1
|
Zhang S, Valenzuela LF, Zatulovskiy E, Mangiante L, Curtis C, Skotheim JM. The G 1-S transition is promoted by Rb degradation via the E3 ligase UBR5. SCIENCE ADVANCES 2024; 10:eadq6858. [PMID: 39441926 PMCID: PMC11498223 DOI: 10.1126/sciadv.adq6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Mammalian cells make the decision to divide at the G1-S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Passage through the G1-S transition is initially driven by Rb inactivation via phosphorylation and by Rb's decreasing concentration in G1. While many studies have identified the mechanisms of Rb phosphorylation, the mechanism underlying Rb's decreasing concentration in G1 was unknown. Here, we found that Rb's concentration decrease in G1 requires the E3 ubiquitin ligase UBR5. UBR5 knockout cells have increased Rb concentration in early G1, exhibited a lower G1-S transition rate, and are more sensitive to inhibition of cyclin-dependent kinase 4/6 (Cdk4/6). This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Evgeny Zatulovskiy
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Zhang S, Valenzuela LF, Zatulovskiy E, Mangiante L, Curtis C, Skotheim JM. The G1/S transition is promoted by Rb degradation via the E3 ligase UBR5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560768. [PMID: 37873473 PMCID: PMC10592979 DOI: 10.1101/2023.10.03.560768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mammalian cells make the decision to divide at the G1/S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Rb is inhibited by two parallel pathways. In the canonical pathway, Cyclin D-Cdk4/6 kinase complexes phosphorylate and inactivate Rb. In the second, recently discovered pathway, Rb's concentration decreases during G1 to promote cells progressing through the G1/S transition. However, the mechanisms underlying this second pathway are unknown. Here, we found that Rb's concentration drop in G1 and recovery in S/G2 is controlled by phosphorylation-dependent protein degradation. In early G1 phase, un- and hypo-phosphorylated Rb is targeted by the E3 ligase UBR5. UBR5 knockout cells have higher Rb concentrations in early G1, exhibit a lower G1/S transition rate, and are more sensitive to Cdk4/6 inhibition. This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | | | | | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
3
|
Cellular signals integrate cell cycle and metabolic control in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:397-423. [PMID: 37061338 DOI: 10.1016/bs.apcsb.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Growth factors are the small peptides that can promote growth, differentiation, and survival of most living cells. However, aberrant activation of receptor tyrosine kinases by GFs can generate oncogenic signals, resulting in oncogenic transformation. Accumulating evidence support a link between GF/RTK signaling through the major signaling pathways, Ras/Erk and PI3K/Akt, and cell cycle progression. In response to GF signaling, the quiescent cells in the G0 stage can re-enter the cell cycle and become the proliferative stage. While in the proliferative stage, tumor cells undergo profound changes in their metabolism to support biomass production and bioenergetic requirements. Accumulating data show that the cell cycle regulators, specifically cyclin D, cyclin B, Cdk2, Cdk4, and Cdk6, and anaphase-promoting complex/cyclosome (APC/C-Cdh1) play critical roles in modulating various metabolic pathways. These cell cycle regulators can regulate metabolic enzyme activities through post-translational mechanisms or the transcriptional factors that control the expression of the metabolic genes. This fine-tune control allows only the relevant metabolic pathways to be active in a particular phase of the cell cycle, thereby providing suitable amounts of biosynthetic precursors available during the proliferative stage. The imbalance of metabolites in each cell cycle phase can induce cell cycle arrest followed by p53-induced apoptosis.
Collapse
|
4
|
A modular approach for modeling the cell cycle based on functional response curves. PLoS Comput Biol 2021; 17:e1009008. [PMID: 34379640 PMCID: PMC8382204 DOI: 10.1371/journal.pcbi.1009008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to accomplish this is by replacing the detailed reaction mechanisms of certain modules in the model by a mathematical expression that qualitatively describes the dynamical behavior of these modules. Such an approach has been widely adopted for ultrasensitive responses, for which underlying reaction mechanisms are often replaced by a single Hill function. Also time delays are usually accounted for by using an explicit delay in delay differential equations. In contrast, however, S-shaped response curves, which by definition have multiple output values for certain input values and are often encountered in bistable systems, are not easily modeled in such an explicit way. Here, we extend the classical Hill function into a mathematical expression that can be used to describe both ultrasensitive and S-shaped responses. We show how three ubiquitous modules (ultrasensitive responses, S-shaped responses and time delays) can be combined in different configurations and explore the dynamics of these systems. As an example, we apply our strategy to set up a model of the cell cycle consisting of multiple bistable switches, which can incorporate events such as DNA damage and coupling to the circadian clock in a phenomenological way. Bistability plays an important role in many biochemical processes and typically emerges from complex interaction patterns such as positive and double negative feedback loops. Here, we propose to theoretically study the effect of bistability in a larger interaction network. We explicitly incorporate a functional expression describing an S-shaped input-output curve in the model equations, without the need for considering the underlying biochemical events. This expression can be converted into a functional module for an ultrasensitive response, and a time delay is easily included as well. Exploiting the fact that several of these modules can easily be combined in larger networks, we construct a cell cycle model consisting of multiple bistable switches and show how this approach can account for a number of known properties of the cell cycle.
Collapse
|
5
|
FTO Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression. Cell Rep 2021; 31:107464. [PMID: 32268083 DOI: 10.1016/j.celrep.2020.03.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 01/21/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the major chemical modification in mRNA that controls fundamental biological processes, including cell proliferation. Herein, we demonstrate that fat mass and obesity-associated (FTO) demethylates m6A modification of cyclin D1, the key regulator for G1 phase progression and controls cell proliferation in vitro and in vivo. FTO depletion upregulates cyclin D1 m6A modification, which in turn accelerates the degradation of cyclin D1 mRNA, leading to the impairment of G1 progression. m6A modification of cyclin D1 oscillates in a cell-cycle-dependent manner; m6A levels are suppressed during the G1 phase and enhanced during other phases. Low m6A levels during G1 are associated with the nuclear translocation of FTO from the cytosol. Furthermore, nucleocytoplasmic shuttling of FTO is regulated by casein kinase II-mediated phosphorylation of FTO. Our results highlight the role of m6A in regulating cyclin D1 mRNA stability and add another layer of complexity to cell-cycle regulation.
Collapse
|
6
|
Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, Yuan T, Yang P, Xiong F, Zhang S, Zhou Q, Chen Z, Li J, Mo BW, Zhang H, Xiong W, Wang CY. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif 2020; 53:e12742. [PMID: 31943454 PMCID: PMC7046303 DOI: 10.1111/cpr.12742] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives Hypoxia is an important risk factor for pulmonary arterial remodelling in pulmonary arterial hypertension (PAH), and the Janus kinase 2 (JAK2) is believed to be involved in this process. In the present report, we aimed to investigate the role of JAK2 in vascular smooth muscle cells during the course of PAH. Methods Smooth muscle cell (SMC)‐specific Jak2 deficient mice and their littermate controls were subjected to normobaric normoxic or hypoxic (10% O2) challenges for 28 days to monitor the development of PAH, respectively. To further elucidate the potential mechanisms whereby JAK2 influences pulmonary vascular remodelling, a selective JAK2 inhibitor was applied to pre‐treat human pulmonary arterial smooth muscle cells (HPASMCs) for 1 hour followed by 24‐hour hypoxic exposure. Results Mice with hypoxia‐induced PAH were characterized by the altered JAK2/STAT3 activity in pulmonary artery smooth muscle cells. Therefore, induction of Jak2 deficiency in SMCs protected mice from hypoxia‐induced increase of right ventricular systolic pressure (RVSP), right ventricular hypertrophy and pulmonary vascular remodelling. Particularly, loss of Jak2 significantly attenuated chronic hypoxia‐induced PASMC proliferation in the lungs. Similarly, blockade of JAK2 by its inhibitor, TG‐101348, suppressed hypoxia‐induced human PASMC proliferation. Upon hypoxia‐induced activation, JAK2 phosphorylated signal transducer and activator of transcription 3 (STAT3), which then bound to the CCNA2 promoter to transcribe cyclin A2 expression, thereby promoting PASMC proliferation. Conclusions Our studies support that JAK2 could be a culprit contributing to the pulmonary vascular remodelling, and therefore, it could be a viable target for prevention and treatment of PAH in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorao Wu
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizong Rao
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yanqiu Wei
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yue
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yuan
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ping Yang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiu Li
- Shenzhen Third People's Hospital, Shenzhen, China
| | - Bi-Wen Mo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Huilan Zhang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weining Xiong
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cong-Yi Wang
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, The Center for Biomedical Research, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Chen J, Bai M, Ning C, Xie B, Zhang J, Liao H, Xiong J, Tao X, Yan D, Xi X, Chen X, Yu Y, Bast RC, Zhang Z, Feng Y, Zheng W. Gankyrin facilitates follicle-stimulating hormone-driven ovarian cancer cell proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway. Oncogene 2015; 35:2506-17. [PMID: 26364616 DOI: 10.1038/onc.2015.316] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 06/04/2015] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
Gankyrin is a regulatory subunit of the 26kD proteasome complex. As a novel oncoprotein, gankyrin is expressed aberrantly in cancers from several different sites and has been shown to contribute to oncogenesis in endometrial and cervical carcinomas. Neither gankyrin's contribution to the development of epithelial ovarian cancer nor its interaction with follicle-stimulating hormone (FSH)-driven proliferation in ovarian cancer has been studied. Here we have found that gankyrin is overexpressed in ovarian cancers compared with benign ovarian cystadenomas and that gankyrin regulates FSH upregulation of cyclin D1. Importantly, gankyrin regulates PI3K/AKT signaling by downregulating PTEN. Prolonged AKT activation by FSH stimulation of the FSH receptor (FSHR) promotes gankyrin expression, which, in turn, enhances AKT activation by inhibiting PTEN. Overexpression of gankyrin decreases hypoxia inducible factor-1α (HIF-1α) protein levels, but has little effect on HIF-1α mRNA levels, which could be attributed to gankyrin mediating HIF-1α protein stability via the ubiquitin-proteasome pathway. Reduction in HIF-1α protein stability led to attenuation of the binding with cyclin D1 promoter, resulted in abolishment of the negative regulation of cyclin D1 by HIF-1α, which promotes proliferation of ovarian cancer cells. Our results document that gankyrin regulates HIF-1α protein stability and cyclin D1 expression, ultimately mediating FSH-driven ovarian cancer cell proliferation.
Collapse
Affiliation(s)
- J Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - M Bai
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - C Ning
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - B Xie
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - J Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - H Liao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - J Xiong
- Department of Neuropathology, Huashan Hospital of Fudan University, Shanghai, China
| | - X Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - D Yan
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Xi
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - X Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Y Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - R C Bast
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Z Zhang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Y Feng
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - W Zheng
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Hennenberg M, Schreiber A, Ciotkowska A, Rutz B, Waidelich R, Strittmatter F, Stief CG, Gratzke C. Cooperative effects of EGF, FGF, and TGF-β1 in prostate stromal cells are different from responses to single growth factors. Life Sci 2014; 123:18-24. [PMID: 25529149 DOI: 10.1016/j.lfs.2014.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/18/2014] [Accepted: 12/05/2014] [Indexed: 11/28/2022]
Abstract
AIMS Stromal growth is critical for prostate enlargement during benign prostatic hyperplasia (BPH). While responses of prostate cells to single growth factors have been well characterized, responses to multiple growth factors at once are poorly understood. Here, we examined the effects of combinations between epidermal growth factor (EGF), fibroblast growth factor (FGF), and transforming growth factor-β1 (TGF-β1) in human prostate stromal cells. MAIN METHODS EGF, FGF, and TGF-β1 were applied to WPMY-1 cells, an immortalized, non-malignant line of stromal cells from the human prostate. Hypertrophic responses were assessed by protein/DNA ratio, and cyclin D1 mRNA by RT-PCR. Expression of EGF, FGF, and TGF-β1 and their receptors in human prostate tissue was analyzed by RT-PCR, Western blot, and fluorescence staining. KEY FINDINGS Hypertrophic responses to single growth factors and combinations were similar. Combinations showed additive effects on cyclin D1 mRNA. Combination of EGF with TGF-β1, but not EGF or TGF-β1 alone, caused assembly of cells to a new two-dimensional structure, being characterized by dense aggregates connected by branches of few cells. EGF and TGF-β1 were detected together in human prostates. Receptors for EGF and TGF-β colocalized on stromal cells in human prostates. SIGNIFICANCE Responses of prostate stromal cells to combinations of EGF, FGF, and TGF-β1 may be quantitatively different, qualitatively different, or similar to responses to single growth factors. The combination of EGF and TGF-β1, but not EGF or TGF-β1 alone, induces aggregation of prostate stromal cells, which may be relevant for morphogenesis.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Andrea Schreiber
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Beata Rutz
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | | | - Christian G Stief
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
9
|
Basic fibroblast growth factor/vascular endothelial growth factor in the serum from severe burn patients stimulates the proliferation of cultured human umbilical cord mesenchymal stem cells via activation of Notch signaling pathways. J Trauma Acute Care Surg 2014; 75:789-97. [PMID: 24158196 DOI: 10.1097/ta.0b013e3182a6862b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are the leading cellular constituents used in regenerative medicine. MSCs repair and reconstruct wounds of acute traumata and radiation-induced burns through proliferation, differentiation, and trophic activity. However, repair effect of MSCs on severe burn wounds remain to be clarified because severe burns are much more complex traumata than radiation-induced burns. Survival and proliferation of MSCs in microenvironments affected by severe burns are very important for improving wound repair/regeneration. This study aimed to elucidate the survival and proliferation effects and the potential proliferation mechanism of serum from severe burn patients (BPS) on human umbilical cord MSCs (hUCMSCs) in vitro. METHODS The hUCMSCs were isolated, cultured, and identified. Next, we evaluated the effects of BPS on cell numbers, cell cycle progression, cyclin D expression, and key proteins and genes of the Notch signaling pathway. Putative mechanisms underlying the proliferation of hUCMSCs were investigated. RESULTS BPS markedly increased the number of hUCMSCs, and the results of the cell cycle studies indicated that BPS induced cell cycle progression into the M phase. Cyclin D expression was higher with BPS than in the control group. Moreover, Notch-1, a key determinant of hUCMSC activation and proliferation, and its target gene Hes-1 were overexpressed after BPS treatment. Proliferation numbers of hUCMSC, rate of proliferation period (G2/M+S), and the expression of cyclin D, Notch-1, and Hes-1 were markedly decreased by Notch signaling inhibitors (DAPT/GSI). In the case of BPS, basic fibroblast growth factor and vascular endothelial growth factor were the key factors that promoted hUCMSC proliferation. CONCLUSION This study provides novel evidence for the role of BPS in the survival and rapid proliferation of hUCMSCs and suggests that these cells could be used for cell therapy-based clinical applications for treating severe burns. Furthermore, hUCMSC proliferation was induced by basic fibroblast growth factor/vascular endothelial growth factor in BPS through activation of Notch signal.
Collapse
|
10
|
A mathematical model of HiF-1α-mediated response to hypoxia on the G1/S transition. Math Biosci 2013; 248:31-9. [PMID: 24345497 DOI: 10.1016/j.mbs.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/28/2022]
Abstract
Hypoxia is known to influence the cell cycle by increasing the G1 phase duration or by inducing a quiescent state (arrest of cell proliferation). This entry into quiescence is a mean for the cell to escape from hypoxia-induced apoptosis. It is suggested that some cancer cells have gain the advantage over normal cells to easily enter into quiescence when environmental conditions, such as oxygen pressure, are unfavorable [43,1]. This ability contributes in the appearance of highly resistant and aggressive tumor phenotypes [2]. The HiF-1α factor is the key actor of the intracellular hypoxia pathway. As tumor cells undergo chronic hypoxic conditions, HiF-1α is present in higher level in cancer than in normal cells. Besides, it was shown that genetic mutations promoting overstabilization of HiF-1α are a feature of various types of cancers [7]. Finally, it is suggested that the intracellular level of HiF-1α can be related to the aggressiveness of the tumors [53,24,4,10]. However, up to now, mathematical models describing the G1/S transition under hypoxia, did not take into account the HiF-1α factor in the hypoxia pathway. Therefore, we propose a mathematical model of the G1/S transition under hypoxia, which explicitly integrates the HiF-1α pathway. The model reproduces the slowing down of G1 phase under moderate hypoxia, and the entry into quiescence of proliferating cells under severe hypoxia. We show how the inhibition of cyclin D by HiF-1α can induce quiescence; this result provides a theoretical explanation to the experimental observations of Wen et al. (2010) [50]. Thus, our model confirms that hypoxia-induced chemoresistance can be linked, for a part, to the negative regulation of cyclin D by HiF-1α.
Collapse
|
11
|
RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012; 321:80-8. [PMID: 22381696 DOI: 10.1016/j.canlet.2012.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/20/2012] [Indexed: 01/04/2023]
Abstract
Since the processes of normal embryogenesis and neoplasia share many of similar pathways, tumor development has been interpreted as an abnormal form of organogenesis. NANOG is a homeodomain-containing transcription factor that functions to maintain self-renewal and proliferation of embryonic stem cells (ESCs). Aberrant expression of NANOG has been observed in many types of human malignancies. However, its potential implication in tumorigenesis has not been fully clarified. In this study, we have employed small interference RNA (RNAi) technology to silence endogenous NANOG expression in breast cancer cells and successfully selected three independent clones with stably inhibited NANOG expression of MCF-7 cells. Functional analysis revealed that down-regulation of NANOG reduced cell proliferation, colony formation and migration ability of MCF-7 cells. Consistently, proliferation of breast cancer MDA-MB-231 cells was also significantly inhibited after the knockdown of NANOG expression. Interestingly, we found that the expression levels of cyclinD1 and c-myc were markedly down-regulated and the cell cycle were blocked at the G0/G1 phases after the knockdown of NANOG, while the expression of cyclinE and signal transducers and activators of transcription3 (STAT3) remained unaffected. In addition, the expression of NANOG and cyclinD1 can be rescued after the transfection of pcDNA3.1 (-)-NANOG expression vector into the three clones. Finally, our chromatin immunoprecipitation (ChIP) experiment showed that NANOG protein can bind to the promoter region of cyclinD1 and regulate cells cycle. Taken together, our findings may not only establish a molecular basis for the role of NANOG in modulating cell cycle progression of breast cancer cells but also suggest a potential target for the treatment of at least some subtypes of breast cancer.
Collapse
|
12
|
Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, He G, Huang S, Ding X, Yin P, Chen L, Liu Q, Xie W, Wang H. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res 2010; 70:2010-9. [PMID: 20179204 DOI: 10.1158/0008-5472.can-08-4910] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor (HIF) and cyclin D1 are both key mediators of cell growth and proliferation in normal and cancer cells. However, the interrelation between HIF and cyclin D1 remains unclear. In the present study, we observed the inverse correlation between cyclin D1 and HIF-1 in hypoxia condition. Overexpression of the dominant negative mutant of HIF-1alpha (DN-HIF) significantly enhanced cyclin D1 expression upon hypoxia or arsenite exposure, suggesting the negative regulation of cyclin D1 by HIF-1. Furthermore, we found that the impairment of HIF-1 increased cyclin D1 expression in A549 pulmonary cancer cells, which in turn promoted G1-S cell cycle transition and cell proliferation. Cyclin D1 expression was increased in s.c. xenograft of DN-HIF stably transfected A549 cells in nude mice compared with that of control cells. Chromatin immunoprecipitation assay revealed that HIF-1 was able to directly bind to the promoter region of cyclin D1, which indicates that the negative regulation of cyclin D1 by HIF-1 is through a direct mechanism. Inhibition of histone deacetylase (HDAC) by pretreatment of cells with trichostatin A or specific knockdown of HDAC7 by its shRNA antagonized the suppression of cyclin D1 by HIF-1, suggesting that HDAC7 is required for HIF-1-mediated cyclin D1 downregulation. Moreover, we found that 5-fluorouracil-triggered apoptosis of DN-HIF-transfected A549 cells was reduced by sicyclin D1 (cyclin D1-specific interference RNA) introduction, suggesting that clinical observation of HIF-1 overexpression-associated chemoresistance might be, at least partially, due to the negative regulation of cyclin D1.
Collapse
Affiliation(s)
- Wen Wen
- The International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ding J, Ning B, Gong W, Wen W, Wu K, Liang J, He G, Huang S, Sun W, Han T, Huang L, Cao G, Wu M, Xie W, Wang H. Cyclin D1 induction by benzo[a]pyrene-7,8-diol-9,10-epoxide via the phosphatidylinositol 3-kinase/Akt/MAPK- and p70s6k-dependent pathway promotes cell transformation and tumorigenesis. J Biol Chem 2009; 284:33311-9. [PMID: 19801633 DOI: 10.1074/jbc.m109.046417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of B[a]P, has been well recognized as one ubiquitous carcinogen, but the molecular mechanism involved in its carcinogenic effect remains obscure. In the present study, we found that bronchial epithelial cells (Beas-2B) and hepatocytes treated with B[a]PDE presented a significant increase of cyclin D1 expression. Moreover, Akt, p70(s6k), and MAPKs including JNK, Erks, and p38 were notably activated in B[a]PDE-treated Beas-2B cells, whereas NF-kappaB, NFAT, and Egr-1 were not. Our results demonstrated that JNK and Erks were required in B[a]PDE-induced cyclin D1 expression because the inhibition of JNK or Erks by a selective chemical inhibitor or dominant negative mutant robustly impaired the cyclin D1 induction by B[a]PDE. Furthermore, we found that overexpression of the dominant negative mutant of p85 (regulatory subunit of phosphatidylinositol 3-kinase) or Akt dramatically suppressed B[a]PDE-induced JNK and Erk activation as well as cyclin D1 expression, suggesting that cyclin D1 induction by B[a]PDE is via the phosphatidylinositol 3-kinase/Akt/MAPK-dependent pathway. In addition, we clarified that p70(s6k) is also involved in B[a]PDE-induced cyclin D1 expression because rampamycin pretreatment dramatically reduced cyclin D1 induction by B[a]PDE. More importantly, we demonstrated that up-regulated cyclin D1 by B[a]PDE plays a critical role in oncogenic transformation and tumorigenesis of Beas-2B cells. These results not only broaden our knowledge of the molecular mechanism of B[a]PDE carcinogenicity but also lead to the further study of chemoprevention of B[a]PDE-associated human cancers.
Collapse
Affiliation(s)
- Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Changzheng Hospital, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ding J, Ning B, Huang Y, Zhang D, Li J, Chen CY, Huang C. PI3K/Akt/JNK/c-Jun signaling pathway is a mediator for arsenite-induced cyclin D1 expression and cell growth in human bronchial epithelial cells. Curr Cancer Drug Targets 2009; 9:500-9. [PMID: 19519318 DOI: 10.2174/156800909788486740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arsenite exposure is associated with an increased risk of human lung cancer. However, the molecular mechanisms underlying the arsenite-induced human lung carcinogenesis remain elusive. In this study, we demonstrated that arsenite upregulates cyclin D1 expression/activity to promote the growth of human bronchial epithelial Beas-2B cells. In this process, the JNKs (c-Jun N-terminal kinases)/c-Jun cascade is elicited. The inhibition of JNKs or c-Jun by chemical or genetic inhibitors blocks the cyclin D1 induction mediated by arsenite. Furthermore, using a loss of function mutant of p85 (Deltap85, a subunit of PI3K) or dominant-negative Akt (DN-Akt), we showed that PI3K and Akt act as the upstream regulators of JNKs and c-Jun in arsenite-mediated growth promotion. Overall, our data suggest a pathway of PI-3K/Akt/JNK/c-Jun/cylin D1 signaling in response to arsenite in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H, Lu F, Rustgi AK, Diehl JA. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 2008; 14:68-78. [PMID: 18598945 PMCID: PMC2597358 DOI: 10.1016/j.ccr.2008.05.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/21/2008] [Accepted: 05/23/2008] [Indexed: 12/20/2022]
Abstract
SCF(Fbx4) was recently identified as the E3 ligase for cyclin D1. We now describe cell-cycle-dependent phosphorylation and dimerization of Fbx4 that is regulated by GSK3beta and is defective in human cancer. We present data demonstrating that a pathway involving Ras-Akt-GSK3beta controls the temporal phosphorylation and dimerization of the SCF(Fbx4) E3 ligase. Inhibition of Fbx4 activity results in accumulation of nuclear cyclin D1 and oncogenic transformation. The importance of this regulatory pathway for normal cell growth is emphasized by the prevalence of mutations in Fbx4 in human cancer that impair dimerization. Collectively, these data reveal that inactivation of the cyclin D1 E3 ligase likely contributes to cyclin D1 overexpression in a significant fraction of human cancer.
Collapse
Affiliation(s)
- Olena Barbash
- The Abramson Family Cancer Research Institute, University of Pennsylvania
- Department of Cancer Biology, University of Pennsylvania
| | - Petia Zamfirova
- The Abramson Family Cancer Research Institute, University of Pennsylvania
| | - Douglas I. Lin
- The Abramson Family Cancer Research Institute, University of Pennsylvania
- Department of Cancer Biology, University of Pennsylvania
| | - Xiangmei Chen
- Department of Microbiology, Peking University Health Science Center, Beijing 100083, China
| | - Ke Yang
- Department of Microbiology, Peking University Health Science Center, Beijing 100083, China
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Department of Genetics, University of Pennsylvania, Philadelphia PA, 19104 USA; University of Pennsylvania, USA
| | - Fengmin Lu
- Department of Microbiology, Peking University Health Science Center, Beijing 100083, China
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, Department of Genetics, University of Pennsylvania, Philadelphia PA, 19104 USA; University of Pennsylvania, USA
| | - J. Alan Diehl
- The Abramson Family Cancer Research Institute, University of Pennsylvania
- Department of Cancer Biology, University of Pennsylvania
- Correspondence should be addressed to:
| |
Collapse
|
16
|
Ouyang W, Luo W, Zhang D, Jian J, Ma Q, Li J, Shi X, Chen J, Gao J, Huang C. PI-3K/Akt pathway-dependent cyclin D1 expression is responsible for arsenite-induced human keratinocyte transformation. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1-6. [PMID: 18197291 PMCID: PMC2199295 DOI: 10.1289/ehp.10403] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 10/04/2007] [Indexed: 05/21/2023]
Abstract
BACKGROUND Long-term exposure of arsenite leads to human skin cancer. However, the exact mechanisms of arsenite-induced human skin carcinogenesis remain to be defined. OBJECTIVES In this study, we investigated the potential role of PI-3K/Akt/cyclin D1in the transformation of human keratinocytic cells upon arsenite exposure. METHODS We used the soft agar assay to evaluate the cell transformation activity of arsenite exposure and the nude mice xenograft model to determine the tumorigenesis of arsenite-induced transformed cells. We used the dominant negative mutant and gene knockdown approaches to elucidate the signaling pathway involved in this process. RESULTS Our results showed that repeated long-term exposure of HaCat cells to arsenite caused cell transformation, as indicated by anchorage-independent growth in soft agar. The tumorigenicity of these transformed cells was confirmed in nude mice. Treatment of cells with arsenite also induced significant activation of PI-3K and Akt, which was responsible for the anchorage-independent cell growth induced by arsenite exposure. Furthermore, our data also indicated that cyclin D1 is an important downstream molecule involved in PI-3K/Akt-mediated cell transformation upon arsenite exposure based on the facts that inhibition of cyclin D1 expression by dominant negative mutants of PI-3K, and Akt, or the knockdown of the cyclin D1 expression by its specific siRNA in the HaCat cells resulted in impairing of anchorage-independent growth of HaCat cells induced by arsenite. CONCLUSION Our results demonstrate that PI-3K/Akt-mediated cyclin D1 expression is at least one key event implicated in the arsenite human skin carcinogenic effect.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Wenjing Luo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
- Department of Occupational and Environmental Health Sciences, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Jinlong Jian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Qian Ma
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health Sciences, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
- Address correspondence to C. Huang, Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd., Tuxedo, NY 10987 USA. Telephone: (845) 731-3519. Fax: (845) 351-2320. E-mail:
| |
Collapse
|
17
|
Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 2007; 282:23981-95. [PMID: 17575275 PMCID: PMC2039722 DOI: 10.1074/jbc.m702044200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional program induced by growth factor stimulation is classically described in two stages as follows: the rapid protein synthesis-independent induction of immediate-early genes, followed by the subsequent protein synthesis-dependent induction of secondary response genes. In this study, we obtained a comprehensive view of this transcriptional program. As expected, we identified both rapid and delayed gene inductions. Surprisingly, however, a large fraction of genes induced with delayed kinetics did not require protein synthesis and therefore represented delayed primary rather than secondary response genes. Of 133 genes induced within 4 h of growth factor stimulation, 49 (37%) were immediate-early genes, 58 (44%) were delayed primary response genes, and 26 (19%) were secondary response genes. Comparison of immediate-early and delayed primary response genes revealed functional and regulatory differences. Whereas many immediate-early genes encoded transcription factors, transcriptional regulators were not prevalent among the delayed primary response genes. The lag in induction of delayed primary response compared with immediate-early mRNAs was because of delays in both transcription initiation and subsequent stages of elongation and processing. Consistent with increased abundance of RNA polymerase II at their promoters, immediate-early genes were characterized by over-representation of transcription factor binding sites and high affinity TATA boxes. Immediate-early genes also had short primary transcripts with few exons, whereas delayed primary response genes more closely resembled other genes in the genome. These findings suggest that genomic features of immediate-early genes, in contrast to the delayed primary response genes, are selected for rapid induction, consistent with their regulatory functions.
Collapse
Affiliation(s)
- John W Tullai
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fombonne J, Charrier C, Goddard I, Moyse E, Krantic S. Leptin-mediated decrease of cyclin A2 and increase of cyclin D1 expression: relevance for the control of prepubertal rat Leydig cell division and differentiation. Endocrinology 2007; 148:2126-37. [PMID: 17303663 DOI: 10.1210/en.2006-1218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of adult Leydig cells is one of the factors controlling testosterone secretion by sexually mature testis, and it depends on the proliferative capacity of prepubertal Leydig cells. We investigated here whether this capacity is controlled by leptin because this hormone regulates proliferation in other cell types and has a crucial role in male fertility. Our data show that prebupertal Leydig cells express the Ob/Rb form of leptin receptor and are thus direct targets of this hormone. The analysis of G1/S-phase cyclins by quantitative (real-time) RT-PCR and Western blot points to the leptin-induced decrease in cyclin A2 and subsequent increase in cyclin D1 expression that precedes a leptin-triggered decrease in the number of prepubertal Leydig cells. Quantitative assessments of DNA synthesis by bromodeoxyuridine incorporation and of cycling cell population by Ki67 immunocytochemistry indicate that leptin decreases the cell number by inhibiting cell division and increases mRNA levels of Leydig cell differentiation markers such as relaxin-like factor. Immunohistochemistry of cyclin D1 and relaxin-like factor pointed to the parallel increase of their expression coinciding with the onset of Leydig cell differentiation. Moreover, leptin-treated Leydig cells display increased expression of another differentiation marker (3beta-hydroxysteroid dehydrogenase) that is abolished by knocking down cyclin D1 with small interference RNA. Altogether, our data show that leptin inhibits division of prepubertal Leydig cells via a cyclin D-independent mechanism and suggest that cyclin D1 might be involved in leptin-induced differentiation of Leydig cells.
Collapse
Affiliation(s)
- Joanna Fombonne
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, Parc Scientifique de Luminy-BP13, F-13273 Marseille, Cedex 09, France
| | | | | | | | | |
Collapse
|
19
|
Uemura S, Feng F, Kume M, Yamada K, Kabayama K, Nishimura SI, Igarashi Y, Inokuchi JI. Cell growth arrest by sialic acid clusters in ganglioside GM3 mimetic polymers. Glycobiology 2007; 17:568-77. [PMID: 17317719 DOI: 10.1093/glycob/cwm020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ganglioside GM3, one of the sialic acid containing glycosphingolipids, is known to form clusters in lipid microdomains, which serve as platforms for effective signal transduction. In an attempt to clarify the GM3 cluster effect, we enzymatically synthesized GM3 mimetic polymer (GM3-p), with an acrylamide backbone from LacCer mimetic polymer (LacCer-p). Interestingly, GM3-p, but not LacCer-p, reversibly inhibited proliferation of NIH3T3 cells, which are normally resistant to exogenously added GM3. Moreover, we found that the introduction of carbonic acid into the acrylamide chain aided well-oriented cluster formation and enhanced the inhibitory effect of GM3-p. Since sialyllactosyl polymer and GM4 mimetic polymer, but not GM2 mimetic polymer, also inhibited cell proliferation, sialic acid-galactose units must be essential for the biological activity of GM3-p. These results suggest that the formation of sialic acid-galactose clusters is necessary for the suppressive effect of GM3-p. GM3-p treatment did not affect the serum-dependent activation of ERK1/2 or c-fos expression, but caused a reduction in the gene and/or protein expression of cyclin D1, cyclin E, cyclin-dependent kinase (cdk)4, and cdk2, which are involved in the cell cycle. Therefore, GM3-p inhibits cell proliferation by reducing cyclin D1-cdk4 and cyclin E-cdk2 complexes without affecting growth factor signaling from serum to c-fos.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25:1620-8. [PMID: 16550162 DOI: 10.1038/sj.onc.1209371] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclin D1 proto-oncogene exercises powerful control over the mechanisms that regulate the mitotic cell cycle, and excessive cyclin D1 expression and/or activity is common in human cancers. Although somatic mutations of the cyclin D1 locus are rarely observed, mounting evidence demonstrates that a specific polymorphism of cyclin D1 (G/A870) and a protein product of a potentially related alternate splicing event (cyclin D1b) may influence cancer risk and outcome. Herein, we review the epidemiological and functional literatures that link these alterations of cyclin D1 to human tumor development and progression.
Collapse
Affiliation(s)
- K E Knudsen
- Department of Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|
21
|
Dekanty A, Sauane M, Cadenas B, Coluccio F, Barrio M, Casala J, Paciencia M, Rogers F, Coso OA, Piwien-Pilipuk G, Rudland PS, de Asúa LJ. Leukemia Inhibitory Factor Induces DNA Synthesis in Swiss Mouse 3T3 Cells Independently of Cyclin D1 Expression through a Mechanism Involving MEK/ERK1/2 Activation. J Biol Chem 2006; 281:6136-43. [PMID: 16291739 DOI: 10.1074/jbc.m505839200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF) and oncostatin M (OSM) induce DNA synthesis in Swiss 3T3 cells through common signaling mechanism(s), whereas other related cytokines such as interleukin-6 and ciliary neurotrophic factor do not cause this response. Induction of DNA replication by LIF or prostaglandin F2alpha (PGF2alpha) occurs, in part, through different signaling events. LIF and OSM specifically trigger STAT1 cytoplasmic to nuclear translocation, whereas PGF2alpha fails to do so. However, LIF and PGF2alpha can trigger increases in ERK1/2 activity, which are required for their mitogenic responses because U0126, a MEK1/2 inhibitor, prevents both ERK1/2 activation and induction of DNA synthesis by LIF or PGF2alpha treatment. PGF2alpha induces cyclin D expression and full phosphorylation of retinoblastoma protein. In contrast, LIF fails to promote increases in cyclin D mRNA/protein levels; consequently, LIF induces DNA synthesis without promoting full phosphorylation of retinoblastoma protein (Rb). However, both LIF and PGF2alpha increase cyclin E expression. Furthermore, LIF mitogenic action does not involve protein kinase C (PKC) activation, because a PKC inhibitor does not block this effect. In contrast, PKC activity is required for PGF2alpha mitogenic action. More importantly, the synergistic effect between LIF and PGF2alpha to promote S phase entry is independent of PKC activation. These results show fundamental differences between LIF- and PGF2alpha-dependent mechanism(s) that induce cellular entry into S phase. These findings are critical in understanding how LIF and other related cytokine-regulated events participate in normal cell cycle control and may also provide clues to unravel crucial processes underlying cancerous cell division.
Collapse
Affiliation(s)
- Andres Dekanty
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kassouf W, Dinney CPN, Brown G, McConkey DJ, Diehl AJ, Bar-Eli M, Adam L. Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Res 2006; 65:10524-35. [PMID: 16288045 DOI: 10.1158/0008-5472.can-05-1536] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways, such as phosphatidylinositol-3 kinase/Akt and Ras/mitogen-activated protein kinase (MAPK), have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the urogenital tumors. To investigate the mechanism of resistance to EGFR inhibition in bladder cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-3beta (GSK-3beta). We found that the resistance to the antiproliferative effects of gefitinib, in vitro as well as in vivo in nude mice models, was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-3beta activation and degradation of its target cyclin D1 were indicators of a high cell sensitivity to gefitinib. Further analysis of one phenotypic sensitive (253J B-V) and resistant (UM-UC13) cell lines revealed that platelet-derived growth factor receptor-beta (PDGFRbeta) activation was responsible for short circuiting the EGFR/MAPK pathway for mitogenic stimuli. However, invasion as well as actin dynamics were efficiently reduced by EGFR inhibition in UM-UC13. Chemical disruption of signaling pathways or of PDGFR kinase activity significantly reduced the inactive pool of cellular GSK-3beta in UM-UC13 cells. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in bladder cancer. Although this uncoupling may arise through different mechanisms, we suggest that the resistance of bladder cancer cells to EGFR blockade can be predicted early in the course of treatment by measuring the activation of GSK-3beta and of nuclear cyclin D1.
Collapse
Affiliation(s)
- Wassim Kassouf
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ouyang W, Ma Q, Li J, Zhang D, Liu ZG, Rustgi AK, Huang C. Cyclin D1 induction through IkappaB kinase beta/nuclear factor-kappaB pathway is responsible for arsenite-induced increased cell cycle G1-S phase transition in human keratinocytes. Cancer Res 2005; 65:9287-93. [PMID: 16230390 DOI: 10.1158/0008-5472.can-05-0469] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental and occupational exposure to arsenite is associated with an increased risk of human cancers, including skin, urinary bladder, and respiratory tract cancers. Although much evidence suggests that alterations in cell cycle machinery are implicated in the carcinogenic effect of arsenite, the molecular mechanisms underlying the cell cycle alterations are largely unknown. In the present study, we observed that exposure of human keratinocyte HaCat cells to arsenite resulted in the promotion of cell cycle progression, especially G(1)-S transition. Further studies found that arsenite exposure was able to induce cyclin D1 expression. The induction of cyclin D1 by arsenite required nuclear factor-kappaB (NF-kappaB) activation, because the inhibition of IkappaB phosphorylation by overexpression of the dominant-negative mutant, IKKbeta-KM, impaired arsenite-induced cyclin D1 expression and G1-S transition. The requirement of IkappaB kinase beta (IKKbeta) for cyclin D1 induction was further confirmed by the findings that arsenite-induced cyclin D1 expression was totally blocked in IKKbeta knockout (IKKbeta(-/-)) mouse embryo fibroblasts. In addition, knockdown of cyclin D1 expression using cyclin D1-specific small interference RNA significantly blocked arsenite-induced cell cycle progression in HaCat cells. Taken together, our results show that arsenite-induced cell cycle from G(1) to S phase transition is through IKKbeta/NF-kappaB/cyclin D1-dependent pathway.
Collapse
Affiliation(s)
- Weiming Ouyang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Approximately 50 years ago, researchers established conditions to maintain cells in tissue culture: Likely et al. (1952), Scherer et al. (1953), Eagle (1955). This simple model system set the stage for discovery of growth factors and the signaling systems that they engage to mediate cellular responses such as proliferation. The purpose of this review is to present the original view of how growth factors regulate cell cycle progression and an updated (priming/completion) version of how growth factors advance resting cells through the cell cycle.
Collapse
Affiliation(s)
- Andrius Kazlauskas
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Wharton W. Repression of G0/G1 traverse in human fibroblasts exposed to low levels of ionizing radiation. J Biol Chem 2004; 279:43667-74. [PMID: 15304475 DOI: 10.1074/jbc.m407959200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quiescent cultures of human fibroblasts were exposed to levels of ionizing radiation sufficient to induce a transient growth delay, while causing only small decreases in long term clonogenicity. Following the mitogenic stimulation of damaged cells, cyclin D-associated kinase activity was induced to levels equivalent to those seen in control cultures. In addition, late G0/G1 E2F-dependent transcriptional and translational activity was observed in restimulated irradiated cells. However, cells became arrested prior to entry into S phase in a manner that paralleled the repression of cdk2-associated kinase activity. Cyclin A/cdk2-associated kinase activity was repressed in a biphasic manner following the irradiation of logarithmically growing cells. The initial rapid decline in activity to levels approximately 50% of those observed in control cultures occurred prior to increases in cellular levels of p21Cip1 protein, was not blocked by the addition of cycloheximide, and was not accompanied by alterations in cdk2 phosphotyrosine content. The subsequent repression to undetectable levels was coincident with the induction of p21Cip1 and was dependent on de novo protein synthesis. Only a subpopulation of cyclin A complexes were associated with p21Cip1 regardless of the magnitude of the repression of catalytic activity, although all cyclin A-cdk2-p21Cip1 complexes were inactive. These data suggest that temporally and functionally distinct mechanisms mediate the repression of cyclin-cdk activity in damaged cells. In addition, we present evidence that irradiated cells are competent to traverse S phase and arrest in G2 in the complete absence of cdk2-associated kinase activity.
Collapse
Affiliation(s)
- Walker Wharton
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque 87131, USA.
| |
Collapse
|
26
|
Savell J, Ma Y, Morrow KS, Jove R, Olashaw N, Moseley PL, Cress WD, Wharton W. AG490 inhibits G1-S traverse in BALB/c-3T3 cells following either mitogenic stimulation or exogenous expression of E2F-1. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.205.3.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
AG490, a member of the tryphostin family of protein kinase inhibitors, repressed G0-G1 traverse in BALB/c-3T3 cells. While the early induction of STAT activity was repressed by AG490, extracellular signal-regulated kinase (ERK) activation was unaffected and a pattern of gene expression suggested that cells exited G0 in the presence of the inhibitor. Although AG490 did not alter the induction of cyclin D1 protein, neither cyclin D1- nor cyclin D3-associated kinase activity was observed in growth-inhibited cells. Surprisingly, p130 was partially phosphorylated, and E2F3A protein was expressed in mitogen-stimulated AG490-treated cells despite the lack of cyclin D-associated kinase activity. These data suggest that AG490 inhibits a cellular pathway required for mid-G0-G1 traverse that is located after the induction of early processes potentially mediated by E2F (although independent of cyclin D-associated kinase activity) but before the late G1 increase in E2F-dependent transcription. Infection of AG490-treated cells with an E2F-1 adenovirus caused the induction of cyclin A, but could not overcome the drug-induced cell cycle arrest that was coincident with the repression of cyclin-dependent kinase 2 (cdk2)-associated kinase activation. We conclude that cdk2-associated kinase activity is modulated by a cellular process repressed by AG490. Furthermore, this cdk2-associated kinase activity is required for G0-G1 traverse in some role other than the regulation of E2F-dependent transcription.
Collapse
Affiliation(s)
- Jason Savell
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Yihong Ma
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Kristin S. Morrow
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Richard Jove
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Nancy Olashaw
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Pope L. Moseley
- 2Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM
| | - W. Douglas Cress
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
| | - Walker Wharton
- 1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL and
- 2Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM
| |
Collapse
|
27
|
Abstract
Increased airway smooth muscle mass has been demonstrated in patients with asthma, bronchopulmonary dysplasia and most recently, cystic fibrosis. These observations emphasize the need for further knowledge of the events involved in airway smooth muscle mitogenesis and hypertrophy. Workers in the field have developed cell culture systems involving tracheal and bronchial myocytes from different species. An emergent body of literature indicates that mutual signal transduction pathways control airway smooth muscle cell cycle entry across species lines. This article reviews what is known about mitogen-activated signal transduction in airway myocytes. The extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-kinase) pathways appear to be key positive regulators of airway smooth muscle mitogenesis; recent studies have also demonstrated specific roles for reactive oxygen and the JAK/STAT pathway. It is also possible that growth factor stimulation of airway smooth muscle concurrently elicits signaling through negative regulatory intermediates such as p38 mitogen-activated protein (MAP) kinase and protein kinase C (PKC) delta, conceivably as a defense against extreme growth.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics, University of Chicago, Chicago, IL 48109-0688, USA
| | | |
Collapse
|
28
|
Zhang X, Ma L, Enkemann SA, Pledger WJ. Role of Gadd45alpha in the density-dependent G1 arrest induced by p27(Kip1). Oncogene 2003; 22:4166-74. [PMID: 12833139 DOI: 10.1038/sj.onc.1206599] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
p27(Kip1), an inhibitor of cyclin-dependent kinases, is an important regulator of cell cycle progression. We have previously shown that p27(Kip1) inhibits the G0 to S transition when ectopically expressed in p27-47 mouse fibroblasts arrested at high but not low densities. In the study described here, we identify Gadd45alpha, a member of the growth arrest- and DNA damage-inducible family of proteins, as a potential mediator of the density-dependent effects of p27(Kip1) on cell proliferation. Gadd45alpha mRNA and protein were more abundant in p27-47 cells arrested at high densities than at low densities. Amounts of both decreased and remained low when cells arrested at high densities were exposed to mitogens in the absence, but not in the presence, of ectopically expressed p27(Kip1). Importantly, enforced expression of Gadd45alpha prevented density-arrested mouse fibroblasts from initiating DNA synthesis in response to mitogens. We suggest that amounts of Gadd45alpha above a certain threshold are growth inhibitory and that such amounts are achieved in cells arrested at high but not low densities. For cultures arrested at high densities, the resumption of cell cycle traverse requires a sustained reduction in Gadd45alpha abundance, a process that is induced by mitogens and inhibited by p27(Kip1).
Collapse
Affiliation(s)
- Xiaohong Zhang
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
29
|
Simon AR, Takahashi S, Severgnini M, Fanburg BL, Cochran BH. Role of the JAK-STAT pathway in PDGF-stimulated proliferation of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1296-304. [PMID: 12003786 DOI: 10.1152/ajplung.00315.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Airway remodeling, as manifested by an increase in airway smooth muscle mass, mucous gland hyperplasia, and subepithelial fibrosis, contributes to the airway hyperresponsiveness and fixed obstruction seen in some asthmatic patients. Here we investigated whether the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway contributes to platelet-derived growth factor (PDGF)-stimulated mitogenesis of human airway smooth muscle cells (HASMC). PDGF treatment of quiescent HASMC resulted in the rapid tyrosine phosphorylation and DNA binding of STAT1 and STAT3. This phosphorylation was blocked by inhibition of Src and JAK2 kinases. In addition, STAT activation by PDGF was found to be redox dependent. Moreover, PDGF-induced thymidine uptake was completely blocked by pretreatment of HASMC with the STAT kinase inhibitors AG-490, SU-6656, and PP2. Interestingly, the JAK pathway was required for HASMC mitogenesis independently of mitogen-activated protein kinase activation. Inhibition of the Src and JAK kinases blocked PDGF-stimulated gene expression of the STAT target genes cyclin D1 and c-myc. These results indicate that the JAK-STAT pathway contributes to PDGF-induced mitogenesis, and thus this pathway may be important in the airway remodeling seen in some asthmatic patients.
Collapse
Affiliation(s)
- Amy R Simon
- Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
30
|
Olashaw N, Pledger WJ. Paradigms of growth control: relation to Cdk activation. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re7. [PMID: 12034920 DOI: 10.1126/stke.2002.134.re7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cyclin-dependent kinases (CDKs) play a key role in cell cycle control, and in this review, we focus on the events that regulate their activities. Emphasis is placed on the CDKs that function during the G(1) phase of the cell cycle and on the CDK inhibitor p27(Kip1). We discuss how CDK activation relates to two basic concepts of cell cycle regulation: (i) the need for multiple mitogens for the proliferation of nontransformed cells and (ii) the inhibitory effect of high culture density on proliferative capacity. We also describe how Cdk2 modulates the expression of the alpha subunit of the interleukin-2 receptor in T cells, and address the question of whether p27(Kip1) functions as an activator or inhibitor of the CDKs associated with the D cyclins.
Collapse
Affiliation(s)
- Nancy Olashaw
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | |
Collapse
|
31
|
|
32
|
Acevedo-Duncan M, Patel R, Whelan S, Bicaku E. Human glioma PKC-iota and PKC-betaII phosphorylate cyclin-dependent kinase activating kinase during the cell cycle. Cell Prolif 2002; 35:23-36. [PMID: 11856176 PMCID: PMC6496790 DOI: 10.1046/j.1365-2184.2002.00220.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle phase transition is regulated in part by the trimeric enzyme, cyclin-dependent kinase activating kinase (CAK) which phosphorylates and activates cyclin-dependent kinases (cdks). Protein kinase C (PKC) inhibitors prevent cell cycle phase transition, suggesting a fundamental role for PKCs in cell cycle regulation. We report that in glioma cells, CAK (cdk7) is constitutively associated with PKC-iota. In vitro phosphorylation, co-immunoprecipitation, and analysis of phosphorylated proteins by autoradiography indicate that CAK (cdk7) is a substrate for PKC-iota and PKC-betaII hyperphosphorylation. These results establish a role for PKC-iota and PKC-betaII in the activation of CAK during the glioma cell cycle.
Collapse
|
33
|
Grunicke HH, Kampfer S, Spitaler M, Hochholdinger F, Baier G, Uberall F. Elements of signal transduction in drug discovery with special reference to inhibitors of protein kinase C. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:81-99. [PMID: 11394049 DOI: 10.1007/978-3-662-04645-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- H H Grunicke
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3/VI, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21:5925-34. [PMID: 11486031 PMCID: PMC87311 DOI: 10.1128/mcb.21.17.5925-5934.2001] [Citation(s) in RCA: 310] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2001] [Accepted: 06/08/2001] [Indexed: 11/20/2022] Open
Abstract
Notch genes encode a family of transmembrane proteins that are involved in many cellular processes such as differentiation, proliferation, and apoptosis. Although it is well established that all four Notch genes can act as oncogenes, the mechanism by which Notch proteins transform cells remains unknown. Previously, we have shown that transformation of RKE cells can be conditionally induced by hormone activation of Notch(ic)-estrogen receptor (ER) chimeras. Using this inducible system, we show that Notch(ic) activates transcription of the cyclin D1 gene with rapid kinetics. Transcriptional activation of cyclin D1 is independent from serum-derived growth factors and de novo synthesis of secondary transcriptional activators. Moreover, hormone activation of Notch(ic)-ER proteins induces CDK2 activity in the absence of serum. Upregulation of cyclin D1 and activation of CDK2 by Notch(ic) result in the promotion of S-phase entry. These data demonstrate the first evidence that Notch(ic) proteins can directly regulate factors involved in cell cycle control and affect cellular proliferation. Furthermore, nontransforming Notch(ic) proteins do not induce cyclin D1 expression, indicating that the mechanism of transformation involves cell cycle deregulation through constitutive expression of cyclin D1. Finally, we have identified a CSL [stands for CBF1, Su(H), and Lag-1] binding site within the human and rat cyclin D1 promoters, suggesting that Notch(ic) proteins activate cyclin D1 transcription through a CSL-dependent pathway.
Collapse
Affiliation(s)
- C Ronchini
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | | |
Collapse
|
35
|
Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21:4246-55. [PMID: 11390653 PMCID: PMC87085 DOI: 10.1128/mcb.21.13.4246-4255.2001] [Citation(s) in RCA: 278] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 04/02/2001] [Indexed: 12/19/2022] Open
Abstract
Bop1 is a novel nucleolar protein involved in rRNA processing and ribosome assembly. We have previously shown that expression of Bop1Delta, an amino-terminally truncated Bop1 that acts as a dominant negative mutant in mouse cells, results in inhibition of 28S and 5.8S rRNA formation and deficiency of newly synthesized 60S ribosomal subunits (Z. Strezoska, D. G. Pestov, and L. F. Lau, Mol. Cell. Biol. 20:5516-5528, 2000). Perturbation of Bop1 activities by Bop1Delta also induces a powerful yet reversible cell cycle arrest in 3T3 fibroblasts. In the present study, we show that asynchronously growing cells are arrested by Bop1Delta in a highly concerted fashion in the G(1) phase. Kinase activities of the G(1)-specific Cdk2 and Cdk4 complexes were downregulated in cells expressing Bop1Delta, whereas levels of the Cdk inhibitors p21 and p27 were concomitantly increased. The cells also displayed lack of hyperphosphorylation of retinoblastoma protein (pRb) and decreased expression of cyclin A, indicating their inability to progress through the restriction point. Inactivation of functional p53 abrogated this Bop1Delta-induced cell cycle arrest but did not restore normal rRNA processing. These findings show that deficiencies in ribosome synthesis can be uncoupled from cell cycle arrest and reveal a new role for the p53 pathway as a mediator of the signaling link between ribosome biogenesis and the cell cycle. We propose that aberrant rRNA processing and/or ribosome biogenesis may cause "nucleolar stress," leading to cell cycle arrest in a p53-dependent manner.
Collapse
Affiliation(s)
- D G Pestov
- Department of Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60607-7170, USA
| | | | | |
Collapse
|
36
|
Shaughnessy J, Gabrea A, Qi Y, Brents L, Zhan F, Tian E, Sawyer J, Barlogie B, Bergsagel PL, Kuehl M. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001; 98:217-23. [PMID: 11418483 DOI: 10.1182/blood.v98.1.217] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reciprocal chromosomal translocations, which are mediated by errors in immunoglobulin heavy chain (IgH) switch recombination or somatic hypermutation as plasma cells are generated in germinal centers, are present in most multiple myeloma (MM) tumors. These translocations dysregulate an oncogene that is repositioned in proximity to a strong IgH enhancer. There is a promiscuous array of nonrandom chromosomal partners (and oncogenes), with the 3 most frequent partners (11q13 [cyclin D1]; 4p16 [FGFR3 and MMSET]; 16q23 [c-maf]) involved in nearly half of MM tumors. It is now shown that a novel t(6;14)(p21;q32) translocation is present in 1 of 30 MM cell lines and that this cell line uniquely overexpresses cyclin D3. The cloned breakpoint juxtaposes gamma 4 switch sequences with 6p21 sequences that are located about 65 kb centromeric to the cyclin D3 gene. By metaphase chromosome analysis, the t(6;14) (p21;q32) translocation was identified in 6 of 150 (4%) primary MM tumors. Overexpression of cyclin D3 messenger RNA (mRNA) was identified by microarray RNA expression analysis in 3 of 53 additional primary MM tumors, each of which was found to have a t(6;14) translocation breakpoint by interphase fluorescence in situ hybridization analysis. One tumor has a t(6;22)(p21;q11) translocation, so that cyclin D3 is bracketed by the IgL and IgH breakpoints. These results provide the first clear evidence for primary dysregulation of cyclin D3 during tumorigenesis. It is suggested that the initial oncogenic event for most MM tumors is a primary immunoglobulin translocation that dysregulates cyclin D1, cyclin D3, and other oncogenes to provide a proliferative stimulus to postgerminal center plasma cells.
Collapse
Affiliation(s)
- J Shaughnessy
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics and Myeloma and the Transplantation Research Center, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Our studies addressed the mechanism by which serum acts in conjunction with T cell receptor (TCR) agonists to promote the proliferation of primary splenic T cells. When added to resting splenocytes, TCR agonists initiated G(0)/G(1) traverse and activated cyclin D3-cdk6 complexes in a serum-independent manner. On the other hand, both TCR agonists and 10% serum were required for the activation of cyclin E-cdk2 and cyclin A-cdk2 complexes and the entry of cells into S phase. Serum facilitated cdk2 activation by maximizing the extent and extending the duration of the TCR-initiated down-regulation of the cdk2 inhibitor, p27(Kip1). Although p27(Kip1) levels were reduced (albeit submaximally) in cells stimulated in serum-deficient medium, nearly all of the cdk2 complexes in these cells contained p27(Kip1). In contrast, in cells receiving TCR agonist and 10% serum, little if any p27(Kip1) was present in cyclin-cdk2 complexes. Unlike wild-type splenocytes, p27(Kip1)-null splenocytes did not require serum for cdk2 activation or S phase entry whereas loss of the related cdk2 inhibitor, p21(Cip1), did not override the serum dependence of these responses. We also found that cdk2 activation was both necessary and sufficient for maximal expression of cdk2 protein. These studies provide a mechanistic basis for the serum dependence of T cell mitogenesis.
Collapse
Affiliation(s)
- S Mohapatra
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Oncology, Department of Biochemistry, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
38
|
Nagasawa M, Gelfand EW, Lucas JJ. Accumulation of high levels of the p53 and p130 growth-suppressing proteins in cell lines stably over-expressing cyclin-dependent kinase 6 (cdk6). Oncogene 2001; 20:2889-99. [PMID: 11420701 DOI: 10.1038/sj.onc.1204396] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/1998] [Revised: 02/07/2001] [Accepted: 02/13/2001] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 6(cdk6) is present in randomly proliferating cultures of 3T3 cells but has little detectable enzymatic activity. Significant activity is detected only during a short period in early G1 phase. To examine the possible functions of cdk6 in 3T3 cells, lines stably over-expressing cdk6 were constructed and compared to normal 3T3 cells or cell lines with reduced cdk6 levels due to expression of a dominant-negative form of the protein. Over-expression of cdk6 in cells, which led to high levels of activity even in proliferating cultures, had dramatic effects. Cell lines stably over-expressing wild-type cdk6 had a markedly reduced growth rate compared to parental 3T3 cells or lines expressing a dominant-negative form of cdk6. They also over-produced the p53 and p130 proteins and had increased sensitivity to UV-irradiation. Irradiation resulted in accumulation of the Bax protein and rapid cell death. Levels of p53 and p130 proteins were down-regulated and the growth rate of the cells was increased by introduction of the dominant-negative form of cdk6 into cells over-expressing cdk6, indicating that cdk6 is involved in the overproduction of p53 and p130. The results suggest that cdk6, through regulation of growth-suppressing molecules, may play a role in halting cellular growth when proliferation is inappropriate.
Collapse
Affiliation(s)
- M Nagasawa
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado, CO 80206, USA
| | | | | |
Collapse
|
39
|
Modiano JF, Mayor J, Ball C, Fuentes MK, Linthicum DS. CDK4 expression and activity are required for cytokine responsiveness in T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6693-702. [PMID: 11120786 DOI: 10.4049/jimmunol.165.12.6693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of lymphocytes through the Ag receptor can lead to cytokine responsiveness or unresponsiveness. We examined the importance of cyclin-dependent kinase (CDK)4 to establish and maintain IL-2 responsiveness in human T cells. Our results show that a herbimycin A- and staurosporine-sensitive phase of CDK4 expression and activity preceded the acquisition of IL-2-responsiveness in mitogen-stimulated peripheral blood T cells. Intriguingly, CDK4 expression and activity were demonstrable in purified unstimulated peripheral blood T cells from approximately 30% (5/16) of healthy individuals examined for this study. These T cells proliferated in response to IL-2 without additional mitogens, and both the expression and activity of CDK4 and the ability to respond to cytokines were resistant to herbimycin A and staurosporine. The pattern of CDK4 expression and response to IL-2 in this subset of individuals resembled that seen in the human IL-2-dependent Kit-225 T cell line. However, in contrast to normal T cells, Kit-225 cells were rendered unresponsive to IL-2 by stimulation through the Ag receptor. In these cells, PHA, anti-CD3, or PMA induced marked reductions of CDK4 expression and activity that paralleled IL-2 unresponsiveness, and these effects were not reversible by IL-2. Furthermore, IL-2-dependent proliferation could be similarly inhibited in Kit-225 cells by overexpression of the CDK inhibitors p16/Ink4-a or p21/Waf-1a or by overexpression of a kinase-inactive CDK4 mutant. The data indicate that CDK4 expression and activity are necessary to induce and maintain cytokine responsiveness in T cells, suggesting that CDK4 is important to link T cell signaling pathways to the machinery that controls cell cycle progression.
Collapse
Affiliation(s)
- J F Modiano
- Center for Cancer Causation and Prevention, AMC Cancer Research Center, Denver, CO 80214, USA.
| | | | | | | | | |
Collapse
|
40
|
Ballock RT, Zhou X, Mink LM, Chen DH, Mita BC, Stewart MC. Expression of cyclin-dependent kinase inhibitors in epiphyseal chondrocytes induced to terminally differentiate with thyroid hormone. Endocrinology 2000; 141:4552-7. [PMID: 11108267 DOI: 10.1210/endo.141.12.7839] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A growing body of evidence suggests that systemic hormones and peptide growth factors may exert their effects on cell growth and differentiation in part through regulation of the cell division cycle. We hypothesized that thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through controlling cell cycle progression at the G1/S restriction point. Our results support this hypothesis by demonstrating that treatment of epiphyseal chondrocytes with thyroid hormone under chemically defined conditions results in the arrest of DNA synthesis and the onset of terminal differentiation, indicating that thyroid hormone is one factor capable of regulating the transition between cell growth and differentiation in these cells. This terminal differentiation process is associated with induction of the cyclin/cyclin-dependent kinase inhibitors p21(cip-1 waf-1) and p27kip1, suggesting that thyroid hormone may regulate terminal differentiation in part by arresting cell cycle progression through induction of cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
- R T Ballock
- Department of Orthopedics, Rainbow Babies and Childrens Hospital, University Hospitals of Cleveland, Case Western Reserve University, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Bagui TK, Jackson RJ, Agrawal D, Pledger WJ. Analysis of cyclin D3-cdk4 complexes in fibroblasts expressing and lacking p27(kip1) and p21(cip1). Mol Cell Biol 2000; 20:8748-57. [PMID: 11073976 PMCID: PMC86501 DOI: 10.1128/mcb.20.23.8748-8757.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our studies examined the effects of p27(kip1) and p21(cip1) on the assembly and activity of cyclin D3-cdk4 complexes and determined the composition of the cyclin D3 pool in cells containing and lacking these cyclin-dependent kinase inhibitors. We found that catalytically active cyclin D3-cdk4 complexes were present in fibroblasts derived from p27(kip1)-p21(cip1)-null mice and that immunodepletion of extracts of wild-type cells with antibody to p27(kip1) and/or p21(cip1) removed cyclin D3 protein but not cyclin D3-associated activity. Similar results were observed in experiments assaying cyclin D1-cdk4 activity. Data obtained using mixed cell extracts demonstrated that p27(kip1) interacted with cyclin D3-cdk4 complexes in vitro and that this interaction was paralleled by a loss of cyclin D3-cdk4 activity. In p27(kip1)-p21(cip1)-deficient cells, the cyclin D3 pool consisted primarily of cyclin D3 monomers, whereas in wild-type cells, the majority of cyclin D3 molecules were complexed to cdk4 and either p27(kip1) or p21(cip1) or were monomeric. We conclude that neither p27(kip1) nor p21(cip1) is required for the formation of cyclin D3-cdk4 complexes and that cyclin D3-cdk4 complexes containing p27(kip1) or p21(cip1) are inactive. We suggest that only a minor portion of the total cyclin D3 pool accounts for all of the cyclin D3-cdk4 activity in the cell regardless of whether the cell contains p27(kip1) and p21(cip1).
Collapse
Affiliation(s)
- T K Bagui
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | |
Collapse
|
42
|
Poser S, Impey S, Trinh K, Xia Z, Storm DR. SRF-dependent gene expression is required for PI3-kinase-regulated cell proliferation. EMBO J 2000; 19:4955-66. [PMID: 10990459 PMCID: PMC314219 DOI: 10.1093/emboj/19.18.4955] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recent evidence indicates that phosphatidylinositol 3-kinase (PI3K) is a central regulator of mitosis, apoptosis and oncogenesis. Nevertheless, the mechanisms by which PI3K regulates proliferation are not well characterized. Mitogens stimulate entry into the cell cycle by inducing the expression of immediate early genes (IEGs) that in turn trigger the expression of G(1) cyclins. Here we describe a novel PI3K- regulated transcriptional cascade that is critical for mitogen regulation of the IEG, c-fos. We show that PI3K activates gene expression by transactivating SRF-dependent transcription independently of the previously described Rho and ETS TCF pathways. PI3K-stimulated cell cycle progression requires transactivation of SRF and expression of dominant- negative PI3K blocks mitogen-stimulated cell cycle progression. Furthermore, dominant-interfering SRF mutants attenuate mitogen-stimulated cell cycle progression, but are without effect on MEK-stimulated cell cycle entry. Moreover, expression of constitutively active SRF is sufficient for cell cycle entry. Thus, we delineate a novel SRF-dependent mitogenic cascade that is critical for PI3K- and growth factor-mediated cell cycle progression.
Collapse
Affiliation(s)
- S Poser
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
43
|
Guillemot L, Levy A, Zhao ZJ, Bereziat G, Rothhut B. The protein-tyrosine phosphatase SHP-2 is required during angiotensin II-mediated activation of cyclin D1 promoter in CHO-AT1A cells. J Biol Chem 2000; 275:26349-58. [PMID: 10843991 DOI: 10.1074/jbc.m001614200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II (Ang II) binds to specific G protein-coupled receptors and is mitogenic in Chinese hamster ovary (CHO) cells stably expressing a rat vascular angiotensin II type 1A receptor (CHO-AT(1A)). Cyclin D1 protein expression is regulated by mitogens, and its assembly with the cyclin-dependent kinases induces phosphorylation of the retinoblastoma protein pRb, a critical step in G(1) to S phase cell cycle progression contributing to the proliferative responses. In the present study, we found that in CHO-AT(1A) cells, Ang II induced a rapid and reversible tyrosine phosphorylation of various intracellular proteins including the protein-tyrosine phosphatase SHP-2. Ang II also induced cyclin D1 protein expression in a phosphatidylinositol 3-kinase and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK)-dependent manner. Using a pharmacological and a co-transfection approach, we found that p21(ras), Raf-1, phosphatidylinositol 3-kinase and also the catalytic activity of SHP-2 and its Src homology 2 domains are required for cyclin D1 promoter/reporter gene activation by Ang II through the regulation of MAPK/ERK activity. Our findings suggest for the first time that SHP-2 could play an important role in the regulation of a gene involved in the control of cell cycle progression resulting from stimulation of a G protein-coupled receptor independently of epidermal growth factor receptor transactivation.
Collapse
Affiliation(s)
- L Guillemot
- Laboratoire de Signalisation Cellulaire, Médiateurs Lipidiques et Contrôle de l'Expression des Gènes, CNRS UPRES-A 7079, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Lang S, Hartner A, Sterzel RB, Schöcklmann HO. Requirement of cyclin D1 in mesangial cell mitogenesis. J Am Soc Nephrol 2000; 11:1398-1408. [PMID: 10906153 DOI: 10.1681/asn.v1181398] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract. Hyperplasia of mesangial cells (MC) is a frequent finding in glomerulonephritis. The control and function of cyclin D1, a regulator of cell cycle progression, in MC proliferation in vivo and in vitro were investigated. In a rat model of mesangioproliferative glomerulonephritis, increases in the number of cyclin D1-positive MC nuclei were prominent on day 5 of the disease, preceding the peak of MC hyperplasia. In growth-arrested rat MC in culture, mitogenic stimulation with serum or platelet-derived growth factor (PDGF) led to rapid increases in cyclin D1 protein expression. Transforming growth factor-beta1 inhibited PDGF induction of cyclin D1 protein at 12 h. In an examination of the subcellular distribution of cyclin D1, it was observed that stimulation of MC with PDGF for 6 h caused translocation of cyclin D1 from the cytoplasm into the nucleus. Coincubation with PDGF and transforming growth factor-beta1 completely inhibited this effect, without altering the cellular cyclin D1 protein abundance at that time point. To test whether reduction of cyclin D1 protein levels was sufficient to inhibit mitogenesis, MC were transfected with antisense oligonucleotides (ODN) complementary to rat cyclin D1 mRNA. Antisense ODN against cyclin D1 reduced the serum- or PDGF-induced protein expression of cyclin D1 to 27 or 10% of control levels, respectively. These inhibitory effects were correlated with diminished cyclin-dependent kinase 4 activity. Antisense ODN against cyclin D1 also decreased the PDGF-induced increase in p21(Waf-1) protein levels. The MC proliferation caused by serum or PDGF was markedly inhibited by antisense ODN against cyclin D1, as measured by [(3)H]thymidine uptake and cell counts. It is concluded that increased cyclin D1 protein expression of MC is required for MC proliferation. Targeting cyclin D1 expression may represent an effective means to inhibit MC proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Stefan Lang
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Hartner
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Bernd Sterzel
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
45
|
Zhang X, Wharton W, Donovan M, Coppola D, Croxton R, Cress WD, Pledger WJ. Density-dependent growth inhibition of fibroblasts ectopically expressing p27(kip1). Mol Biol Cell 2000; 11:2117-30. [PMID: 10848633 PMCID: PMC14907 DOI: 10.1091/mbc.11.6.2117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cyclin/cyclin-dependent kinase (cdk) inhibitor p27(kip1) is thought to be responsible for the onset and maintenance of the quiescent state. It is possible, however, that cells respond differently to p27(kip1) in different conditions, and using a BALB/c-3T3 cell line (termed p27-47) that inducibly expresses high levels of this protein, we show that the effect of p27(kip1) on cell cycle traverse is determined by cell density. We found that ectopic expression of p27(kip1) blocked the proliferation of p27-47 cells at high density but had little effect on the growth of cells at low density whether exponentially cycling or stimulated from quiescence. Regardless of cell density, the activities of cdk4 and cdk2 were markedly repressed by p27(kip1) expression, as was the cdk4-dependent dissociation of E2F4/p130 complexes. Infection of cells with SV40, a DNA tumor virus known to abrogate formation of p130- and Rb-containing complexes, allowed dense cultures to proliferate in the presence of supraphysiological amounts of p27(kip1) but did not stimulate cell cycle traverse when cultures were cotreated with the potent cdk2 inhibitor roscovitine. Our data suggest that residual levels of cyclin/cdk activity persist in p27(kip1)-expressing p27-47 cells and are sufficient for the growth of low-density cells and of high-density cells infected with SV40, and that effective disruption of p130 and/or Rb complexes is obligatory for the proliferation of high-density cultures.
Collapse
Affiliation(s)
- X Zhang
- Molecular Oncology Program, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Sauane M, Correa L, Rogers F, Krasnapolski M, Barraclough R, Rudland PS, de Asúa LJ. Prostaglandin F(2alpha) (PGF(2alpha)) induces cyclin D1 expression and DNA synthesis via early signaling mechanisms in Swiss mouse 3T3 cells. Biochem Biophys Res Commun 2000; 270:11-6. [PMID: 10733897 DOI: 10.1006/bbrc.2000.2383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)), a mitogen for Swiss 3T3 cells, triggers cyclin D1 mRNA/protein expression prior to cellular entry into the S phase, but fails to raise cdk4 or cyclin D3 levels, while 1-oleoyl-2-diacylglycerol (OAG), a protein kinase C (PKC) and tyrosine kinase (TK) activator, induces only cyclin D1 expression with no mitogenic response. In contrast, in PKC-depleted or -inhibited cells, PGF(2alpha), but not OAG, increases cyclin D1 expression with no mitogenic response. Finally, OAG, in the presence of orthovanadate (Na(3)VO(4)) or TGF(beta1), induces DNA synthesis. Thus, it appears that PGF(2alpha) triggers cyclin D1 expression via two independent signaling events that complement with TGF(beta1)-triggered events to induce DNA synthesis.
Collapse
Affiliation(s)
- M Sauane
- Instituto de Investigaciones Bioquímicas "Luis F. Leloir" Fundación Campomar, Avenida Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The ordered execution of the two main events of cellular reproduction, duplication of the genome and cell division, characterize progression through the cell cycle. Cultured cells can be switched between cycling and non-cycling states by alteration of extracellular conditions and the notion that a critical cellular control mechanism presides on this decision, whose temporal location is known as the restriction point, has become the focus for the study of how extracellular mitogenic signalling impinges upon the cell cycle to influence proliferation. This review attempts to cover the disparate pathways of Ras-mediated mitogenic signal transduction that impact upon restriction point control.
Collapse
Affiliation(s)
- M E Ewen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Modiano JF, Mayor J, Ball C, Chitko-McKown CG, Sakata N, Domenico-Hahn J, Lucas JJ, Gelfand EW. Quantitative and qualitative signals determine T-cell cycle entry and progression. Cell Immunol 1999; 197:19-29. [PMID: 10555992 DOI: 10.1006/cimm.1999.1563] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell growth and proliferation as well as cell cycle arrest and apoptosis all play integral roles in the cellular immune response. The signals that lead to cytokine production by antigen- or mitogen-stimulated T cells have been studied in detail. However, it is not fully understood how these signals promote cell cycle entry and progression to DNA synthesis in T lymphocytes, especially in primary cells. We used a model distinguishing between competence and progression phases to examine quantitative and qualitative differences in signal transduction that resulted in cell cycle entry and G1 phase arrest or led to DNA synthesis in human T cells. Resting peripheral blood T cells were rendered competent by stimulation with submitogenic concentrations of phytohemagglutinin (PHA) or they were stimulated to proliferate using mitogenic concentrations of PHA. The competent state (that is, the capacity to proliferate in response to exogenous IL-2) was characterized by calcium mobilization, a protein kinase C-dependent internalization of CD3, increased mitogen-activated protein kinase (MAPK) activity, transient translocation of AP-1 transcription factors to the nucleus, expression of immediate early genes, activation of G1-phase cyclin-dependent kinases, and increased CD25 (IL-2Ralpha) expression. However, all of these events were of lesser magnitude in T cells rendered competent than in T cells stimulated to proliferate. Furthermore, the mitogenic stimulus induced a different pattern of MAPK activation and sustained translocation of AP-1 to the nucleus with concomitant IL-2 production. The data indicate that quantitative and qualitative differences in early signaling events distinguish the acquisition of the competent state or the induction of cytokine production with a commitment to T-cell proliferation.
Collapse
Affiliation(s)
- J F Modiano
- Department of Pathobiology, Texas A and M University, College Station, Texas.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang L, Kim M, Choi YH, Goemans B, Yeung C, Hu Z, Zhan S, Seth P, Helman LJ. Diminished G1 checkpoint after gamma-irradiation and altered cell cycle regulation by insulin-like growth factor II overexpression. J Biol Chem 1999; 274:13118-26. [PMID: 10224065 DOI: 10.1074/jbc.274.19.13118] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High levels of insulin-like growth factor II (IGFII) mRNA expression are detected in many human tumors of different origins including rhabdomyosarcoma, a tumor of skeletal muscle origin. To investigate the role of IGFII in tumorigenesis, we have compared the mouse myoblast cell line C2C12-2.7, which was stably transfected with human IGFII cDNA and expressed high and constant amounts of IGFII, to a control cell line C2C12-1.1. A rhabdomyosarcoma cell line, RH30, which expresses high levels of IGFII and contains mutated p53, was also used in these studies. IGFII overexpression in mouse myoblast C2C12 cells causes a reduced cycling time and higher growth rate. After gamma-irradiation treatment, C2C12-1.1 cells were arrested mainly in G0/G1 phase. However, C2C12-2.7 and RH30 cells went through a very short G1 phase and then were arrested in an extended G2/M phase. To verify further the effect of IGFII on the cell cycle, we developed a Chinese hamster ovary (CHO) cell line with tetracycline-controlled IGFII expression. We found that CHO cells with high expression of IGFII have a shortened cycling time and a diminished G1 checkpoint after treatment with methylmethane sulfonate (MMS), a DNA base-damaging agent, when compared with CHO cells with very low IGFII expression. It was also found that IGFII overexpression in C2C12 cells was associated with increases in cyclin D1, p21, and p53 protein levels, as well as mitogen-activated protein kinase activity. These studies suggest that IGFII overexpression shortens cell cycling time and diminishes the G1 checkpoint after DNA damage despite an intact p53/p21 induction. In addition, IGFII overexpression is also associated with multiple changes in the levels and activities of cell cycle regulatory components following gamma-irradiation. Taken together, these changes may contribute to the high growth rate and genetic alterations that occur during tumorigenesis.
Collapse
Affiliation(s)
- L Zhang
- Molecular Oncology Section, National Institutes of Health, Bethesda, Maryland 20892-1928, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Modiano JF, Ritt MG, Wojcieszyn J, Smith R. Growth arrest of melanoma cells is differentially regulated by contact inhibition and serum deprivation. DNA Cell Biol 1999; 18:357-67. [PMID: 10360837 DOI: 10.1089/104454999315259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Both growth-factor deprivation and contact inhibition suppress cell growth; however, the mechanisms by which they inhibit cell proliferation may not be identical. The function of antiproliferative genes and the induction of programmed cell death are among the potential differences between these growth-arrest mechanisms. Specifically, an inverse relation between the expression of cyclin-dependent kinase inhibitors (CDKIs) and the susceptibility to apoptosis has been reported. To test this relation, we examined the features of growth arrest in a canine melanoma cell line, TLM1. Both contact inhibition and serum deprivation halted cell-cycle progression of TLM1 cells in the G1 phase. Prolonged growth arrest of the cells without restimulation resulted in apoptosis; conversely, the cells reentered the cell cycle after release from contact inhibition or on restimulation with serum. Cell-to-cell contact, but not serum deprivation, led to the expression of p53 and p21/Waf-1. The expression of p21/Waf-1 did not prevent apoptosis. Moreover, the ectopic overexpression of CDKIs increased apoptosis. These results support the premise that growth arrest induced by contact inhibition and serum deprivation are mediated through distinct mechanisms. Furthermore, CDKIs are not universal inhibitors of apoptosis, and in some cases, they may initiate or enhance the apoptotic program.
Collapse
Affiliation(s)
- J F Modiano
- Department of Pathobiology, Texas A&M University, College Station 77843-4467, USA
| | | | | | | |
Collapse
|