription from these cores of early mRNAs, followed by the process of DNA replication. In the present study the quantitative and structural relationships between these distinct steps of VV morphogenesis were investigated. We show that viral RNA and DNA synthesis increases linearly with increasing amounts of incoming cores. Moreover, at multiplicities of infection that result in 10 to 40 cores per cell, an approximately 1:1 ratio between cores and sites of DNA replication exists, suggesting that each core is infectious. We have shown previously that VV early mRNAs collect in distinct granular structures that recruit components of the host cell translation machinery. Strikingly, these structures appeared to form some distance away from intracellular cores (M. Mallardo, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:3875-3891, 2001). In the present study the intracellular locations of the sites of early mRNA accumulation and those of the subsequent process of DNA replication were compared. We show that these are distinct structures that have different intracellular locations. Finally, we study the fate of the parental DNA after core uncoating. By electron microscopy, cores were found close to membranes of the endoplasmic reticulum (ER) and the parental DNA, once it had left the core, appeared to associate preferentially with the cytosolic side of those membranes. Since we have previously shown that the process of DNA replication occurs in an ER-enclosed cytosolic "subcompartment" (N. Tolonen, L. Doglio, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:2031-2046, 2001), the present data suggest that the parental DNA is released into the cytosol and associates with the same membranes where DNA replication is subsequently initiated. The combined data are discussed with respect to the cytosolic organization of VV morphogenesis.
Collapse
Affiliation(s)
- Massimo Mallardo
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|