1
|
van Ginkel CJ, Baars CD, Tiemessen DM, Jansen CF, Martens FM, Schalken JA, Janssen DA. Hyaluronic acid: Function and location in the urothelial barrier for bladder pain syndrome/interstitial cystitis, an in vitro study. PLoS One 2025; 20:e0318277. [PMID: 40009603 PMCID: PMC11864510 DOI: 10.1371/journal.pone.0318277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Disruption of the glycosaminoglycan (GAG)-layer and urothelial barrier is an important aspect of the pathophysiology of bladder pain syndrome/ interstitial cystitis. Intravesical hyaluronic acid (HA) is often used in treatments for IC/BPS, however the role in the urothelial barrier is unknown. This study aims to clarify the location and functional contribution of HA in the urothelium, using an in vitro model. Immunohistochemistry was performed on human and porcine biopsies and on porcine cell cultures to evaluate the location of HA. Functional contribution was assessed through transepithelial electrical resistance measurements and the effects on gene expression in a differentiated primary porcine urothelial cell model. HA was found throughout in the urothelium and most abundant around the basal layer. Digestion of HA increased impermeability of the urothelium, contrasting with the effect of protamine sulfate (PS). After HA digestion, quantitative PCR analysis revealed upregulation of HA-synthesizing gene (HAS3) and the inflammatory marker (IL8). Treatment with HA and/or chondroitin sulfate therapy in undamaged cells upregulated genes related to GAG synthesis, barrier markers and inflammation. In PS-damaged cells, GAG therapy only upregulated genes associated with HA synthesis and inflammation, without affecting barrier recovery speed. These results emphasize the interaction of HA on urothelial cell inflammation and barrier repair physiology. HA seems to not directly restore the urothelial luminal GAG layer but influences barrier integrity through its interactions with urothelial cells.
Collapse
Affiliation(s)
| | - Cléo D.M. Baars
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien M. Tiemessen
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Frank M.J. Martens
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick A.W. Janssen
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Hsu CC, Chen SY, Ko PY, Kwan FC, Su WR, Jou IM, Wu PT. MicroRNA-146a gene transfer ameliorates senescence and senescence-associated secretory phenotypes in tendinopathic tenocytes. Aging (Albany NY) 2024; 16:2702-2714. [PMID: 38309291 PMCID: PMC10911367 DOI: 10.18632/aging.205505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Tendinopathy is influenced by multiple factors, including chronic inflammation and aging. Senescent cells exhibit characteristics such as the secretion of matrix-degrading enzymes and pro-inflammatory cytokines, collectively known as senescence-associated secretory phenotypes (SASPs). Many of these SASP cytokines and enzymes are implicated in the pathogenesis of tendinopathy. MicroRNA-146a (miR-146a) blocks senescence by targeting interleukin-1β (IL-1β) receptor-associated kinase 4 (IRAK-4) and TNF receptor-associated factor 6 (TRAF6), thus inhibiting NF-κB activity. The aims of this study were to (1) investigate miR-146a expression in tendinopathic tendons and (2) evaluate the role of miR-146a in countering senescence and SASPs in tendinopathic tenocytes. METHODS MiR-146a expression was assessed in human long head biceps (LHB) and rat tendinopathic tendons by in situ hybridization. MiR-146a over-expression in rat primary tendinopathic tenocytes was achieved by lentiviral vector-mediated precursor miR-146a transfer (LVmiR-146a). Expression of various senescence-related markers was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting and immunofluorescence. MiR-146a expression showed a negative correlation with the severity of tendinopathy in human and rat tendinopathic tendons (p<0.001). RESULTS Tendinopathic tenocyte transfectants overexpressing miR-146a exhibited downregulation of various senescence and SASP markers, as well as the target molecules IRAK-4 and TRAF6, and the inflammatory mediator phospho-NF-κB. Additionally, these cells showed enhanced nuclear staining of high mobility group box 1 (HMGB1) compared to LVmiR-scramble-transduced controls in response to IL-1β stimulation. CONCLUSIONS We demonstrate that miR-146a expression is negatively correlated with the progression of tendinopathy. Moreover, its overexpression protects tendinopathic tenocytes from SASPs and senescence through the IRAK-4/TRAF6/NF-kB pathway.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fa-Chuan Kwan
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ren Su
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- GEG Orthopedic Clinic, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopaedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Kianpour M, Huang CW, Vejvisithsakul PP, Wang JY, Li CF, Shiao MS, Pan CT, Shiue YL. Aptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancer. Int J Biol Macromol 2023; 245:125510. [PMID: 37353120 DOI: 10.1016/j.ijbiomac.2023.125510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The objectives were to identify the functional domains of a potential oncoprotein, cell migration inducing hyaluronidase 2 (CEMIP2), evaluate its expression levels and roles in colorectal cancer (CRC), and develop an aptamer-based nanoparticle for targeted therapy. Data mining on TCGA identified that CEMIP2 might play oncogenic roles in CRC. In a local cohort, CEMIP2 mRNA levels significantly stepwise increase in CRC patients with higher stages, and high CEMIP2 confers worse disease-free survival. In addition, CEMIP2 mRNA levels significantly correlated to hyaluronan levels in sera from CRC patients. Deletion mapping identified that CEMIP2 containing G8 and PANDER-like domains preserved hyaluronidase activity and oncogenic roles, including cell proliferation, anchorage-independent cell growth, cell migration and invasion, and human umbilical vein endothelial cell (HUVEC) tube formation in CRC-derived cells. A customized monoclonal mouse anti-human CEMIP2 antibody probing the PANDER-like domain (anti-289307) counteracted CEMIP2-mediated carcinogenesis in vitro. Cell-SELEX pinpointed an aptamer, aptCEMIP2(101), specifically interacted with the full-length CEMIP2, potentially involving its 3D structure. Treatments with aptCEMIP2(101) significantly reduced CEMIP2-mediated tumorigenesis in vitro. Mesoporous silica nanoparticles (MSN) carrying atpCEMIP2(101) and Dox were fabricated. Dox@MSN, MSN-aptCEMIP2(101), and Dox@MSN-aptCEMIP2(101) significantly suppressed tumorigenesis in vitro compared to the Mock, while Dox@MSN-aptCEMIP2(101) showed substantially higher effects compared to Dox@MSN and MSN-aptCEMIP2(101) in CRC-derived cells. Our study identified a novel oncogene and developed an effective aptamer-based targeted therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900214, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
4
|
Tsuji R, Ogata S, Mochizuki S. Interaction between CD44 and highly condensed hyaluronic acid through crosslinking with proteins. Bioorg Chem 2022; 121:105666. [DOI: 10.1016/j.bioorg.2022.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 02/06/2022] [Indexed: 11/02/2022]
|
5
|
Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:559-572. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| |
Collapse
|
6
|
Redox and Inflammatory Signaling, the Unfolded Protein Response, and the Pathogenesis of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:333-373. [PMID: 34019276 DOI: 10.1007/978-3-030-68748-9_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein folding overload and oxidative stress disrupt endoplasmic reticulum (ER) homeostasis, generating reactive oxygen species (ROS) and activating the unfolded protein response (UPR). The altered ER redox state induces further ROS production through UPR signaling that balances the cell fates of survival and apoptosis, contributing to pulmonary microvascular inflammation and dysfunction and driving the development of pulmonary hypertension (PH). UPR-induced ROS production through ER calcium release along with NADPH oxidase activity results in endothelial injury and smooth muscle cell (SMC) proliferation. ROS and calcium signaling also promote endothelial nitric oxide (NO) synthase (eNOS) uncoupling, decreasing NO production and increasing vascular resistance through persistent vasoconstriction and SMC proliferation. C/EBP-homologous protein further inhibits eNOS, interfering with endothelial function. UPR-induced NF-κB activity regulates inflammatory processes in lung tissue and contributes to pulmonary vascular remodeling. Conversely, UPR-activated nuclear factor erythroid 2-related factor 2-mediated antioxidant signaling through heme oxygenase 1 attenuates inflammatory cytokine levels and protects against vascular SMC proliferation. A mutation in the bone morphogenic protein type 2 receptor (BMPR2) gene causes misfolded BMPR2 protein accumulation in the ER, implicating the UPR in familial pulmonary arterial hypertension pathogenesis. Altogether, there is substantial evidence that redox and inflammatory signaling associated with UPR activation is critical in PH pathogenesis.
Collapse
|
7
|
Carvalho AM, Soares da Costa D, Paulo PMR, Reis RL, Pashkuleva I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater 2021; 119:114-124. [PMID: 33091625 DOI: 10.1016/j.actbio.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
CD44 and the receptor for hyaluronic acid-mediated motility (RHAMM) are the main hyaluronan (HA) receptors. They are commonly overexpressed in different cancers activating signaling pathways related to tumor progression, metastasis and chemoresistance. Besides their involvement in signal transduction via interaction with HA, currently, there is a little information about the possible crosstalk between CD44 and RHAMM and the role of HA in this process. In the present work, we used immunocytochemistry combined with Förster resonance energy transfer (FRET) microscopy and co-immunoprecipitation to elucidate the involvement of HA in CD44 and RHAMM expression, co-localization and crosstalk. We studied breast cancer cells lines with different degrees of invasiveness and expression of these receptors in the absence of exogenous HA and compared the data with the results obtained for cultures supplemented with either soluble HA or seeded on substrates with end-on immobilized HA. Our results demonstrated that cells response depends on the HA presentation: CD44/RHAMM complexation was upregulated in all cell lines upon interaction with immobilized HA, but not with its soluble form. Moreover, the results showed that the expression of both CD44 and RHAMM is regulated via interactions with HA indicating cell-specific feedback loop(s) in the signaling cascade.
Collapse
Affiliation(s)
- Ana M Carvalho
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal
| | - Iva Pashkuleva
- 3B's Research Group - Biomaterials, Biodegradable and Biomimetics, Avepark - Parque de Ciência e Tecnologia Zona Industrial da Gandra 4805-017 Barco GMR, Portugal; ICVS/3B's - PT Government Associate Laboratory, University of Minho, Portugal.
| |
Collapse
|
8
|
Kasai K, Kuroda Y, Takabuchi Y, Nitta A, Kobayashi T, Nozaka H, Miura T, Nakamura T. Phosphorylation of Thr328 in hyaluronan synthase 2 is essential for hyaluronan synthesis. Biochem Biophys Res Commun 2020; 533:732-738. [DOI: 10.1016/j.bbrc.2020.08.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/27/2023]
|
9
|
Asparuhova MB, Kiryak D, Eliezer M, Mihov D, Sculean A. Activity of two hyaluronan preparations on primary human oral fibroblasts. J Periodontal Res 2018; 54:33-45. [PMID: 30264516 PMCID: PMC6586051 DOI: 10.1111/jre.12602] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
Background and Objective The potential benefit of using hyaluronan (HA) in reconstructive periodontal surgery is still a matter of debate. The aim of the present study was to evaluate the effects of two HA formulations on human oral fibroblasts involved in soft tissue wound healing/regeneration. Material and Methods Metabolic, proliferative and migratory abilities of primary human palatal and gingival fibroblasts were examined upon HA treatment. To uncover the mechanisms whereby HA influences cellular behavior, wound healing‐related gene expression and activation of signaling kinases were analyzed by qRT‐PCR and immunoblotting, respectively. Results The investigated HA formulations maintained the viability of oral fibroblasts and increased their proliferative and migratory abilities. They enhanced expression of genes encoding type III collagen and transforming growth factor‐β3, characteristic of scarless wound healing. The HAs upregulated the expression of genes encoding pro‐proliferative, pro‐migratory, and pro‐inflammatory factors, with only a moderate effect on the latter in gingival fibroblasts. In palatal but not gingival fibroblasts, an indirect effect of HA on the expression of matrix metalloproteinases 2 and 3 was detected, potentially exerted through induction of pro‐inflammatory cytokines. Finally, our data pointed on Akt, Erk1/2 and p38 as the signaling molecules whereby the HAs exert their effects on oral fibroblasts. Conclusion Both investigated HA formulations are biocompatible and enhance the proliferative, migratory and wound healing properties of cell types involved in soft tissue wound healing following regenerative periodontal surgery. Our data further suggest that in gingival tissues, the HAs are not likely to impair the healing process by prolonging inflammation or causing excessive MMP expression at the repair site.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deniz Kiryak
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Zhang Y, Yang C, Cheng H, Fan Z, Huang Q, Lu Y, Fan K, Luo G, Jin K, Wang Z, Liu C, Yu X. Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions. J Hematol Oncol 2018; 11:14. [PMID: 29386069 PMCID: PMC5793409 DOI: 10.1186/s13045-017-0551-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023] Open
Abstract
A poor prognosis of pancreatic ductal adenocarcinoma (PDAC) associated with chemoresistance has not changed for the past three decades. A multidisciplinary diagnosis followed by surgery and chemo(radiation)therapy is the main treatment approach. However, gemcitabine- and 5-fluorouracil-based therapies did not present satisfying outcomes. Novel regimens targeting pancreatic cancer cells, the tumor microenvironment, and immunosuppression are emerging. Biomarkers concerning the treatment outcome and patient selection are being discovered in preclinical or clinical studies. Combination therapies of classic chemotherapeutic drugs and novel agents or novel therapeutic combinations might bring hope to the dismal prognosis for PDAC patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Yu Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Zhengshi Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
11
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017; 49:e406. [PMID: 29611542 PMCID: PMC5750480 DOI: 10.1038/emm.2017.255] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Pogoda K, Bucki R, Byfield FJ, Cruz K, Lee T, Marcinkiewicz C, Janmey PA. Soft Substrates Containing Hyaluronan Mimic the Effects of Increased Stiffness on Morphology, Motility, and Proliferation of Glioma Cells. Biomacromolecules 2017; 18:3040-3051. [PMID: 28858529 DOI: 10.1021/acs.biomac.7b00324] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unlike many other cancer cells that grow in tumors characterized by an abnormally stiff collagen-enriched stroma, glioma cells proliferate and migrate in the much softer environment of the brain, which generally lacks the filamentous protein matrix characteristic of breast, liver, colorectal, and other types of cancer. Glial cell-derived tumors and the cells derived from them are highly heterogeneous and variable in their mechanical properties, their response to treatments, and their properties in vitro. Some glioma samples are stiffer than normal brain when measured ex vivo, but even those that are soft in vitro stiffen after deformation by pressure gradients that arise in the tumor environment in vivo. Such mechanical differences can strongly alter the phenotype of cultured glioma cells. Alternatively, chemical signaling might elicit the same phenotype as increased stiffness by activating intracellular messengers common to both initial stimuli. In this study the responses of three different human glioma cell lines to changes in substrate stiffness are compared with their responses on very soft substrates composed of a combination of hyaluronic acid and a specific integrin ligand, either laminin or collagen I. By quantifying cell morphology, stiffness, motility, proliferation, and secretion of the cytokine IL-8, glioma cell responses to increased stiffness are shown to be nearly identically elicited by substrates containing hyaluronic acid, even in the absence of increased stiffness. PI3-kinase activity was required for the response to hyaluronan but not to stiffness. This outcome suggests that hyaluronic acid can trigger the same cellular response, as can be obtained by mechanical force transduced from a stiff environment, and demonstrates that chemical and mechanical features of the tumor microenvironment can achieve equivalent reactions in cancer cells.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Institute of Nuclear Physics Polish Academy of Sciences , PL-31342 Krakow, Poland
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok , 15-222 Bialystok, Poland
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Katrina Cruz
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Tongkeun Lee
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States
| | - Cezary Marcinkiewicz
- CoE Department of Bioengineering, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania , 3340 Smith Walk, Philadelphia, Pennsylvania 19104, United States.,Department of Physiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
13
|
Sato N, Kohi S, Hirata K, Goggins M. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight. Cancer Sci 2016; 107:569-75. [PMID: 26918382 PMCID: PMC4970823 DOI: 10.1111/cas.12913] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/02/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most deadly disease worldwide, with the lowest survival rate among all cancer types. Recent evidence suggests that hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer progression. Pancreatic ductal adenocarcinoma is typically characterized by a dense desmoplastic stroma containing a large amount of HA. Accumulation of HA promotes tumor growth in mice and correlates with poor prognosis in patients with PDAC. Because HA is involved in various malignant behaviors of cancer (such as increased cell proliferation, migration, invasion, angiogenesis, and chemoresistance), inhibiting HA synthesis/signaling or depleting HA in tumor stroma could represent a promising therapeutic strategy against PDAC. In this review article, we summarize our current understanding of the role of HA in the progression of PDAC and discuss possible therapeutic approaches targeting HA.
Collapse
Affiliation(s)
- Norihiro Sato
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Shiro Kohi
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Keiji Hirata
- Department of Surgery 1School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Michael Goggins
- Department of PathologyJohns Hopkins Medical InstitutionsBaltimoreMarylandUSA
| |
Collapse
|
14
|
Sato N, Cheng XB, Kohi S, Koga A, Hirata K. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharm Sin B 2016; 6:101-5. [PMID: 27006892 PMCID: PMC4788704 DOI: 10.1016/j.apsb.2016.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 01/04/2023] Open
Abstract
Progression of cancer is often associated with interactions between cancer cells and extracellular matrix (ECM) surrounding them. Increasing evidence has suggested that accumulation of hyaluronan (HA), a major component of ECM, provides a favorable microenvironment for cancer progression. Pancreatic ductal adenocarcinoma (PDAC) is characterized typically by a dense desmoplastic stroma with a large amount of HA, making this molecule as an attractive target for therapy. Several studies have shown efficacy of inhibitors of HA synthesis or signaling for the treatment of PDAC. Recent studies have also demonstrated substantial improvements in the effects of chemotherapy by a targeted depletion of stromal HA in PDAC using an enzymatic agent. Thus, targeting HA has been recognized as a promising therapeutic strategy to treat this highly aggressive neoplasm. In this review article, we summarize our current understanding of the role of HA in the progression of PDAC and discuss possible therapeutic approaches targeting HA.
Collapse
|
15
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 559] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
16
|
Tamura R, Yokoyama Y, Yoshida H, Imaizumi T, Mizunuma H. 4-Methylumbelliferone inhibits ovarian cancer growth by suppressing thymidine phosphorylase expression. J Ovarian Res 2014; 7:94. [PMID: 25304388 PMCID: PMC4198731 DOI: 10.1186/s13048-014-0094-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Background 4-Methylumbelliferone (4-MU), a hyaluronan (HA) synthesis inhibitor, has antitumor activity in cancer cells. However, few studies have focused on its effects on ovarian cancer. The aim of this study was to investigate the effects of 4-MU on ovarian cancer and to elucidate its mechanism of action. Methods The HRA human ovarian serous adenocarcinoma cell line was used in this study. The effects of 4-MU on cell proliferation, migration, and invasion were determined by using in vitro assays as well as an in vivo rat peritoneal carcinomatosis model. The expression of HA synthase (HAS), CD44 HA receptor, vascular endothelial growth factor (VEGF), and thymidine phosphorylase (TP) mRNA in HRA cells was analyzed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results 4-MU administration inhibited the growth of peritoneal tumors and significantly prolonged survival. In vitro experiments showed that 4-MU inhibited HRA cell proliferation in a dose-dependent manner, while it did not affect HRA cell invasion and migration. 4-MU significantly decreased TP mRNA expression in HRA cells. On the other hand, since HAS2, CD44, and VEGF endogenous mRNA expression levels were very low in HRA cells, it was impossible to evaluate the effect of 4-MU treatment. Conclusions These results suggest that 4-MU exerts its antitumor effect on ovarian cancer through suppressing TP expression.
Collapse
Affiliation(s)
- Ryosuke Tamura
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Hideki Mizunuma
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
17
|
Luo N, Knudson W, Askew EB, Veluci R, Knudson CB. CD44 and hyaluronan promote the bone morphogenetic protein 7 signaling response in murine chondrocytes. Arthritis Rheumatol 2014; 66:1547-58. [PMID: 24497488 DOI: 10.1002/art.38388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Cell-matrix interactions promote cartilage homeostasis. We previously found that Smad1, the transcriptional modulator of the canonical bone morphogenetic protein 7 (BMP-7) pathway, interacted with the cytoplasmic domain of CD44, the principal hyaluronan receptor on chondrocytes. To elucidate the physiologic function of CD44-Smad1 interactions, as well as the role of hyaluronan, we studied the response of chondrocytes isolated from CD44(-/-) and BALB/c (wild-type [WT]) mice to stimulation with BMP-7. METHODS In primary murine chondrocytes, CD44 expression was decreased by small interfering RNA (siRNA) transfection or was enhanced by plasmid transfection. Pericellular hyaluronan was removed by hyaluronidase treatment, or its endogenous synthesis was inhibited. Changes in response to BMP-7 stimulation were evaluated by Western blotting of Smad1 phosphorylation and aggrecan messenger RNA (mRNA) expression. RESULTS Chondrocytes from CD44(-/-) mice and WT mice transfected with CD44 siRNA were less responsive than untransfected chondrocytes from WT mice to BMP-7. CD44(-/-) mouse chondrocytes transfected with pCD44 showed increased sensitivity to BMP-7. Significant increases in aggrecan mRNA were observed in WT mouse chondrocytes in response to 10 ng/ml of BMP-7, whereas at least 100 ng/ml of BMP-7 was required for CD44(-/-) mouse chondrocytes. However, in chondrocytes from CD44(-/-) and WT mice, hyaluronidase treatment decreased cellular responses to BMP-7. Treatment of both bovine and murine chondrocytes with 4-methylumbelliferone to reduce the synthesis of endogenous hyaluronan confirmed that hyaluronan promoted BMP-7 signaling. CONCLUSION Taken together, these investigations into the mechanisms underlying BMP-7 signaling in chondrocytes revealed that while hyaluronan-dependent pericellular matrix is critical for BMP-7 signaling, the expression of CD44 promotes the cellular response to lower concentrations of BMP-7.
Collapse
Affiliation(s)
- Na Luo
- East Carolina University, Brody School of Medicine, Greenville, North Carolina; Nankai University School of Medicine, Tianjin, China
| | | | | | | | | |
Collapse
|
18
|
Seino S, Takeshita F, Asari A, Masuda Y, Kunou M, Ochiya T. No influence of exogenous hyaluronan on the behavior of human cancer cells or endothelial cell capillary formation. J Food Sci 2014; 79:T1469-75. [PMID: 24894153 DOI: 10.1111/1750-3841.12500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
UNLABELLED Hyaluronan (HA), a type of glycosaminoglycan used to construct the extracellular matrix, is involved in the proliferation and motility of cells, including cancer cells. The aim of this study was to determine whether exogenous HA has an influence on cancer in vitro and in vivo. High-molecular-weight HA (900 kDa) and low-molecular-weight HA (10 kDa) were added to several types of cancer cell lines in vitro, and proliferation and invasion were assessed. The effect of HA on capillary formation by human umbilical vein endothelial cells was also analyzed. The results showed that both types of HA had no apparent effect on cellular proliferation, invasion, or capillary formation. In an animal study, the 2 types of HA were orally administered to tumor-bearing mice at a dosage of 200 mg/kg/d for 4 wk. Analysis using an in vivo imaging system revealed that tumor proliferation and metastasis were not greatly altered by HA administration. Furthermore, CD31 immunohistochemical staining revealed no obvious change in tumor microvessels. Taken together, these results demonstrate that exogenously administered HA has little effect on cancer. This study may support the safety of various forms of HA administration, including oral intake. PRACTICAL APPLICATION Orally administered hyaluronan was recently found to have beneficial effects. However, the effect of exogenous hyaluronan on cancer remains unclear. Our findings support the safety of orally administered hyaluronan and its use as a functional food ingredient.
Collapse
Affiliation(s)
- Satoshi Seino
- Div. of Molecular and Cellular Medicine, Natl. Cancer Center Research Inst, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Research & Development Div, Kewpie Corp., 2-5-7, Sengawa-cho, Chofu-shi, Tokyo, 182-0002, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Mima K, Beppu T, Ishiko T, Chikamoto A, Nakagawa S, Hayashi H, Watanabe M, Sakamaki K, Baba H. Preoperative serum hyaluronic acid level as a prognostic factor in patients undergoing hepatic resection for hepatocellular carcinoma. Br J Surg 2014; 101:269-76. [DOI: 10.1002/bjs.9343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Hyaluronic acid (HA) probably plays a critical role in tumorigenesis. The clinical significance of serum HA concentration in patients with hepatocellular carcinoma (HCC) remains to be elucidated. This study analysed the relationship between preoperative serum HA levels and prognosis after hepatic resection in patients with HCC.
Methods
Consecutive patients who underwent hepatic resection for HCC between September 1999 and March 2012 were included in this retrospective study. Serum HA levels were measured within 4 weeks before surgery by an immunoturbidimetric automated latex assay. The cut-off level for preoperative serum HA was validated using a time-dependent receiver operating characteristic (ROC) curve analysis. The prognostic impact of preoperative serum HA levels was analysed using Cox proportional hazards models.
Results
A total of 506 patients of median age 66 years (405 men, 80·0 per cent) were analysed. The median length of follow-up was 32 months. High serum HA levels (100 ng/ml or above) were associated with shorter recurrence-free survival (P < 0·001) (hazard ratio (HR) 1·50, 95 per cent confidence interval 1·17 to 1·93; P = 0·002) and overall survival (P = 0·001) (HR 1·46, 1·03 to 2·07; P = 0·033). In patients with HCC without severe liver fibrosis, serum HA level was correlated with multiple tumours (P = 0·039), early recurrence (P = 0·033), and poor recurrence-free (P < 0·001) and overall (P = 0·024) survival.
Conclusion
High preoperative serum HA levels predict poor prognosis in patients with HCC after hepatic resection, and may serve as a future biomarker.
Collapse
Affiliation(s)
- K Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - T Beppu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Multidisciplinary Treatment for Gastroenterological Cancer, Kumamoto University Hospital, Kumamoto, Japan
| | - T Ishiko
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - A Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - S Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - H Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - M Watanabe
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - K Sakamaki
- Department of Biostatistics and Epidemiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - H Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Kuroda Y, Kasai K, Nanashima N, Nozaka H, Nakano M, Chiba M, Yoneda M, Nakamura T. 4-Methylumbelliferone inhibits the phosphorylation of hyaluronan synthase 2 induced by 12-O-tetradecanoyl-phorbol-13-acetate. Biomed Res 2013; 34:97-103. [PMID: 23594483 DOI: 10.2220/biomedres.34.97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of 4-methylumbelliferone (MU), a hyaluronan synthase-suppressor, on O-linked β-Nacetylglucosaminylation (O-GlcNAcylation) was investigated in cultured human skin fibroblasts, and we found that MU stimulated O-GlcNAcylation of the cellular proteins. Since O-GlcNAcylation affects protein phosphorylation via Ser/Thr kinases, we examined the effect of MU on both the phosphorylation of hyaluronan synthase 2 (HAS2) and hyaluronan production. The cells were cultured in the presence or absence of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and MU independently or in combination. The protein fraction of each cell culture was extracted and divided into 2 parts-phosphorylated and non-phosphorylated fractions-by immobilized metal-affinity chromatography. The hyaluronan level in the medium was determined by an ELISA-like assay. Addition of MU decreased the level of hyaluronan in the medium and that of HAS2 in the phosphorylated protein fraction. On the contrary, the addition of TPA increased the levels of both of them. Interestingly, the combination of TPA and MU lowered the levels of them in treated cells as compared to those in untreated control cells. These results suggest that TPA activated protein kinase C (PKC), which stimulates the phosphorylation of HAS2, and increased hyaluronan production. Further, MU may inhibit the phosphorylation of HAS2 by PKC through the stimulation of O-GlcNAcylation.
Collapse
Affiliation(s)
- Yoshiyuki Kuroda
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mellor L, Knudson CB, Hida D, Askew EB, Knudson W. Intracellular domain fragment of CD44 alters CD44 function in chondrocytes. J Biol Chem 2013; 288:25838-25850. [PMID: 23884413 DOI: 10.1074/jbc.m113.494872] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.
Collapse
Affiliation(s)
- Liliana Mellor
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Daisuke Hida
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Emily B Askew
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834.
| |
Collapse
|
22
|
Critical role of hyaluronidase-2 during preimplantation embryo development. Mol Hum Reprod 2013; 19:590-9. [DOI: 10.1093/molehr/gat032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Wu CL, Chou HC, Li JM, Chen YW, Chen JH, Chen YH, Chan HL. Hyaluronic acid-dependent protection against alkali-burned human corneal cells. Electrophoresis 2013; 34:388-96. [DOI: 10.1002/elps.201200342] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Chieh-Lin Wu
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science; National Hsinchu University of Education; Hsinchu; Taiwan
| | - Ji-Min Li
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| | - Jui-Hsiang Chen
- Department of Biomedical Materials,; Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu; Taiwan
| | - Yu-Hua Chen
- Department of Biomedical Materials,; Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu; Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences; National Tsing Hua University; Hsinchu; Taiwan
| |
Collapse
|
24
|
Zhu X, Morales FC, Agarwal NK, Dogruluk T, Gagea M, Georgescu MM. Moesin is a glioma progression marker that induces proliferation and Wnt/β-catenin pathway activation via interaction with CD44. Cancer Res 2012; 73:1142-55. [PMID: 23221384 DOI: 10.1158/0008-5472.can-12-1040] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moesin is an ERM family protein that connects the actin cytoskeleton to transmembrane receptors. With the identification of the ERM family protein NF2 as a tumor suppressor in glioblastoma, we investigated roles for other ERM proteins in this malignancy. Here, we report that overexpression of moesin occurs generally in high-grade glioblastoma in a pattern correlated with the stem cell marker CD44. Unlike NF2, moesin acts as an oncogene by increasing cell proliferation and stem cell neurosphere formation, with its ectopic overexpression sufficient to shorten survival in an orthotopic mouse model of glioblastoma. Moesin was the major ERM member activated by phosphorylation in glioblastoma cells, where it interacted and colocalized with CD44 in membrane protrusions. Increasing the levels of moesin competitively displaced NF2 from CD44, increasing CD44 expression in a positive feedback loop driven by the Wnt/β-catenin signaling pathway. Therapeutic targeting of the moesin-CD44 interaction with the small-molecule inhibitor 7-cyanoquinocarcinol (DX-52-1) or with a CD44-mimetic peptide specifically reduced the proliferation of glioblastoma cells overexpressing moesin, where the Wnt/β-catenin pathway was activated. Our findings establish moesin and CD44 as progression markers and drugable targets in glioblastoma, relating their oncogenic effects to activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Department of Neuro-Oncology and Veterinary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
25
|
SAITO TERUYOSHI, TAMURA DAI, NAKAMURA TATSURO, MAKITA YUKIHISA, ARIYAMA HITOMI, KOMIYAMA KEIJI, YOSHIHARA TOMOKO, ASANO RYUJI. 4-Methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells. Oncol Rep 2012; 29:335-42. [DOI: 10.3892/or.2012.2100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/26/2012] [Indexed: 11/05/2022] Open
|
26
|
KUNG CHANGI, CHEN CHENGYI, YANG CHIHCHANG, LIN CHENGYU, CHEN TIENHUA, WANG HWAISHI. Enhanced membrane-type 1 matrix metalloproteinase expression by hyaluronan oligosaccharides in breast cancer cells facilitates CD44 cleavage and tumor cell migration. Oncol Rep 2012; 28:1808-14. [DOI: 10.3892/or.2012.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
|
27
|
Hanagiri T, Shinohara S, Takenaka M, Shigematsu Y, Yasuda M, Shimokawa H, Nagata Y, Nakagawa M, Uramoto H, So T, Tanaka F. Effects of hyaluronic acid and CD44 interaction on the proliferation and invasiveness of malignant pleural mesothelioma. Tumour Biol 2012; 33:2135-41. [DOI: 10.1007/s13277-012-0473-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/26/2012] [Indexed: 02/02/2023] Open
|
28
|
Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes. Theriogenology 2012; 78:670-7. [DOI: 10.1016/j.theriogenology.2012.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 11/30/2022]
|
29
|
Vercruysse KP. Hyaluronan: a Simple Molecule with Complex Character. RENEWABLE RESOURCES FOR FUNCTIONAL POLYMERS AND BIOMATERIALS 2011:261-291. [DOI: 10.1039/9781849733519-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This review aims to summarize the properties and applications of hyaluronan, a naturally-occurring, anionic polysaccharide. It provides an overview of its physic chemical properties, biosynthesis and biodegradation. It includes a discussion of the principal hyaluronan-binding proteins studied thus far. The existence of such proteins underscores the importance of this polysaccharide in cell-biological processes like cancer, inflammation or wound healing and these properties are discussed. Finally, this review summarizes some of the applications of hyaluronan in medicine, biotechnology and cosmetics.
Collapse
Affiliation(s)
- Koen P. Vercruysse
- Tennessee State University Chemistry Department, 3500 John A. Merritt Blvd, Nashville, TN 37209 USA
| |
Collapse
|
30
|
Fang XJ, Jiang H, Zhao XP, Jiang WM. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7. BMC Cancer 2011; 11:290. [PMID: 21749678 PMCID: PMC3161032 DOI: 10.1186/1471-2407-11-290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 07/12/2011] [Indexed: 12/18/2022] Open
Abstract
Background CD44, a hyaluronan (HA) receptor, is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. The CD44 gene contains 20 exons that are alternatively spliced, giving rise to many CD44 isoforms, perhaps including tumor-specific sequences. Methods Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to detect CD44st mRNA and CD44 protein in sensitive MCF-7, Lovo, K562 and HL-60 cell lines as well as their parental counterparts, respectively. The full length cDNA encoding CD44st was obtained from the total RNA isolated from MCF-7/Adr cells by RT-PCR, and subcloned into the pMD19-T vector. The CD44st gene sequence and open reading frame were confirmed by restriction enzyme analysis and nucleotide sequencing, and then inserted into the eukaryotic expression vector pcDNA3.1. The pcDNA3.1-CD44st was transfected into MCF-7 cells using Lipofectamine. After transfection, the positive clones were obtained by G418 screening. The changes of the MMP-2 and MMP-9 genes and protein levels were detected by RT-PCR and gelatin zymography, respectively. The number of the cells penetrating through the artificial matrix membrane in each group (MCF-7, MCF-7+HA, MCF-7/neo, MCF-7/neo+HA, MCF-7/CD44st, MCF-7/CD44st+HA and MCF-7/CD44st+Anti-CD44+HA) was counted to compare the change of the invasion capability regulated by the CD44st. Erk and P-Erk were investigated by Western blotting to approach the molecular mechanisms of MMP-2 and MMP-9 expression regulated by the CD44st. Results Sensitive MCF-7, Lovo, K562 and HL-60 cells did not contain CD44st mRNA and CD44 protein. In contrast, the multidrug resistance MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells expressed CD44st mRNA and CD44 protein. The CD44st mRNA gene sequence was successfully cloned into the recombinant vector pcDNA3.1 and identified by the two restriction enzymes. It was confirmed that the reconstructed plasmid contained the gene sequence of CD44st that was composed of exons 1 to 4, 16 to 17, and 1 to 205 bases of exons 18. The new gene sequence was sent to NCBI for publication, and obtained the registration number FJ216964. The up-regulated level of the mRNA of the CD44 gene and the CD44 protein were detected, respectively, by RT-PCR and flow cytometry in MCF-7 cells transfected with pcDNA3.1-CD44st. The invasiveness of the cells and the activity of MMP-2 and MMP-9 were clearly activated by HA treatment, and blocked by CD44 neutralizing antibody. MCF-7/CD44st cells pretreated with the neutralizing antibody against CD44, and the inhibitor of MAPKs signaling pathway, could strongly block the expression of P-Erk. Conclusions A new CD44st was expressed in multidrug resistant MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells. The expression vector pcDNA3.1-CD44st was cloned and constructed successfully, and stably transfected into MCF-7 cells. HA could interact with the new CD44st and regulate the expression of MMP-2 and MMP-9, which could increase the invasion capability of MCF-7 cells through the Ras/MAPK signaling pathway.
Collapse
Affiliation(s)
- Xin Jian Fang
- Department of Medical Oncology, The second People's Hospital of Lianyungang (Lianyungang Hospital affiliated to Bengbu medical college), No. 41, Hailian east Road, Lianyungang, Jiangsu 222000, The People's Republic of China
| | | | | | | |
Collapse
|
31
|
Shimabukuro Y, Terashima H, Takedachi M, Maeda K, Nakamura T, Sawada K, Kobashi M, Awata T, Oohara H, Kawahara T, Iwayama T, Hashikawa T, Yanagita M, Yamada S, Murakami S. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. J Cell Physiol 2010; 226:809-21. [DOI: 10.1002/jcp.22406] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Lee JH, Moore LD, Kumar S, Pritchard DG, Ponnazhagan S, Deivanayagam C. Bacteriophage hyaluronidase effectively inhibits growth, migration and invasion by disrupting hyaluronan-mediated Erk1/2 activation and RhoA expression in human breast carcinoma cells. Cancer Lett 2010; 298:238-49. [PMID: 20688428 DOI: 10.1016/j.canlet.2010.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Aberrant hyaluronan production has been implicated in many types of tumor. In this context, hyaluronidase has been explored as a viable therapeutic approach to reduce tumoral hyaluronan. However, elevated levels of hyaluronan in tumors are often associated with high expression levels of cellular hyaluronidases, which consequently produce various sizes of saturated hyaluronan fragments with divergent pro-tumoral activities. The current study shows that different hyaluronan metabolisms of mammalian and microbial hyaluronidases could elicit distinct alterations in cancer cell behavior. Unlike saturated hyaluronan metabolites, unsaturated hyaluronan oligosaccharides produced by bacteriophage hyaluronidase, HylP, had no biological effect on growth of breast carcinoma cells. More importantly, HylP's metabolic process of hyaluronan into non-detrimental oligosaccharides significantly decreased breast cancer cell proliferation, migration and invasion by disrupting Erk1/2 activation and RhoA expression. Our results suggest that it may be possible to exploit HylP's unique enzymatic activity in suppressing hyaluronan-mediated tumor growth and progression.
Collapse
Affiliation(s)
- Joo Hyoung Lee
- Department of Physiology and Biophysics, University of Alabama, Birmingham, AL 35294-4400, USA
| | | | | | | | | | | |
Collapse
|
33
|
Twarock S, Tammi MI, Savani RC, Fischer JW. Hyaluronan stabilizes focal adhesions, filopodia, and the proliferative phenotype in esophageal squamous carcinoma cells. J Biol Chem 2010; 285:23276-84. [PMID: 20463012 DOI: 10.1074/jbc.m109.093146] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyaluronan (HA) is a polysaccharide component in the parenchyma and stroma of human esophageal squamous cell carcinoma (ESCC). Clinically, esophageal cancer represents a highly aggressive tumor type with poor prognosis resulting in a 5-year survival rate of 5%. The aim of the present study was the detailed analysis of the role of HA synthesis for ESCC phenotype in vitro using the ESCC cell line OSC1. In OSC1 cells, pericellular HA-matrix surrounding extended actin-dependent filopodia was detected. The small molecule inhibitor of HA synthesis, 4-methylumbelliferone (4-MU, 0.3 mm) caused loss of these filopodia and focal adhesions and inhibited proliferation and migration. In search of the underlying mechanism cleavage of focal adhesion kinase (FAK) was detected by immunoblotting. In addition, displacing HA by an HA-binding peptide (Pep-1, 500 mug/ml) and digestion of pericellular HA by hyaluronidase resulted in cleavage of focal adhesions. Furthermore, real-time reverse transcription PCR revealed that HA synthase 3 (HAS3) > HAS2 are the predominant HA-synthases in OSC1. Lentiviral transduction with shHAS3, and to a lesser extent with shHAS2, reduced intact FAK protein and filopodia as well as proliferation and migration. Furthermore, down-regulation by lentiviral shRNA of RHAMM (receptor of HA-mediated motility) but not CD44 induced loss of filopodia and caused FAK cleavage. In contrast, knockdown of both HA receptors inhibited proliferation and migration of OSC1. In conclusion, HA synthesis and, in turn, RHAMM and CD44 signaling promoted an activated phenotype of OSC1. Because RHAMM appears to support both filopodia, FAK, and the proliferative and migratory phenotype, it may be promising to explore RHAMM as a potential therapeutic target in esophageal cancer.
Collapse
Affiliation(s)
- Sören Twarock
- Institut für Pharmakologie, Universitätsklinikum Essen, Universität Duisburg-Essen, 45147 Essen, Germany
| | | | | | | |
Collapse
|
34
|
Maślikowski BM, Néel BD, Wu Y, Wang L, Rodrigues NA, Gillet G, Bédard PA. Cellular processes of v-Src transformation revealed by gene profiling of primary cells--implications for human cancer. BMC Cancer 2010; 10:41. [PMID: 20152043 PMCID: PMC2837010 DOI: 10.1186/1471-2407-10-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/12/2010] [Indexed: 01/05/2023] Open
Abstract
Background Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. In this study, we took advantage of several strains of the Rous sarcoma virus (RSV) to characterize the patterns of v-Src-dependent gene expression in two different primary cell types, namely chicken embryo fibroblasts (CEF) and chicken neuroretinal (CNR) cells. We identified a common set of v-Src regulated genes and assessed if their expression is associated with disease-free survival using several independent human tumor data sets. Methods CEF and CNR cells were infected with transforming, non-transforming, and temperature sensitive mutants of RSV to identify the patterns of gene expression in response to v-Src-transformation. Microarray analysis was used to measure changes in gene expression and to define a common set of v-Src regulated genes (CSR genes) in CEF and CNR cells. A clustering enrichment regime using the CSR genes and two independent breast tumor data-sets was used to identify a 42-gene aggressive tumor gene signature. The aggressive gene signature was tested for its prognostic value by conducting survival analyses on six additional tumor data sets. Results The analysis of CEF and CNR cells revealed that cell transformation by v-Src alters the expression of 6% of the protein coding genes of the genome. A common set of 175 v-Src regulated genes (CSR genes) was regulated in both CEF and CNR cells. Within the CSR gene set, a group of 42 v-Src inducible genes was associated with reduced disease- and metastasis-free survival in several independent patient cohorts with breast or lung cancer. Gene classes represented within this group include DNA replication, cell cycle, the DNA damage and stress responses, and blood vessel morphogenesis. Conclusion By studying the v-Src-dependent changes in gene expression in two types of primary cells, we identified a set of 42 inducible genes associated with poor prognosis in breast and lung cancer. The identification of these genes provides a set of biomarkers of aggressive tumor behavior and a framework for the study of cancer cells characterized by elevated Src kinase activity.
Collapse
Affiliation(s)
- Bart M Maślikowski
- Department of Biology, McMaster University, 1280 Main street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells. Oncogene 2010; 29:1941-51. [DOI: 10.1038/onc.2009.478] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Takahashi E, Nagano O, Ishimoto T, Yae T, Suzuki Y, Shinoda T, Nakamura S, Niwa S, Ikeda S, Koga H, Tanihara H, Saya H. Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction. J Biol Chem 2009; 285:4060-4073. [PMID: 19965872 DOI: 10.1074/jbc.m109.056523] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant epithelial-mesenchymal transition (EMT) is involved in development of fibrotic disorders and cancer invasion. Alterations of cell-extracellular matrix interaction also contribute to those pathological conditions. However, the functional interplay between EMT and cell-extracellular matrix interactions remains poorly understood. We now show that the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha) induces the formation of fibrotic foci by cultured retinal pigment epithelial cells through activation of transforming growth factor-beta (TGF-beta) signaling in a manner dependent on hyaluronan-CD44-moesin interaction. TNF-alpha promoted CD44 expression and moesin phosphorylation by protein kinase C, leading to the pericellular interaction of hyaluronan and CD44. Formation of the hyaluronan-CD44-moesin complex resulted in both cell-cell dissociation and increased cellular motility through actin remodeling. Furthermore, this complex was found to be associated with TGF-beta receptor II and clathrin at actin microdomains, leading to activation of TGF-beta signaling. We established an in vivo model of TNF-alpha-induced fibrosis in the mouse eye, and such ocular fibrosis was attenuated in CD44-null mice. The production of hyaluronan and its interaction with CD44, thus, play an essential role in TNF-alpha-induced EMT and are potential therapeutic targets in fibrotic disorders.
Collapse
Affiliation(s)
- Eri Takahashi
- From the Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582; the Department of Ophthalmology and Visual Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556
| | - Osamu Nagano
- From the Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582; the Japan Science and Technology Agency, CREST, Tokyo 102-0075
| | - Takatsugu Ishimoto
- From the Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582
| | - Toshifumi Yae
- From the Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582
| | - Yoshimi Suzuki
- the Department of Biomedical Research and Development, Link Genomics Inc., Tokyo 103-0024, and
| | - Takeshi Shinoda
- the Department of Biomedical Research and Development, Link Genomics Inc., Tokyo 103-0024, and
| | - Satoshi Nakamura
- the Department of Biomedical Research and Development, Link Genomics Inc., Tokyo 103-0024, and
| | - Shinichiro Niwa
- the Department of Biomedical Research and Development, Link Genomics Inc., Tokyo 103-0024, and
| | - Shun Ikeda
- the Laboratory of Medical Genomics, Department of Human Genome Research, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Hisashi Koga
- the Laboratory of Medical Genomics, Department of Human Genome Research, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Hidenobu Tanihara
- the Department of Ophthalmology and Visual Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556
| | - Hideyuki Saya
- From the Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582; the Japan Science and Technology Agency, CREST, Tokyo 102-0075.
| |
Collapse
|
37
|
Umemoto T, Inomoto T, Ueda K, Hamaguchi M, Kioka N. v-Src-mediated transformation suppresses the expression of focal adhesion protein vinexin. Cancer Lett 2009; 279:22-9. [DOI: 10.1016/j.canlet.2009.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 01/10/2023]
|
38
|
Teranishi F, Takahashi N, Gao N, Akamo Y, Takeyama H, Manabe T, Okamoto T. Phosphoinositide 3-kinase inhibitor (wortmannin) inhibits pancreatic cancer cell motility and migration induced by hyaluronan in vitro and peritoneal metastasis in vivo. Cancer Sci 2009; 100:770-7. [PMID: 19469020 PMCID: PMC11158346 DOI: 10.1111/j.1349-7006.2009.01084.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 12/13/2022] Open
Abstract
In order to block peritoneal metastasis of pancreatic cancer cells, we have attempted to block the signal transduction pathway involving hyaluronan (HA), Src, phosphoinositide 3-kinase (PI3K) and Akt. We examined the effects of Src, PI3K and Akt inhibitors on pancreatic cancer cell motility, invasion and metastasis. The pancreatic cancer cell line SW1990, known to cause peritoneal metastasis efficiently in nude mice, was used in this study. SW1990 cells were stimulated by HA to induce Akt phosphorylation. Then, the inhibitory effects of PI3K and Src kinase inhibitors were examined. Cell motility and cell migration assays were adopted to assess the cancer cell motility and its migration capability. We also examined the therapeutic efficacies of PI3K inhibitor wortmannin on peritoneal metastasis of SW1990 cells in the nude mouse model. Stimulation of SW1990 cells by HA markedly induced the Src-PI3K-Akt signaling, thus enhancing cancer cell motility and its migration. Significantly, we found that wortmannin could exert marked inhibition of the peritoneal metastasis of SW1990 in nude mice in vivo. These findings indicate that the PI3K-Akt signaling pathway plays an essential role in peritoneal metastasis and PI3K inhibitors such as wortmannin can be novel modalities to prevent peritoneal metastasis of invasive cancers such as pancreatic cancer.
Collapse
Affiliation(s)
- Futoshi Teranishi
- Department of Molecular and Cellular Biology, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Vigetti D, Rizzi M, Viola M, Karousou E, Genasetti A, Clerici M, Bartolini B, Hascall VC, De Luca G, Passi A. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology 2009; 19:537-46. [DOI: 10.1093/glycob/cwp022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
40
|
Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zöller M. CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res 2009; 7:168-79. [PMID: 19208744 DOI: 10.1158/1541-7786.mcr-08-0207] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD44 designates a large family of proteins with a considerable structural and functional diversity, which are generated from one gene by alternative splicing. As such, the overexpression of CD44 variant isoform (CD44v) has been causally related to the metastatic spread of cancer cells. To study the underlying mechanism, stable knockdown clones with deletion of exon v7 containing CD44 isoforms (CD44v(kd)) of the highly metastatic rat adenocarcinoma line BSp73ASML (ASML(wt)) were established. ASML-CD44v(kd) clones hardly form lung metastases after intrafootpad application and the metastatic load in lymph nodes is significantly reduced. Rescuing, albeit at a reduced level, CD44v expression in ASML-CD44v(kd) cells (ASML-CD44v(rsc)) restores the metastatic potential. The following major differences in ASML(wt), ASML-CD44v(kd), and ASML-CD44v(rsc) clones were observed: (a) ASML(wt) cells produce and assemble a matrix in a CD44v-dependent manner, which supports integrin-mediated adhesion and favors survival. This feature is lost in the ASML-CD44v(kd) cells. (b) CD44v cross-linking initiates phosphatidylinositol 3-kinase/Akt activation in ASML(wt) cells. Accordingly, apoptosis resistance is strikingly reduced in ASML-CD44v(kd) cells. The capacity to generate an adhesive matrix but not apoptosis resistance is restored in ASML-CD44v(rsc) cells. These data argue for a 2-fold effect of CD44v on metastasis formation: CD44v-mediated matrix formation is crucial for the settlement and growth at a secondary site, whereas apoptosis resistance supports the efficacy of metastasis formation.
Collapse
Affiliation(s)
- Pamela Klingbeil
- Department of Tumor Progression and Immune Defense, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Inoue M, Kuwano Y, Tomiyama-Miyaji C, Watanabe M, Kainuma E, Ren H, Shen J, Miyazaki K, Abo T. Acute stress augments innate immunity in the liver and increases hyaluronan levels in the tissues and blood of mice. Biomed Res 2009; 30:157-63. [DOI: 10.2220/biomedres.30.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Funahashi M, Nakamura T, Kakizaki I, Mizunuma H, Endo M. Stimulation of small proteoglycan synthesis by the hyaluronan synthesis inhibitor 4-methylumbelliferone in human skin fibroblasts. Connect Tissue Res 2009; 50:194-202. [PMID: 19444760 DOI: 10.1080/03008200802684615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human skin fibroblasts cultured with 4-methylumbelliferone (MU), a hyaluronan synthesis inhibitor, produce a hyaluronan-deficient extracellular matrix (See [9]). Our present study investigated the effects of MU on proteoglycan, which is the other main component of the extracellular matrix, and interacts with hyaluronan. Proteoglycans isolated from culture medium in the presence or absence of MU were characterized by gel-filtration chromatography, ion-exchange HPLC, electrophoresis, and immunoblotting. We found that MU had only a negligible effect on the synthesis of large proteoglycan but increased the production of small proteoglycan in comparison with cultures lacking MU. This small proteoglycan was identified by immunoblotting as decorin. The structures of decorin synthesized in the presence and absence of MU were compared by gel-filtration chromatography, and the data indicated that cells incubated with MU produced a larger decorin molecule than cells incubated without MU. Furthermore, the two decorins had galactosaminoglycan chains of different sizes. These results suggest that MU inhibits the synthesis of hyaluronan and accelerates production of the larger decorin in the extracellular matrix.
Collapse
Affiliation(s)
- Masaru Funahashi
- Department of Glycotechnology, Center for Advanced Medical Research, and Departments of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|
43
|
Tye SL, Gilg AG, Tolliver LB, Wheeler WG, Toole BP, Maria BL. Hyaluronan regulates ceruloplasmin production by gliomas and their treatment-resistant multipotent progenitors. J Child Neurol 2008; 23:1221-30. [PMID: 18952589 PMCID: PMC3640370 DOI: 10.1177/0883073808321066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ceruloplasmin (glycosylphosphatidylinositol-linked ferroxidase associated with normal astrocytes) can also be secreted by glioma cells, where its function is unknown. Ceruloplasmin is not only present in glioma cells and in human glioma specimens but also is enriched in highly malignant glioma stem-like cells. Hyaluronan is a large extracellular glycosaminoglycan that enhances malignant glioma behaviors by interacting with CD44 receptors and by downstream activation of signaling proteins and transporters associated with malignancy. We examined the relationship between hyaluronan and ceruloplasmin expression in glioma stem-like cells. Antagonism of hyaluronan interactions with short-fragment hyaluronan oligomers decreased ceruloplasmin expression in parental and stem-like glioma cells in vivo and in cell culture, implying that hyaluronan regulates ceruloplasmin expression. Further gain and loss-of-function studies are needed to fully define the relationship between hyaluronan and ceruloplasmin, and ceruloplasmin's effect on malignant behaviors.
Collapse
Affiliation(s)
- Sandra L Tye
- Department of Pediatrics, Charles P Darby Children's Research Institute, College of Medicine, Medical University of South Carolina, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
44
|
Sohn DK, Chang HJ, Choi HS, Jeong SY, Kook MC, Kim CG, Choi IJ. Does hyaluronic acid stimulate tumor growth after endoscopic mucosal resection? J Gastroenterol Hepatol 2008; 23:1204-7. [PMID: 18637056 DOI: 10.1111/j.1440-1746.2008.05470.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIM A submucosal injection of sodium hyaluronate is widely used for mucosal elevation in endoscopic mucosal resection (EMR) or endoscopic submucosal dissection procedures; however, the oncologic safety of sodium hyaluronate remains unknown. Hyaluronate is the main ligand for CD44 and this interaction was reported to promote tumor progression in in vitro or animal studies. This study aimed to evaluate the effects of sodium hyaluronate on tumor growth after EMR for gastrointestinal cancers. METHODS The study included 18 consecutive patients who underwent surgery for locally-recurrent or remnant gastrointestinal cancers after EMR from January 2001 to December 2006. The immunohistochemical expression levels of Ki-67, CD44, ErbB2, and epidermal growth factor receptor (EGFR) were evaluated in the primary tumor tissue and the recurrent tumor. The protein expression in recurrent or remnant lesions was also compared between the sodium hyaluronate group and non-sodium hyaluronate group. RESULTS Sodium hyaluronate was used in nine of 14 cases with EMR for gastric cancers and in one of four cases for colon cancers. The time to operation after EMR was 133 days (5-687 days). An analysis of the immunohistochemical expression levels between primary and recurrent or remnant tumors showed no significant differences in the expression levels of Ki-67, CD44, ErbB2, and EGFR with or without sodium hyaluronate. CONCLUSIONS We found no evidence that sodium hyaluronate stimulates the growth of remnant tumors after EMR.
Collapse
Affiliation(s)
- Dae Kyung Sohn
- Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim Y, Lee YS, Choe J, Lee H, Kim YM, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem 2008; 283:22513-28. [PMID: 18577517 DOI: 10.1074/jbc.m708319200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hyaluronic acid (HA) is known to play an important role in motility of tumor cells. However, the molecular mechanisms associated with HA-promoted melanoma cell motility are not fully understood. Treatment of cells with HA was shown to increase the production of reactive oxygen species (ROS) in a CD44-dependent manner. Antioxidants, such as N-acetyl-l-cysteine and seleno-l-methionine, prevented HA from enhancing cell motility. Protein kinase C (PKC)-alpha and PKCdelta were responsible for increased Rac1 activity, production of ROS, and mediated HA-promoted cell motility. HA increased Rac1 activity via CD44, PKCalpha, and PKCdelta. Transfection with dominant negative and constitutive active Rac1 mutants demonstrated that Rac1 was responsible for the increased production of ROS and cell motility by HA. Inhibition of NADPH oxidase by diphenylene iodonium and down-regulation of p47Phox and p67Phox decreased the ROS level, suggesting that NADPH oxidase is the main source of ROS production. Rac1 increased phosphorylation of FAK. FAK functions downstream of and is necessary for HA-promoted cell motility. Secretion and expression of MMP-2 were increased by treatment with HA via the action of PKCalpha, PKCdelta, and Rac1 and the production of ROS and FAK. Ilomastat, an inhibitor of MMP-2, exerted a negative effect on HA-promoted cell motility. HA increased interaction between CD44 and epidermal growth factor receptor (EGFR). AG1478, an inhibitor of EGFR, decreased phosphorylation of PKCalpha, PKCdelta, and Rac1 activity and suppressed induction of p47Phox and p67Phox. These results suggest that CD44-EGFR interaction is necessary for HA-promoted cell motility by regulating PKC signaling. EGFR-Akt interaction promoted by HA was responsible for the increased production of ROS and HA-promoted cell motility. In summary, HA promotes CD44-EGFR interaction, which in turn activates PKC signaling, involving Akt, Rac1, Phox, and the production of ROS, FAK, and MMP-2, to enhance melanoma cell motility.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Bourguignon LYW. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol 2008; 18:251-9. [PMID: 18450475 DOI: 10.1016/j.semcancer.2008.03.007] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/19/2008] [Indexed: 11/24/2022]
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), is enriched in many types of tumors. In cancer patients HA concentrations are usually higher in malignant tumors than in corresponding benign or normal tissues, and in some tumor types the level of HA is predictive of malignancy. HA is often bound to CD44 isoforms which are ubiquitous, abundant, and functionally important cell surface receptors. This article reviews the current evidence for HA/CD44-mediated activation of the ankyrin-based cytoskeleton and RhoGTPase signaling during tumor progression. A special focus is placed on the role of HA-mediated CD44 interaction with unique downstream effectors (e.g., the cytoskeletal protein, ankyrin and/or various GTPases (e.g., RhoA, Rac1 and Cdc42)) in coordinating intracellular signaling pathways (e.g., Ca(2+) mobilization, Rho signaling, PI3 kinase-AKT activation, NHE1-mediated cellular acidification, transcriptional upregulation and cytoskeletal function) and generating the concomitant onset of tumor cell activities (e.g., tumor cell adhesion, growth, survival, migration and invasion) and tumor progression. I believe this information will provide valuable new insights into poorly understood aspects of solid tumor malignancy. Furthermore, the new knowledge concerning HA/CD44-mediated oncogenic signaling events will have potentially important clinical utility, and could establish CD44 and its associated signaling molecules as important tumor markers for the early detection and evaluation of oncogenic potential. It could also serve as ground work for the future development of new drug targets to inhibit HA/CD44-mediated tumor metastasis and cancer progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California at San Francisco & Endocrine Unit (111N), VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
47
|
David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 2008; 16:274-87. [PMID: 18282267 DOI: 10.1111/j.1524-475x.2007.00342.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hyaluronan (HA) is involved in wound healing and its biological properties depend on its molecular size. The effects of native HA and HA-12 and HA-880 saccharide fragments on human fibroblast proliferation and expression of matrix-related genes were studied. The three HA forms promoted cell adhesion and proliferation. Matrix metalloproteinase-1 and -3 mRNA were increased by all HA forms, whereas only HA-12 stimulated the expression of the tissue inhibitor of metalloproteinase 1. HA-12 enhanced type I collagen and transforming growth factor-beta (TGF-beta) 1 expression. Interestingly, HA-12 and native HA stimulated type III collagen and TGF-beta3. HA and its fragments activated Akt and extracellular-regulated kinases 1/2 and p38. Inhibition of these signaling pathways suggested their implication in most of the effects. Only native HA activated nuclear factor-kappaB and activating protein 1. Use of CD44 siRNA suggests that this HA receptor is partly implicated in the effects, although it does not rule out the involvement of other receptors. Depending on its size, HA may exert differential regulation on the wound-healing process. Furthermore, the HA up-regulation of type III collagen and TGF-beta3 expression suggests that it may promote a fetal-like cell environment that favors scarless healing.
Collapse
Affiliation(s)
- Maha David-Raoudi
- Laboratory of Connective Tissue Biochemistry, Faculty of medicine, Caen, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Kon A. Hyaluronan knockdown mice: application to analysis of hyaluronan-mediated pathophysiology. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Ouhtit A, Abd Elmageed ZY, Abdraboh ME, Lioe TF, Raj MHG. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:2033-9. [PMID: 17991717 DOI: 10.2353/ajpath.2007.070535] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hyaluronan receptor CD44 plays an important role in facilitating invasion and metastasis of a variety of tumors, including breast carcinomas. CD44 functions as a bioactive signaling transmitter. Although a number of studies have implicated CD44 in breast tumor invasion, the evidence is still circumstantial. We have developed a tetracycline-regulated CD44s (standard form) system in the weakly metastatic breast cancer cell MCF7, which exhibits low endogenous expression of CD44 and generated a new cell line, MCF7F-B5. Induction of CD44s alone affected the growth characteristics of MCF7F-B5 cells by increasing their abilities to proliferate, migrate, and invade in vitro. In addition, we have identified and validated cortactin as a novel transcriptional target of hyaluronan/CD44s signaling in underpinning breast tumor invasion. To test these observations in vivo, we developed a doxycycline (DOX)-regulated CD44s breast cancer xenograft model. Induction of CD44s did not affect the growth rate or local invasion of the primary tumor. However, although no mice from the +DOX group developed metastasis, 8 of 11 mice from the -DOX group developed secondary tumors to the liver only. Interestingly, metastatic breast tumors expressed high levels of CD44. This study provides in vivo evidence for the role of the standard form of CD44 in promoting breast tumor invasion and metastasis to the liver.
Collapse
Affiliation(s)
- Allal Ouhtit
- Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
50
|
Falconi D, Aubin JE. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan. J Bone Miner Res 2007; 22:1289-300. [PMID: 17451373 DOI: 10.1359/jbmr.070417] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. INTRODUCTION Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. MATERIALS AND METHODS To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. RESULTS Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. CONCLUSIONS Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.
Collapse
Affiliation(s)
- Dominic Falconi
- Department of Medical Biophysics, University of Toronto. Toronto, Ontario, Canada
| | | |
Collapse
|