1
|
Deng J, Wang D, Shi Y, Lin L, Gao W, Sun Y, Song X, Li Y, Li J. Mitochondrial unfolded protein response mechanism and its cardiovascular protective effects. Biomed Pharmacother 2024; 177:116989. [PMID: 38959609 DOI: 10.1016/j.biopha.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a cytoprotective response in response to cellular stress that is activated in response to mitochondrial stress to maintain intra-protein homeostasis, thereby protecting the cell from a variety of stimuli. The activation of this response has been linked to cardiovascular diseases. Here, we reviewed the current understanding of UPRmt and discussed its specific molecular mechanism, mainly in mammals, as well as addressing its protective role against cardiovascular diseases, so as to provide direction for further research on UPRmt and therapies targeting cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jinlan Deng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Chinese University of Traditional Chinese Medicine,Beijing University of Chinese Medicine, Chaoyang, China
| | - Yunlun Li
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Eiró LG, Ferreira MKM, Bittencourt LO, Aragão WAB, Souza MPCD, Silva MCF, Dionizio A, Buzalaf MAR, Crespo-López ME, Lima RR. Chronic methylmercury exposure causes spinal cord impairment: Proteomic modulation and oxidative stress. Food Chem Toxicol 2020; 146:111772. [DOI: 10.1016/j.fct.2020.111772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
|
3
|
Lassiter K, Dridi S, Greene E, Kong B, Bottje W. Identification of mitochondrial hormone receptors in avian muscle cells. Poult Sci 2018; 97:2926-2933. [DOI: 10.3382/ps/pey126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/14/2018] [Indexed: 01/16/2023] Open
|
4
|
Bross P, Tanguay RM. Mitochondrial Hsp70 and the troubles of nomenclature: leaving behind tradition to gain intuitiveness and clarity. Cell Stress Chaperones 2016; 21:547-51. [PMID: 27211809 PMCID: PMC4908006 DOI: 10.1007/s12192-016-0700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Peter Bross
- Department of Clinical Medicine, Research Unit for Molecular Medicine (MMF), Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark.
| | - Robert M Tanguay
- Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Lab of Developmental Genetics, IBIS and PROTEO, Université Laval, 1030 avenue de la medicine, Québec, Québec, Canada, G1V 0A6.
| |
Collapse
|
5
|
Enteral glutamine infusion modulates ubiquitination of heat shock proteins, Grp-75 and Apg-2, in the human duodenal mucosa. Amino Acids 2014; 46:1059-67. [PMID: 24449167 DOI: 10.1007/s00726-014-1670-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.
Collapse
|
6
|
Vannuvel K, Renard P, Raes M, Arnould T. Functional and morphological impact of ER stress on mitochondria. J Cell Physiol 2013; 228:1802-18. [PMID: 23629871 DOI: 10.1002/jcp.24360] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
Over the past years, knowledge and evidence about the existence of crosstalks between cellular organelles and their potential effects on survival or cell death have been constantly growing. More recently, evidence accumulated showing an intimate relationship between endoplasmic reticulum (ER) and mitochondria. These close contacts not only establish extensive physical links allowing exchange of lipids and calcium but they can also coordinate pathways involved in cell life and death. It is now obvious that ER dysfunction/stress and unfolded protein response (UPR) as well as mitochondria play major roles in apoptosis. However, while the effects of major ER stress on cell death have been largely studied and reviewed, it becomes more and more evident that cells might regularly deal with sublethal ER stress, a condition that does not necessarily lead to cell death but might affect the function/activity of other organelles such as mitochondria. In this review, we will particularly focus on these new, interesting and intriguing metabolic and morphological events that occur during the early adaptative phase of the ER stress, before the onset of cell death, and that remain largely unknown. Relevance and implication of these mitochondrial changes in response to ER stress conditions for human diseases such as type II diabetes and Alzheimer's disease will also be considered.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cellular Biology, URBC-NARILIS, University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
7
|
Abstract
Mitochondria not only govern energy production, but are also involved in crucial cellular signalling processes. They are one of the most important organelles determining the Ca(2+) regulatory pathway in the cell. Several mathematical models explaining these mechanisms were constructed, but only few of them describe interplay between calcium concentrations in endoplasmic reticulum (ER), cytoplasm and mitochondria. Experiments measuring calcium concentrations in mitochondria and ER suggested the existence of cytosolic microdomains with locally elevated calcium concentration in the nearest vicinity of the outer mitochondrial membrane. These intermediate physical connections between ER and mitochondria are called MAM (mitochondria-associated ER membrane) complexes. We propose a model with a direct calcium flow from ER to mitochondria, which may be justified by the existence of MAMs, and perform detailed numerical analysis of the effect of this flow on the type and shape of calcium oscillations. The model is partially based on the Marhl et al model. We have numerically found that the stable oscillations exist for a considerable set of parameter values. However, for some parameter sets the oscillations disappear and the trajectories of the model tend to a steady state with very high calcium level in mitochondria. This can be interpreted as an early step in an apoptotic pathway.
Collapse
Affiliation(s)
- Piotr Szopa
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
8
|
Romero-Bermejo FJ, Ruiz-Bailen M, Gil-Cebrian J, Huertos-Ranchal MJ. Sepsis-induced cardiomyopathy. Curr Cardiol Rev 2013; 7:163-83. [PMID: 22758615 PMCID: PMC3263481 DOI: 10.2174/157340311798220494] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 01/20/2023] Open
Abstract
Myocardial dysfunction is one of the main predictors of poor outcome in septic patients, with mortality rates next to 70%. During the sepsis-induced myocardial dysfunction, both ventricles can dilate and diminish its ejection fraction, having less response to fluid resuscitation and catecholamines, but typically is assumed to be reversible within 7-10 days. In the last 30 years, It´s being subject of substantial research; however no explanation of its etiopathogenesis or effective treatment have been proved yet. The aim of this manuscript is to review on the most relevant aspects of the sepsis-induced myocardial dysfunction, discuss its clinical presentation, pathophysiology, etiopathogenesis, diagnostic tools and therapeutic strategies proposed in recent years.
Collapse
Affiliation(s)
- Francisco J Romero-Bermejo
- Intensive Care Unit, Critical Care and Emergency Department, Puerto Real University Hospital, Cadiz, Spain.
| | | | | | | |
Collapse
|
9
|
Ca2+-induced release of mitochondrial m-calpain from outer membrane with binding of calpain small subunit and Grp75. Arch Biochem Biophys 2011; 507:254-61. [DOI: 10.1016/j.abb.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/10/2023]
|
10
|
Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 2011; 15:605-11. [PMID: 20571889 DOI: 10.1007/s10741-010-9176-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction is a well-recognized complication of severe sepsis and septic shock. Cardiac dysfunction in sepsis is characterized by ventricular dilatation, reduction in ejection fraction and reduced contractility. Initially, cardiac dysfunction was considered to occur only during the "hypodynamic" phase of shock. But we now know that it occurs very early in sepsis even during the "hyperdynamic" phase of septic shock. Circulating blood-borne factors were suspected to be involved in the evolution of sepsis induced cardiomyopathy, but it is not until recently that the cellular and molecular events are being targeted by researchers in a quest to understand this enigmatic process. Septic cardiomyopathy has been the subject of investigation for nearly half a century now and yet controversies exist in understanding it's pathophysiology. Here, we discuss our understanding of the pathogenesis of septic cardiomyopathy and the complex roles played by nitric oxide, mitochondrial dysfunction, complements and cytokines.
Collapse
Affiliation(s)
- Anthony Flynn
- Cardiology, St. Louis University Hospital, 3635 Vista Ave. 13th Floor, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
11
|
Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: an overview. Arch Biochem Biophys 2009; 495:1-7. [PMID: 20035707 DOI: 10.1016/j.abb.2009.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/13/2022]
Abstract
Calpain system is generally known to be comprised of three molecules: two Ca2+-dependent proteases: mu- and m-calpains, and their endogenous inhibitor, calpastatin. While calpains have previously been considered as the cytoplasmic enzymes, research in the recent past demonstrated that mu-calpain, m-calpain and calpain 10 are present in mitochondria, which play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. Although a number of original research articles on mitochondrial calpain system are available, yet to the best of our knowledge, a precise review article on mitochondrial calpain system has, however, not been available. This review outlines the key features of the mitochondrial calpain system, and its roles in several cellular and biochemical events under normal and some pathophysiological conditions.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | | | | | | | |
Collapse
|
12
|
Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1848-59. [DOI: 10.1016/j.bbamcr.2009.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/19/2009] [Accepted: 10/06/2009] [Indexed: 12/13/2022]
|
13
|
Jiang YJ, Sun Q, Fang XS, Wang X. Comparative mitochondrial proteomic analysis of Rji cells exposed to adriamycin. Mol Med 2009; 15:173-82. [PMID: 19209238 DOI: 10.2119/molmed.2008.00129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 02/04/2009] [Indexed: 02/01/2023] Open
Abstract
The antitumor mechanisms of adriamycin (ADR) have been thought to contribute to induction of apoptosis and inefficiency of DNA repair, processes that are to a large extent mediated by mitochondria. This study aimed to investigate characteristics of ADR, including its antineoplastic activity, drug resistance, and unexpected toxicity in non-Hodgkin lymphoma (NHL) Raji cells at the mitochondrial proteomic level. The alterations of the mitochondrial proteome of Raji cells treated with ADR were analyzed by two-dimensional differential in-gel electrophoresis (2D-DIGE) coupled with linear ion trap quadrupole-electrospray ionization tandem mass spectrometry (LTQ-ESI-MS/MS).The altered patterns of three identified proteins were validated by Western blot and analyzed by pathway studio software. The results showed that 34 proteins were downregulated and 3 proteins upregulated in the study group compared with the control group. The differentially expressed proteins distributed their functions in reduction-oxidation reactions, DNA repair, cell cycle regulation, transporters and channels, and oxidative phosphorylation. Furthermore, heat shock protein 70 (HSP70), ATP-binding cassette transporter isoform B6 (ABCB6), and prohibitin (PHB) identified in this study may be closely related to chemoresistance and could serve as potential chemotherapeutic targets for NHL. Collectively, these results suggest that specific mitochondrial proteins are uniquely susceptible to alterations in abundance following exposure to ADR and carry implications for the investigation of therapeutic and prognostic markers. Further studies focusing on these identified proteins will be used to predict treatment response and reverse apoptosis resistance,and to explore drug-combination strategies associated with ADR for NHL therapy.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Department of Hematology, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | |
Collapse
|
14
|
Kim H, Cope MB, Herring R, Robinson G, Wilson L, Page GP, Barnes S. 2D difference gel electrophoresis of prepubertal and pubertal rat mammary gland proteomes. J Proteome Res 2008; 7:4638-50. [PMID: 18767877 DOI: 10.1021/pr800121b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rat mammary gland proteomes at day 21 (prepubertal) and day 50 (late puberty) were compared by 2D difference gel electrophoresis. Two-hundred fifty-one spots were significantly different ( p < 0.05) in abundance. Peptide mass fingerprint analysis of a subset of these proteins identified two significantly over-represented classes including structural and blood proteins (increased), and metabolism-relevant proteins (reduced) in day 50 relative to day 21 glands. This is a first report of mammary gland proteome differences at these important breast cancer-relevant time-points.
Collapse
Affiliation(s)
- Helen Kim
- Departments of Pharmacology & Toxicology, the UAB Center for Nutrient-Gene Interaction, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Xun M, Zhao SH, Cao CX, Song J, Shao MM, Chu YL. Proteomic analysis of HuH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA. Acta Pharmacol Sin 2008; 29:720-7. [PMID: 18501119 DOI: 10.1111/j.1745-7254.2008.00789.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM The present study examined the differential expression of proteins in HuH-7 cells and HuH-7 cells harboring in vitro-transcribed full-length hepatitis C virus 1b RNA (HuH-7-HCV), and elucidated the cellular responses to HCV replication. METHODS The protein profiles of matched pairs of HuH-7-HCV cells and HuH-7 mock cells were analyzed by 2-D electrophoresis (2DE). Solubilized proteins were separated in the first dimension by isoelectric focusing, and by 12.5% SDS-PAGE in the second dimension. The differential protein expression was analyzed by use of image analysis software to identify candidates for HCV infection-associated proteins. RESULTS In total, 29 protein spots showed increases and 25 protein spots showed decreases in signal in HuH-7-HCV cell 2DE profiles as compared with HuH-7 mock cells. In the next step, the 10 spots showing the greatest increase and the 10 spots showing the greatest decrease were excised from gels and the proteins present were identified by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometer (MALDI-TOF MS) or MALDI-TOF/TOF MS. In total, 13 proteins were identified successfully. The potential significance of the differential expression due to HCV replication was discussed. CONCLUSION Our study identifies changes in the proteome of HuH-7 cells in the presence of HCV replication and yields information of the mechanism of HCV pathogenesis. These results will be useful for the identification of HCV infection-associated proteins that could be molecular targets for treatment.
Collapse
Affiliation(s)
- Meng Xun
- Department of Microbiology, Xi-an Jiaotong University, Xi-an 710061, China
| | | | | | | | | | | |
Collapse
|
16
|
Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K, Kraut N, Hengerer B. Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 2007; 7:605-616. [PMID: 17309106 DOI: 10.1002/pmic.200600728] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptic dysfunction is an early event in Alzheimer's disease patients and has also been detected in transgenic mouse models. In the present study, we analyzed proteomic changes in synaptosomal fractions from Tg2576 mice that overexpress mutant human amyloid precursor protein (K670N, M671L) and from their nontransgenic littermates. Cortical and hippocampal tissue was microdissected at the onset of cognitive impairment, but before deposition of amyloid plaques. Crude synaptosomal fractions were prepared by differential centrifugation, proteins were separated by 2-D DIGE and identified by MS/MS. Significant alterations were detected in mitochondrial heat shock protein 70 pointing to a mitochondrial stress response. Subsequently, synaptosomal versus nonsynaptic mitochondria were purified from Tg2576 mice brains by density gradient centrifugation. Mitochondrial proteins were separated by IEF or Blue-native gel electrophoresis in the first dimension and SDS-PAGE in the second dimension. Numerous changes in the protein subunit composition of the respiratory chain complexes I and III were identified. Levels of corresponding mRNAs remain unchanged as shown by Affymetrix oligonucleotide array analysis. Functional examination revealed impaired state 3 respiration and uncoupled respiration in brain mitochondria from young Tg2576 mice. By immunoblotting, amyloid-beta oligomers were detected in synaptosomal fractions from Tg2576 mice and reduced glucose metabolism was observed in Tg2576 mice brains by [14C]-2-deoxyglucose infusion. Taken together, we demonstrate alterations in the mitochondrial proteome and function that occur in Tg2576 mice brains before amyloid plaque deposition suggesting that mitochondria are early targets of amyloid-beta aggregates.
Collapse
Affiliation(s)
- Frank Gillardon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Lothar Kussmaul
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Karin Danzer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Norbert Kraut
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
17
|
Chen HW, Kuo HT, Lu TS, Wang SJ, Yang RC. Cytochrome c oxidase as the target of the heat shock protective effect in septic liver. Int J Exp Pathol 2004; 85:249-56. [PMID: 15379957 PMCID: PMC2517530 DOI: 10.1111/j.0959-9673.2004.00393.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Liver function failure is one of the characteristics of critically ill, septic patients and is associated with worse outcome. Our previous studies have demonstrated that heat-shock response protects cells and tissue from subsequent insults and improves survival during sepsis. In this study, we have shown that mitochondrial cytochrome c oxidase (CCO) is one of the major sources of that protective effect. Experimental sepsis was induced by the cecal ligation and puncture (CLP) method. Heat-shock treatment was induced in rats by hyperthermia 24 h before CLP operation. The results showed that ATP content of the liver declined significantly, and the enzymatic activity of mitochondrial CCO was apparently suppressed during the late stages of sepsis. The mitochondrial ultrastructure of septic liver showed the deformity, mild swelling and inner membrane budding. Heat-shock treatment led to heat-shock protein 72 overexpression and prevented the downregulation of Grp75 during sepsis. On the contrary, the expression of the enzyme complex and its activity were preserved, associated with the minimization of ultrastructural deformities. In conclusion, the maintenance of mitochondrial function, especially the CCO, may be an important strategy in therapeutic interventions of a septic liver.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Microbiology, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
| | - Hung-Tien Kuo
- Department of Internal medicine, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
| | - Tzong-Shi Lu
- Department of Physiology, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
| | - Shu-Jung Wang
- Department of Physiology, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
| | - Rei-Cheng Yang
- Department of Physiology, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
- Department of Pediatrics, School of Medicine, Kaohsiung Medical UniversityKaohsiung City, Taiwan
| |
Collapse
|
18
|
Bhat GJ, Samikkannu T, Thomas JJ, Thekkumkara TJ. alpha-thrombin rapidly induces tyrosine phosphorylation of a novel, 74-78-kDa stress response protein(s) in lung fibroblast cells. J Biol Chem 2004; 279:48915-22. [PMID: 15364938 DOI: 10.1074/jbc.m409043200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that exposure of CCL39 lung fibroblasts to alpha-thrombin rapidly inhibits interleukin 6-induced tyrosine phosphorylation of signal transducers and activators of transcription 3 (Stat3). While studying the cross-talk between alpha-thrombin and interleukin 6, we observed that the phospho-specific (tyrosine) anti-Stat3 antibody specifically cross-reacted with a 74-78-kDa protein(s) in alpha-thrombin-treated cells. In this study, we demonstrate that in alpha-thrombin-treated CCL39 cells, the 74-78-kDa protein(s) rapidly undergoes tyrosine phosphorylation. The phosphorylation by alpha-thrombin was detected as early as 5 min and reached a maximum at 15 min; however, low levels were present at 2 h. alpha-Thrombin receptor agonist peptide (SFLLRN) induced its tyrosine phosphorylation, suggesting that alpha-thrombin mediates the effects via protease-activated receptor type 1. Anti-Stat3 antibodies specific to different regions of Stat3 failed to recognize the 74-78-kDa protein(s), suggesting that it is unrelated to Stat3. Cell fractionation experiments showed that it is localized to the cytoplasm. Mass spectrometric analysis of the immunoprecipitated protein showed that the 74-78-kDa protein(s) is related to glucose-regulated protein 75 (GRP-75), a member of the heat shock/stress-response protein family. Consistent with these data, we observed tyrosine phosphorylation of GRP-75 in alpha-thrombin-treated cells. Exposure of cells to pervanadate, a stress-inducing agent, stimulated its tyrosine phosphorylation; however, cytokines and growth factors were ineffective. This is the first report of tyrosine phosphorylation of GRP-75-related stress protein(s) by alpha-thrombin and suggests that this pathway may contribute to the ability of alpha-thrombin to prevent apoptosis in cells exposed to stress or in the injured tissue.
Collapse
Affiliation(s)
- G Jayarama Bhat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| | | | | | | |
Collapse
|
19
|
González B, Manso R. Induction, modification and accumulation of HSP70s in the rat liver after acute exercise: early and late responses. J Physiol 2004; 556:369-85. [PMID: 14754995 PMCID: PMC1664938 DOI: 10.1113/jphysiol.2003.058420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver cells synthesize HSP72, the cytosolic highly stress-inducible member of the 70 kDa family of heat-shock proteins (HSP70s), in response to acute exercise. This study was aimed at obtaining further insight into the physiological relevance of the hepatic stress response to exercise by investigating the induction and long-term maintenance of increased levels of HSP70s of the HSP and glucose-regulated protein (GRP) families, their post-translational modifications during or after exercise and the possible relation of HSP induction to oxidative stress. In a running rat model, acute exercise activated the synthesis and accumulation of HSP72, GRP75 and GRP78 in liver cells, pointing towards a multifactorial origin of this response. A peak HSP72 accumulation was observed shortly after exercise as a result of transcriptional activation. HSP72 was reduced shortly after exercise preceding the disappearance of its mRNA. Two further waves of HSP72 accumulation peaked 8 and 48 h after exercise without transcriptional activation. A transient increase in the proportion of acidic variants of HSP72 and HSP73 was also observed shortly after exercise as a result, at least in part, of protein phosphorylation. Free and protein-bound lipid peroxidation derivatives (TBARS) showed a tendency to increase in the early post-exercise and the free-to-protein-bound TBARS ratio decreased significantly after 2 h. During the early post-exercise period, protein-bound TBARS correlated positively with HSP72 and 73, but not with GRP75 or GRP78. Altogether, the reported results indicate that the early induction and post-translational modification of HSP70s in liver cells following exercise is a preliminary step of a series of long-lasting HSP70-related events, possibly designed to preserve liver cell homeostasis and to help provide a concerted response of the whole organism to physical stress.
Collapse
Affiliation(s)
- Beatriz González
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
20
|
Oishi Y, Taniguchi K, Matsumoto H, Ishihara A, Ohira Y, Roy RR. Differential responses of HSPs to heat stress in slow and fast regions of rat gastrocnemius muscle. Muscle Nerve 2003; 28:587-94. [PMID: 14571461 DOI: 10.1002/mus.10476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a recent study, we showed that the rat slow soleus and fast plantaris muscles exhibited different time courses for the response of specific heat shock proteins (HSPs) after 1 h of heat stress. We hypothesized that these differential responses were related, in part, to the varying fiber type composition of these muscles. To further test this hypothesis, we now have determined the responses of Hsp60, Hsp72, and Hsc73 during the 60 h following exposure to a single bout of heat stress in the deep (relatively high percentage of slow fibers) and superficial regions (only fast fibers) of the adult rat gastrocnemius muscle. The temperature of the musculature in the left hindlimb was elevated to approximately 42 degrees C for 1 h, while the right hindlimb served as a control. Two hours after the heat stress, the Hsp60 levels were increased by 1.3- and 2.0-fold in the deep and superficial regions, respectively. The Hsp72 levels were increased (1.8-fold) in the deep region at 8 h after heat stress, whereas in the superficial region these levels were increased between 4 and 48 h (peak at 36 h by 10-fold) after the heat stress. No changes were observed for Hsc73 in either region of the muscle. Combined with our previous data, the results indicate that the responses of HSPs in the rat hindlimb muscles after a single exposure to heat stress are related to fiber type composition of the muscle or muscle region or to the inherent properties of each HSP. From a clinical viewpoint, these data indicate that specific regions (most likely based on fiber type composition) within a muscle may be affected differentially by any intervention inducing HSPs.
Collapse
Affiliation(s)
- Yasuharu Oishi
- Laboratory of Muscle Physiology, Faculty of Education, Kumamoto University, Kumamoto 860-8555, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Chen HW, Hsu C, Lu TS, Wang SJ, Yang RC. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock 2003; 20:274-9. [PMID: 12923501 DOI: 10.1097/00024382-200309000-00013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate the effect of previous heat shock treatment on the mitochondria function of the heart during a cecal ligation and puncture (CLP)-induced sepsis model. Rats of the heated group were heated by whole-body hyperthermia 24 h before the CLP operation. Cardiac mitochondria were freshly collected 9 and 18 h after CLP, indicating early and late sepsis, respectively. The expressions of heat shock protein 72 (Hsp72), glucose-regulated protein 75 (Grp75), and mitochondrial complexes I, II, III, and IV were evaluated by Western blot and immunochemical analysis. Enzyme activities of NADH cytochrome c reductase (NCCR), succinate cytochrome c reductase (SCCR), and cytochrome c oxidase (CCO) were measured after the reduction or oxidation of cytochrome c using a spectrophotometer. The results showed that the ATP content in the heart significantly declined during late sepsis, whereas heat shock treatment reversed this declination. The enzyme activities of NCCR, SCCR, and CCO were apparently suppressed during late stage of sepsis. The protein expressions of mitochondrial complex II and complex IV and Grp75 were also down-regulated during sepsis. Previously treated by heat shock, late-sepsis rats emerged with a high preservation of mitochondrial respiratory chain enzymes, both the protein amount and enzyme activity. Aspects of morphology were observed by electron microscopy, while heat shock treatment revealed the attenuation of cardiac mitochondrial damage induced by sepsis. In conclusion, structural deformity and the decrease of respiratory chain enzyme activity in mitochondria and its leading to a decline of ATP content are highly correlated with the deterioration of cardiac function during sepsis, and heat shock can reverse adverse effects, thus achieving a protective goal.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- Department of Microbiology, School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
22
|
Nanda SK, Leibowitz JL. Mitochondrial aconitase binds to the 3' untranslated region of the mouse hepatitis virus genome. J Virol 2001; 75:3352-62. [PMID: 11238861 PMCID: PMC114128 DOI: 10.1128/jvi.75.7.3352-3362.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV), a member of the Coronaviridae, contains a polyadenylated positive-sense single-stranded genomic RNA which is 31 kb long. MHV replication and transcription take place via the synthesis of negative-strand RNA intermediates from a positive-strand genomic template. A cis-acting element previously identified in the 3' untranslated region binds to trans-acting host factors from mouse fibroblasts and forms at least three RNA-protein complexes. The largest RNA-protein complex formed by the cis-acting element and the lysate from uninfected mouse fibroblasts has a molecular weight of about 200 kDa. The complex observed in gel shift assays has been resolved by second-dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis into four proteins of approximately 90, 70, 58, and 40 kDa after RNase treatment. Specific RNA affinity chromatography also has revealed the presence of a 90-kDa protein associated with RNA containing the cis-acting element bound to magnetic beads. The 90-kDa protein has been purified from uninfected mouse fibroblast crude lysates. Protein microsequencing identified the 90-kDa protein as mitochondrial aconitase. Antibody raised against purified mitochondrial aconitase recognizes the RNA-protein complex and the 90-kDa protein, which can be released from the complex by RNase digestion. Furthermore, UV cross-linking studies indicate that highly purified mitochondrial aconitase binds specifically to the MHV 3' protein-binding element. Increasing the intracellular level of mitochondrial aconitase by iron supplementation resulted in increased RNA-binding activity in cell extracts and increased virus production as well as viral protein synthesis at early hours of infection. These results are particularly interesting in terms of identification of an RNA target for mitochondrial aconitase, which has a cytoplasmic homolog, cytoplasmic aconitase, also known as iron regulatory protein 1, a well-recognized RNA-binding protein. The binding properties of mitochondrial aconitase and the functional relevance of RNA binding appear to parallel those of cytoplasmic aconitase.
Collapse
Affiliation(s)
- S K Nanda
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
23
|
Guo ZH, Mattson MP. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: evidence for a stress response. Exp Neurol 2000; 166:173-9. [PMID: 11031093 DOI: 10.1006/exnr.2000.7497] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mild metabolic stress can increase resistance of neurons in the brain to subsequent more severe insults, as exemplified by the beneficial effects of heat shock and ischemic preconditioning. Studies of Alzheimer's disease and other age-related neurodegenerative disorders indicate that dysfunction and degeneration of synapses occur early in the cell death process, and that oxidative stress and mitochondrial dysfunction are central events in this pathological process. It was recently shown that administration of 2-deoxy-d-glucose (2DG), a nonmetabolizable glucose analog that induces metabolic stress, to rats and mice can increase resistance of neurons in the brain to excitotoxic, ischemic, and oxidative injury. We now report that administration of 2DG to adult rats (daily i.p. injections of 100 mg/kg body weight) increases resistance of synaptic terminals to dysfunction and degeneration induced by amyloid beta-peptide and ferrous iron, an oxidative insult. The magnitude of impairment of glucose and glutamate transport induced by amyloid beta-peptide and iron was significantly reduced in cortical synaptosomes from 2DG-treated rats compared to saline-treated control rats. Mitochondrial dysfunction, as indicated by increased levels of reactive oxygen species and decreased transmembrane potential, was significantly attenuated after exposure to amyloid beta-peptide and iron in synaptosomes from 2DG-treated rats. Levels of the stress proteins HSP-70 and GRP-78 were increased in synaptosomes from 2DG-treated rats, suggesting a mechanism whereby 2DG protects synaptic terminals. We conclude that 2DG bolsters cytoprotective mechanisms within synaptic terminals, suggesting novel preventative and therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Z H Guo
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
24
|
González B, Hernando R, Manso R. Anabolic steroid and gender-dependent modulation of cytosolic HSP70s in fast- and slow-twitch skeletal muscle. J Steroid Biochem Mol Biol 2000; 74:63-71. [PMID: 11074357 DOI: 10.1016/s0960-0760(00)00089-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Besides their clinical uses, anabolic steroids (AASs) are self-administered by athletes to improve muscle mass and sports performance. The biological basis for their presumed effectiveness at suprapharmacological doses, however, remains uncertain. Since the expression of high levels of some stress proteins (HSPs) has been associated with an increased tolerance to stress and chronic exercise up-regulates HSP72 in skeletal muscle, this investigation was aimed at testing whether the administration of suprapharmacological doses of AASs, either alone or in conjunction with chronic exercise, induced changes in HSP72. Nandrolone decanoate (ND), an estrene derivative, but not stanozolol (ST), a derivative of the androstane series, up-regulated the levels of HSP72 and changed the proportions of various charge variants of the cytosolic HSP70s in sedentary and exercise-trained rats, exclusively in fast-twitch fibres. Since the expression of HSP73-levels in skeletal muscle was dependent on gender but not on muscle type, and that of HSP72-levels was muscle type specific but gender-independent, ND effects on cytosolic HSP70s could not be explained solely by a functional relationship with sex steroids. The reported results indicate that, by up-regulating the expression levels of HSP72 in fast-twitch fibres, nandrolone decanoate could contribute to improving the tolerance of skeletal muscle to high-intensity training.
Collapse
MESH Headings
- Anabolic Agents/administration & dosage
- Anabolic Agents/pharmacology
- Animals
- Cytosol/drug effects
- Cytosol/metabolism
- Female
- HSP72 Heat-Shock Proteins
- Heat-Shock Proteins/chemistry
- Heat-Shock Proteins/metabolism
- Male
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nandrolone/administration & dosage
- Nandrolone/analogs & derivatives
- Nandrolone/pharmacology
- Nandrolone Decanoate
- Physical Conditioning, Animal/physiology
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Rats, Wistar
- Sex Characteristics
- Stanozolol/administration & dosage
- Stanozolol/pharmacology
- Static Electricity
- Up-Regulation/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- B González
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Canto Blanco, E-28049, Madrid, Spain
| | | | | |
Collapse
|
25
|
Guo Z, Ersoz A, Butterfield DA, Mattson MP. Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid. J Neurochem 2000; 75:314-20. [PMID: 10854276 DOI: 10.1046/j.1471-4159.2000.0750314.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have shown that rats and mice maintained on a dietary restriction (DR) regimen exhibit increased resistance of neurons to excitotoxic, oxidative, and metabolic insults in experimental models of Alzheimer's, Parkinson's, and Huntington's diseases and stroke. Because synaptic terminals are sites where the neurodegenerative process may begin in such neurodegenerative disorders, we determined the effects of DR on synaptic homeostasis and vulnerability to oxidative and metabolic insults. Basal levels of glucose uptake were similar in cerebral cortical synaptosomes from rats maintained on DR for 3 months compared with synaptosomes from rats fed ad libitum. Exposure of synaptosomes to oxidative insults (amyloid beta-peptide and Fe(2+)) and a metabolic insult (the mitochondrial toxin 3-nitropropionic acid) resulted in decreased levels of glucose uptake. Impairment of glucose uptake following oxidative and metabolic insults was significantly attenuated in synaptosomes from rats maintained on DR. DR was also effective in protecting synaptosomes against oxidative and metabolic impairment of glutamate uptake. Loss of mitochondrial function caused by oxidative and metabolic insults, as indicated by increased levels of reactive oxygen species and decreased transmembrane potential, was significantly attenuated in synaptosomes from rats maintained on DR. Levels of the stress proteins HSP-70 and GRP-78 were increased in synaptosomes from DR rats, consistent with previous data suggesting that the neuroprotective mechanism of DR involves a "preconditioning" effect. Collectively, our data provide the first evidence that DR can alter synaptic homeostasis in a manner that enhances the ability of synapses to withstand adversity.
Collapse
Affiliation(s)
- Z Guo
- Sanders-Brown Research Center on Aging. Department of Chemistry and Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
26
|
Wadhwa R, Kaul SC, Mitsui Y. Cellular mortality and immortalization: a complex interplay of multiple gene functions. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 24:191-204. [PMID: 10547864 DOI: 10.1007/978-3-662-06227-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- R Wadhwa
- Chugai Research Institute for Molecular Medicine, Ibaraki, Japan
| | | | | |
Collapse
|
27
|
Yu ZF, Mattson MP. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: Evidence for a preconditioning mechanism. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<830::aid-jnr8>3.0.co;2-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 1999; 57:48-61. [PMID: 10397635 DOI: 10.1002/(sici)1097-4547(19990701)57:1<48::aid-jnr6>3.0.co;2-l] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- J Lee
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
29
|
Westman J, Sharma HS. Heat shock protein response in the central nervous system following hyperthermia. PROGRESS IN BRAIN RESEARCH 1998; 115:207-39. [PMID: 9632938 DOI: 10.1016/s0079-6123(08)62038-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Westman
- Department of Anatomy, Biomedical Centre, Uppsala University, Sweden
| | | |
Collapse
|
30
|
Merrick BA, Walker VR, He C, Patterson RM, Selkirk JK. Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett 1997; 119:185-90. [PMID: 9570370 DOI: 10.1016/s0304-3835(97)00270-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Grp75 is a stress-inducible mitochondrial chaperone which has a high homology to senescence-related protein, p66mot mortalin. In human cells the mortalin gene assigns to the locus of a putative tumor suppressor gene for myeloid malignancies. In order to study expression and localization of Grp75 and p66mot in human and murine fibroblast lines, polyclonal antibodies were raised to conserved portions of each sequence. HT1080 and C3H10T1/2 cells were treated with various Grp-inducing agents. A single 75 kDa band was detected by Western blot of cytoplasmic proteins which was not greatly altered after thermal stress or treatment with L-azetidine-2-carboxylic acid or nonactin. However, glucose deprivation by 2-deoxyglucose treatment induced five novel isoforms at 74-75 kDa mass. Mortalin at 66 kDa could not be detected under these treatment conditions.
Collapse
Affiliation(s)
- B A Merrick
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle, NC 27709, USA.
| | | | | | | | | |
Collapse
|
31
|
Kaul SC, Matsui M, Takano S, Sugihara T, Mitsui Y, Wadhwa R. Expression analysis of mortalin, a unique member of the Hsp70 family of proteins, in rat tissues. Exp Cell Res 1997; 232:56-63. [PMID: 9141621 DOI: 10.1006/excr.1997.3503] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have investigated the expression of mortalin in rat tissues by Northern analysis, RNA in situ hybridization, and immunohistochemical studies. By Northern assay, the highest level of expression was detected in brain, heart, and skeletal muscle followed by lung, liver, and kidney, and the least level of expression was detected in testis and spleen. RNA in situ and immunohistochemical studies showed that mortalin expression is significantly higher in upper nondividing layers than in the lower basal layers of skin, in neurons and nerve fibers than in surrounding glial cells in brain, in cardiomyocytes than in nonmyocytes in heart, and in interstitial secretory tissue than in germinating follicles in ovary. Such tissue- and cell-specific expression patterns of mortalin coordinates with its earlier reported antiproliferative function in normal cells. However, a deregulation of the expression is observed in rat brain tumor along with the detection of nonpancytosolic mortalin in rat glioma cell line C6. The study suggests that mortalin is involved in pathways that regulate division capacities of cells in vivo.
Collapse
Affiliation(s)
- S C Kaul
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hernando R, Manso R. Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70-kDa heat-shock proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:460-7. [PMID: 9030773 DOI: 10.1111/j.1432-1033.1997.0460a.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heat-shock or stress proteins (HSPs) are considered to play an essential role in protecting cells from stress and preparing them to survive new environmental challenges. This study investigates the induction kinetics of synthesis and accumulation of 70-kDa stress proteins in the soleus and extensor digitorum longus (EDL) muscles of the rat following exercise, as well as the isoform transitions that take place during the post-exercise period. Relative synthesis rates (referred to constitutively expressed stress protein HSP73) of the 70-kDa heat-shock proteins were greatly enhanced after a single bout of exercise in both muscles. They peaked early in the post-exercise period and returned to resting levels after approximately 5-6 h. The levels of the inducible stress protein HSP72 in the EDL rose only transiently following exercise, while its accumulation in the soleus was more continuous and stable. The amount of HSP73 increased only transiently in both muscle types after exercise. The constitutive expression of the stress protein HSP72 in the soleus muscle was much higher than in the EDL and other tissues, while that of HSP73 was relatively constant among tissues. Rat skeletal muscle HSP72 and HSP73 were made up of at least three isoforms of the same molecular mass and very close isoelectric points, although only one radiolabelled isoform was detected. The relative proportion of the most abundant isoforms of HSP72, isoforms 1 and 2, as well as their ratio (isoform 2/isoform 1), increased during the post-exercise period. Since isoform 2 of HSP72 partially disappeared after incubating soleus muscle extracts of exercised rats with alkaline phosphatase, these data indicate that phosphorylation of HSP72 is an early event in the stress response of skeletal muscle to exercise stress.
Collapse
Affiliation(s)
- R Hernando
- Department of Molecular Biology, Autonomous University of Madrid, Spain
| | | |
Collapse
|
33
|
Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Høj PB, Hoogenraad NJ. Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:98-103. [PMID: 8797841 DOI: 10.1111/j.1432-1033.1996.0098h.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular chaperones are known to play key roles in the synthesis, transport and folding of nuclear-encoded mitochondrial proteins and of proteins encoded by mitochondrial DNA. Although the regulation of heat-shock genes has been the subject of considerable investigation, regulation of the genes encoding mitochondrial chaperones is not well defined. We have found that stress applied specifically to the mitochondria of mammalian cells is capable of eliciting an organelle-specific, molecular chaperone response. Using the loss of mitochondrial DNA as a means of producing a specific mitochondrial stress, we show by Western-blot analysis that mtDNA-less (rho 0) rat hepatoma cells show an increase in the steady-state levels of chaperonin 60 (cpn 60) and chaperonin 10 (cpn 10). Nuclear transcription assays show that the upregulation of these chaperones is due to transcriptional activation. There was no effect on the inducible cytosolic Hsp 70, Hsp 72, nor on mtHsp 70 in rho 0 cells, leading us to concluded that stress applied selectively to mitochondria elicits a specific molecular chaperone response. Heat stress was able to provide an additional induction of cpn 60 and cpn 10 above that obtained for the rho 0 state alone, indicating that these genes have separate regulatory elements for the specific mitochondrial and general stress responses. Since the mitochondrial-specific chaperones are encoded by nuclear DNA, there must be a mechanism for molecular communication between the mitochondrion and nucleus and this system can address how stress is communicated between these organelles.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Nucleus/metabolism
- Clone Cells
- Cytosol/metabolism
- DNA, Mitochondrial/drug effects
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Ethidium/pharmacology
- Fluorescent Antibody Technique, Indirect
- HSP70 Heat-Shock Proteins/biosynthesis
- HSP72 Heat-Shock Proteins
- Heat-Shock Proteins/biosynthesis
- Hot Temperature
- Liver Neoplasms, Experimental
- Mitochondria/drug effects
- Mitochondria/metabolism
- Molecular Chaperones/biosynthesis
- Polymerase Chain Reaction
- Pyruvic Acid/pharmacology
- Rats
- Transcription, Genetic
- Uridine/metabolism
- Uridine/pharmacology
Collapse
Affiliation(s)
- R D Martinus
- School of Biochemistry, La Trobe University, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR. Cloning of rat grp75, an hsp70-family member, and its expression in normal and ischemic brain. J Neurosci Res 1995; 40:807-19. [PMID: 7629893 DOI: 10.1002/jnr.490400612] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Following metabolic stress a variety of gene products are induced in cells in the brain, some of which may protect the tissue from subsequent stresses. The heat shock proteins (hsps), in particular hsp70, have been widely studied in this context, but evidence for the involvement of known hsps in protection of the CNS is inconclusive. We have therefore undertaken the search for other stress-induced proteins which may mitigate ischemic injury. Beginning with degenerate RT-PCR, we have isolated a rat-brain cDNA encoding a protein highly similar to human grp75, a mitochondrial member of the hsp70-family of stress proteins. It is also highly similar to two non-mitochondrial proteins; mortalin, a senescence-related gene product, and pbp74, a protein implicated in B-cell peptide processing. Sequence structure and phylogenetic analyses predict mitochondrial localization and induction by a calcium ionophore and glucose deprivation in PC12 cells support its identification as rat grp75. In situ analysis of normal brain reveals an unusual distribution, with very high expression in neurons of the basal forebrain, reticular and subthalamic nuclei, globus pallidus, amygdala and elsewhere. grp75-mRNA is upregulated following focal brain ischemia in a distinctive fashion. When the degree of injury is small, induction occurs in the area of injury, similar to the pattern observed for hsp70. However, when the injury is extensive, hsr is upregulated in neurons outside the ischemic area. The induction of grp75 may represent a sensitive marker of metabolically compromised tissue.
Collapse
Affiliation(s)
- S M Massa
- Department of Neurology, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
35
|
Saijo T, Tanaka K. Isoalloxazine ring of FAD is required for the formation of the core in the Hsp60-assisted folding of medium chain acyl-CoA dehydrogenase subunit into the assembly competent conformation in mitochondria. J Biol Chem 1995; 270:1899-907. [PMID: 7829528 DOI: 10.1074/jbc.270.4.1899] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We studied the role of FAD in the intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD), a homotetrameric mitochondrial enzyme containing a molecule of non-covalently bound FAD/monomer. In the MCAD molecule, FAD is buried in a crevice containing the active center. We have previously shown that upon import into mitochondria, newly processed MCAD is first incorporated into a high molecular weight (hMr) complex and that the hMr complex mainly consisted of MCAD-heat-shock protein 60 (hsp60) complex (Saijo, T., Welch, W.J., and Tanaka, K (1994) J. Biol. Chem. 269, 4401-4408). In the present study, we incubated in vitro synthesized precursor MCAD with mitochondria isolated from normal and riboflavin-deficient rat liver for 10-60 min and fractionated the solubilized mitochondria using gel filtration. The amount of MCAD in the hMr complex was larger and that of tetramer was smaller in riboflavin-deficient mitochondria than in control at any time point. In addition, riboflavin-deficient mitochondria were solubilized after 10-min import in a buffer containing ATP and were chased in the presence of FAD, FMN, or NAD+ or without any addition. The mitochondrial proteins were analyzed using gel filtration or immunoprecipitated with anti-hsp60 antibody. After 60-min chase in the presence of FAD, the majority of MCAD in the complex with hsp60 was transferred to tetramer, whereas no such transfer occurred after the chase in the absence of FAD. When chase was done in the presence of FMN, a significant amount of MCAD was transferred from the complex with hsp60 to tetramer, but the transfer was not as efficient as in the presence of FAD. The chase in the presence of NAD+ resulted in no transfer. These data suggest that isoalloxazine ring of FAD plays a critical role, exerting nucleating effect, in the hsp60-assisted folding of MCAD subunit into an assembly competent conformation, probably assisting the formation of the core.
Collapse
Affiliation(s)
- T Saijo
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
36
|
Bhattacharyya T, Karnezis AN, Murphy SP, Hoang T, Freeman BC, Phillips B, Morimoto RI. Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem 1995; 270:1705-10. [PMID: 7829505 DOI: 10.1074/jbc.270.4.1705] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report the cloning, nucleotide sequence, and localization of mitochondrial hsp70, a member of the human hsp70 multi-gene family. The human mthsp75 gene was cloned by screening an expression library with monoclonal antibody 3A3 that recognizes three members of the human hsp70 family (hsp70, hsc70, and a 75-kDa protein with characteristics identical to that previously established for mitochondrial hsp70). The identity of the 75-kDa protein was confirmed by subcellular fraction of HeLa cells and the demonstration that the 3A3-reactive 75-kDa protein co-fractionates with mitochondrial localized proteins. The nucleotide sequence of the respective cDNA clone revealed an open reading frame of 679 amino acids with extensive sequence identity with members of the human hsp70 family. The derived amino-terminal pre-sequence shares features common to other mitochondrial targeting sequences. The identity of the cDNA was unequivocally established by introduction of an epitope-tag at the carboxyl terminus of the cloned gene, transfection and analysis by immunofluorescence. The tagged 75-kDa protein localizes to mitochondria, thus providing conclusive evidence that it corresponds to the human mitochondrial hsp70, referred to here as mthsp75.
Collapse
Affiliation(s)
- T Bhattacharyya
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60201
| | | | | | | | | | | | | |
Collapse
|
37
|
Haas IG. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. EXPERIENTIA 1994; 50:1012-20. [PMID: 7988659 DOI: 10.1007/bf01923455] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BiP is a constitutively-expressed resident protein of the endoplasmic reticulum (ER) of all eucaryotic cells, and belongs to the highly conserved hsp70 protein family. In the ER, BiP is involved in polypeptide translocation, protein folding and presumably protein degradation as well. These functions are essential to cell viability, as has been shown for yeast. In this review, I will summarize the structural features of hsp70 proteins and focus on those experiments which revealed the biological function of BiP.
Collapse
Affiliation(s)
- I G Haas
- Institut für Biochemie, Universität Heidelberg, Germany
| |
Collapse
|
38
|
Höhfeld J, Hartl FU. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J Biophys Biochem Cytol 1994; 126:305-15. [PMID: 7913473 PMCID: PMC2200036 DOI: 10.1083/jcb.126.2.305] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protein folding in mitochondria is mediated by the chaperonin Hsp60, the homologue of E. coli GroEL. Mitochondria also contain a homologue of the cochaperonin GroES, called Hsp10, which is a functional regulator of the chaperonin. To define the in vivo role of the co-chaperonin, we have used the genetic and biochemical potential of the yeast S. cerevisiae. The HSP10 gene was cloned and sequenced and temperature-sensitive lethal hsp10 mutants were generated. Our results identify Hsp10 as an essential component of the mitochondrial protein folding apparatus, participating in various aspects of Hsp60 function. Hsp10 is required for the folding and assembly of proteins imported into the matrix compartment, and is involved in the sorting of certain proteins, such as the Rieske Fe/S protein, passing through the matrix en route to the intermembrane space. The folding of the precursor of cytosolic dihydrofolate reductase (DHFR), imported into mitochondria as a fusion protein, is apparently independent of Hsp10 function consistent with observations made for the chaperonin-mediated folding of DHFR in vitro. The temperature-sensitive mutations in Hsp10 map to a domain (residues 25-40) that corresponds to a previously identified mobile loop region of bacterial GroES and result in a reduced binding affinity of hsp10 for the chaperonin at the non-permissive temperature.
Collapse
Affiliation(s)
- J Höhfeld
- Howard Hughes Medical Institute, Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | |
Collapse
|
39
|
Panagiotidis C, Burkholder W, Gaitanaris G, Gragerov A, Gottesman M, Silverstein S. Inhibition of DnaK autophosphorylation by heat shock proteins and polypeptide substrates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89438-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
40
|
Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ. Involvement of 70-kD heat-shock proteins in peroxisomal import. J Cell Biol 1994; 125:1037-46. [PMID: 8195287 PMCID: PMC2120043 DOI: 10.1083/jcb.125.5.1037] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This report describes the involvement of 70-kD heat-shock proteins (hsp70) in the import of proteins into mammalian peroxisomes. Employing a microinjection-based assay (Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Mol. Cell Biol. 12:531-541), we demonstrate that proteins of the hsp70 family were associated with proteins being imported into the peroxisomal matrix. Import of peroxisomal proteins could be inhibited by coinjection of antibodies directed against the constitutive hsp70 proteins (hsp73). In a permeabilized-cell assay (Wendland and Subramani. 1993. J. Cell Biol. 120:675-685), antibodies directed against hsp70 proteins were shown to inhibit peroxisomal protein import. Inhibition could be overcome by the addition of exogenous hsp70 proteins. Purified rat liver peroxisomes were shown to have associated hsp70 proteins. The amount of associated hsp70 was increased under conditions of peroxisomal proliferation. Furthermore, proteinase protection assays indicated that the hsp70 molecules were located on the outside of the peroxisomal membrane. Finally, the process of heat-shocking cells resulted in a considerable delay in the import of peroxisomal proteins. Taken together, these results indicate that heat-shock proteins of the cytoplasmic hsp70 family are involved in the import of peroxisomal proteins.
Collapse
Affiliation(s)
- P A Walton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
41
|
Lingappa JR, Martin RL, Wong ML, Ganem D, Welch WJ, Lingappa VR. A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J Cell Biol 1994; 125:99-111. [PMID: 7908022 PMCID: PMC2120005 DOI: 10.1083/jcb.125.1.99] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have established a system for assembly of hepatitis B virus capsid, a homomultimer of the viral core polypeptide, using cell-free transcription-linked translation. The mature particles that are produced are indistinguishable from authentic viral capsids by four criteria: velocity sedimentation, buoyant density, protease resistance, and electron microscopic appearance. Production of unassembled core polypeptides can be uncoupled from production of capsid particles by decreasing core mRNA concentration. Addition of excess unlabeled core polypeptides allows the chase of the unassembled polypeptides into mature capsids. Using this cell-free system, we demonstrate that assembly of capsids proceeds by way of a novel high molecular weight intermediate. Upon isolation, the high molecular weight intermediate is productive of mature capsids when energy substrates are manipulated. A 60-kD protein related to the chaperonin t-complex polypeptide 1 (TCP-1) is found in association with core polypeptides in two different assembly intermediates, but is not associated with either the initial unassembled polypeptides or with the final mature capsid product. These findings implicate TCP-1 or a related chaperonin in viral assembly and raise the possibility that eukaryotic cytosolic chaperonins may play a distinctive role in multimer assembly apart from their involvement in assisting monomer folding.
Collapse
Affiliation(s)
- J R Lingappa
- Department of Physiology, University of California at San Francisco 94143
| | | | | | | | | | | |
Collapse
|
42
|
Intramitochondrial folding and assembly of medium-chain acyl-CoA dehydrogenase (MCAD). Demonstration of impaired transfer of K304E-variant MCAD from its complex with hsp60 to the native tetramer. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41794-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
43
|
Mattingly JR, Iriarte A, Martinez-Carrion M. Structural features which control folding of homologous proteins in cell-free translation systems. The effect of a mitochondrial-targeting presequence on aspartate aminotransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74317-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
44
|
Fisher AM, Ferrario A, Gomer CJ. Adriamycin resistance in Chinese hamster fibroblasts following oxidative stress induced by photodynamic therapy. Photochem Photobiol 1993; 58:581-8. [PMID: 8248335 DOI: 10.1111/j.1751-1097.1993.tb04936.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Photodynamic therapy (PDT) generates reactive oxygen species that are responsible for the initial cytotoxic events produced by this treatment. An extended (16 h) porphyrin incubation prior to light irradiation increased expression of the 75, 78 and 94 kDa glucose-regulated stress proteins (GRP), as well as the cognate form of the 70 kDa heat shock protein. However, these stress proteins were not induced following isoeffective PDT doses using a short (1 h) porphyrin incubation protocol. In the current study, Chinese hamster fibroblasts were used to examine sensitivity to adjunctive PDT and adriamycin as previous reports indicate a correlation between stress protein synthesis and a decrease in adriamycin cytotoxicity. Treatments that either induced GRP (i.e. PDT with an extended porphyrin incubation or exposure to the calcium ionophore A23187) or did not induce GRP (i.e. PDT with a short porphyrin incubation or UV irradiation) were followed at increasing time intervals with a 1 h adriamycin incubation. A time-dependent decrease in adriamycin cytotoxicity was observed when cells were first exposed to either of the PDT protocols or to A23187. Alterations in intracellular drug levels did not account for the change in adriamycin sensitivity. Likewise, intracellular glutathione concentrations and antioxidant enzyme activities were not significantly altered following PDT or A23187. Parameters associated with altered adriamycin sensitivity included a decrease in the percentage of S phase cells following PDT and A23187 as well as a depletion of intracellular ATP after PDT using the extended porphyrin incubation. These results demonstrate that PDT can be added to the growing list of diverse stresses producing transient resistance to adriamycin and that stress protein induction is not universally associated with all oxidative treatments inducing this resistance.
Collapse
Affiliation(s)
- A M Fisher
- Clayton Ocular Oncology Center, Childrens Hospital Los Angeles, CA
| | | | | |
Collapse
|
45
|
Welch WJ. Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci 1993; 339:327-33. [PMID: 8098537 DOI: 10.1098/rstb.1993.0031] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In response to either elevated temperatures or several other metabolic insults, cells from all organisms respond by increasing the expression of so-called heat shock proteins (hsp or stress proteins). In general, the stress response appears to represent a universal cellular defence mechanism. The increased expression and accumulation of the stress proteins provides the cell with an added degree of protection. Studies over the past few years have revealed a role for some of the stress proteins as being intimately involved in protein maturation. Members of the hsp 70 family, distributed throughout various intracellular compartments, interact transiently with other proteins undergoing synthesis, translocation, or higher ordered assembly. Although not yet proven, it has been suggested that members of the hsp 70 family function to slow down or retard the premature folding of proteins in the course of synthesis and translocation. Yet another family of stress proteins, the hsp 60 or GroEL proteins (chaperonins), appear to function as catalysts of protein folding. Here I discuss the role of those stress proteins functioning as molecular chaperones, both within the normal cell and in the cell subjected to metabolic stress.
Collapse
Affiliation(s)
- W J Welch
- Department of Medicine and Physiology, University of California, San Francisco 94143
| |
Collapse
|
46
|
Brown CR, Martin RL, Hansen WJ, Beckmann RP, Welch WJ. The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J Cell Biol 1993; 120:1101-12. [PMID: 8436586 PMCID: PMC2119737 DOI: 10.1083/jcb.120.5.1101] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mammalian cells constitutively express a cytosolic and nuclear form of heat shock protein (hsp) 70, referred to here as hsp 73. In response to heat shock or other metabolic insults, increased expression of another cytosolic and nuclear form of hsp 70, hsp 72, is observed. The constitutively expressed hsp 73, and stress-inducible hsp 72, are highly related proteins. Still unclear, however, is exactly why most eukaryotic cells, in contrast to prokaryotic cells, express a novel form of hsp 70 (i.e., hsp 72) after experiencing stress. To address this question, we prepared antibodies specific to either hsp 72 or hsp 73 and have compared a number of biological properties of the two proteins, both in vivo and in vitro. Using metabolic pulse-chase labeling and immunoprecipitation analysis, both the hsp 72 and hsp 73 specific antibodies were found to coprecipitate a significant number of newly synthesized proteins. Such interactions appeared transient and sensitive to ATP. Consequently, we suspect that both hsp 72 and hsp 73 function as molecular chaperones, interacting transiently with nascent polypeptides. During the course of these studies, we routinely observed that antibodies specific to hsp 73 resulted in the coprecipitation of hsp 72. Similarly, antibodies specific to hsp 72 were capable of coprecipitating hsp 73. Using a number of different approaches, we show that the constitutively expressed, pre-existing hsp 73 rapidly forms a stable complex with the newly synthesized stress inducible hsp 72. As is demonstrated by double-label indirect immunofluorescence, both proteins exhibit a coincident locale within the cell. Moreover, injection of antibodies specific to hsp 73 into living cells effectively blocks the ability of both hsp 73 and hsp 72 to redistribute from the cytoplasm into the nucleus and nucleolus after heat shock. These results are discussed as they relate to the possible structure and function of the constitutive (hsp 73) and highly stress inducible (hsp 72) forms of hsp 70, both within the normal cell as well as in the cell experiencing stress.
Collapse
Affiliation(s)
- C R Brown
- Department of Medicine, University of California, San Francisco 94143-0854
| | | | | | | | | |
Collapse
|
47
|
Laszlo A, Li GC. Effect of amino acid analogs on the development of thermotolerance and on thermotolerant cells. J Cell Physiol 1993; 154:419-32. [PMID: 8425921 DOI: 10.1002/jcp.1041540226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure of HA-1 Chinese hamster fibroblasts to amino acid analogs has been shown to have a heat-sensitizing effect as well as inducing the heat shock response (Li and Laszlo, 1985a). In this study, we have examined the effect of amino acid analogs on the development of thermotolerance after a brief heat shock or exposure to sodium arsenite and the effect of amino acid analogs on cells that are already thermotolerant. Exposure of HA-1 cells to amino acid analogs inhibited the development of thermotolerance following a mild heat shock or treatment with sodium arsenite. However, cells that were already thermotolerant were resistant to the sensitizing action of amino acid analogs. The refractoriness of thermotolerant cells to amino acid analog treatment developed in parallel with thermotolerance. The uptake of the arginine analog, canavanine, and its incorporation into proteins was not altered in the thermotolerant cells. Furthermore, another biological consequence of exposure to amino acid analogs, sensitization to ionizing radiation, also was not altered in the thermotolerant cells. The inhibition of the development of thermotolerance by amino acid analogs and the refractoriness of thermotolerant cells to the heat-sensitizing action of amino acid analogs lend further support the role of heat-shock proteins in the phenomenon of thermotolerance.
Collapse
Affiliation(s)
- A Laszlo
- Section of Cancer Biology, Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, Missouri 63108
| | | |
Collapse
|
48
|
Mattingly J, Youssef J, Iriarte A, Martinez-Carrion M. Protein folding in a cell-free translation system. The fate of the precursor to mitochondrial aspartate aminotransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53561-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
McKay DB. Structure and mechanism of 70-kDa heat-shock-related proteins. ADVANCES IN PROTEIN CHEMISTRY 1993; 44:67-98. [PMID: 8317298 DOI: 10.1016/s0065-3233(08)60564-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D B McKay
- Beckman Laboratories for Structural Biology, Department of Cell Biology, Stanford University School of Medicine, California 94305
| |
Collapse
|
50
|
|