1
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Ding L, Li Y, Liu H, You L, Zhang Y, Lin X, Qu S, Yao J, Yang L. Effects of pleiotrophin (PTN) on the FAK inhibitor Y15 in breast cancer cells. Int J Biol Macromol 2024; 280:135962. [PMID: 39322128 DOI: 10.1016/j.ijbiomac.2024.135962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Overexpression of PTN (Pleiotrophin) in breast cancer cells stimulates breast cell proliferation and anti-apoptosis via the FAK/Src signaling pathway.1,2,4,5-Benzenetetramine tetrahydrochloride (C6H14Cl4N4) known as Y15 is an inhibitor that specifically blocks phosphorylation of Y397-FAK and total FAK phosphorylation. The exogenous PTN protein was induced to be expressed by a prokaryotic expression strain. The addition of PTN protein decreased the sensitivity of breast cancer cells to Y15, as shown by both MTT and flow cytometry assays. Breast cancer cells transfected with sh-RNA knockdown PTN were analyzed by real-time fluorescence quantitative PCR reaction (RT-PCR) and protein immunoblotting 24 h after transfection. MTT assay data showed a significant increase in the IC50 value of Y15 against breast cancer cells in the presence of PTN protein. Flow cytometry data confirmed the dose-dependent anti-apoptotic effect of PTN protein in Y15-treated breast cancer cells. After transfection with sh-RNA, Y15 further inhibited the FAK pathway, greatly reducing cell survival and promoting apoptosis. Western blotting analysis showed that knockdown of PTN protein with sh-RNA resulted in increased apoptosis and elevated levels of apoptotic proteins, such as cleaved PARP and cleaved caspase-3 in Y15-induced breast cancer cells. Finally, it was hypothesized that PTN and Y15 were associated with a significant increase in the IC50 value of PTN and Y15 in breast cancer cells by western blotting analysis. It was hypothesized that PTN and Y15 regulate the proliferation and apoptosis of breast cancer cells through the AKT/PI3K pathway. The results demonstrated that PTN affects the sensitivity of the kinase inhibitor Y15, and PTN silencing and Y15 may inhibit the survival of breast cancer cells through the AKT/PI3K pathway, which lays the foundation for subsequent in-depth research on the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Linlin Ding
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yunfei Li
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Huali Liu
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Liwei You
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuqiang Zhang
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xueyuan Lin
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Siyang Qu
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiaxin Yao
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | - Liquan Yang
- The Center for Combinatorial Chemistry and Drug Discovery, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
4
|
Estep JA, Sun LO, Riccomagno MM. A luciferase fragment complementation assay to detect focal adhesion kinase (FAK) signaling events. Heliyon 2023; 9:e15282. [PMID: 37089315 PMCID: PMC10119766 DOI: 10.1016/j.heliyon.2023.e15282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Integrin Adhesion Complexes (IACs) serve as links between the cytoskeleton and extracellular environment, acting as mechanosensing and signaling hubs. As such, IACs participate in many aspects of cellular motility, tissue morphogenesis, anchorage-dependent growth and cell survival. Focal Adhesion Kinase (FAK) has emerged as a critical organizer of IAC signaling events due to its early recruitment and diverse substrates, and thus has become a genetic and therapeutic target. Here we present the design and characterization of simple, reversible, and scalable Bimolecular Complementation sensors to monitor FAK phosphorylation in living cells. These probes provide novel means to quantify IAC signaling, expanding on the currently available toolkit for interrogating FAK phosphorylation during diverse cellular processes.
Collapse
Affiliation(s)
- Jason A. Estep
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lu O. Sun
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin M. Riccomagno
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Clerici SP, Peppelenbosch M, Fuhler G, Consonni SR, Ferreira-Halder CV. Colorectal Cancer Cell-Derived Small Extracellular Vesicles Educate Human Fibroblasts to Stimulate Migratory Capacity. Front Cell Dev Biol 2021; 9:696373. [PMID: 34336845 PMCID: PMC8320664 DOI: 10.3389/fcell.2021.696373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is in the top 10 cancers most prevalent worldwide, affecting equally men and women. Current research on tumor-derived extracellular vesicles (EVs) suggests that these small extracellular vesicles (sEVs) play an important role in mediating cell-to-cell communication and thus potentially affecting cancer progression via multiple pathways. In the present study, we hypothesized that sEVs derived from different CRC cell lines differ in their ability to reprogram normal human fibroblasts through a process called tumor education. The sEVs derived from CRC cell lines (HT29 and HCT116) were isolated by a combination of ultrafiltration and polymeric precipitation, followed by characterization based on morphology, size, and the presence or absence of EV and non-EV markers. It was observed that the HT29 cells displayed a higher concentration of sEVs compared with HCT116 cells. For the first time, we demonstrated that HT29-derived sEVs were positive for low-molecular-weight protein tyrosine phosphatase (Lmwptp). CRC cell-derived sEVs were uptake by human fibroblasts, stimulating migratory ability via Rho-Fak signaling in co-incubated human fibroblasts. Another important finding showed that HT29 cell-derived sEVs are much more efficient in activating human fibroblasts to cancer-associated fibroblasts (CAFs). Indeed, the sEVs produced by the HT29 cells that are less responsive to a cytotoxic agent display higher efficiency in educating normal human fibroblasts by providing them advantages such as activation and migratory ability. In other words, these sEVs have an influence on the CRC microenvironment, in part, due to fibroblasts reprogramming.
Collapse
Affiliation(s)
- Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gwenny Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
6
|
Suppression of TGF-β1 signaling by Matrigel via FAK signaling in cultured human trabecular meshwork cells. Sci Rep 2021; 11:7319. [PMID: 33795740 PMCID: PMC8016910 DOI: 10.1038/s41598-021-86591-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The trabecular meshwork (TM) is composed of TM cells and beams of the extracellular matrix, together contributing to aqueous humor (AH) outflow resistance. Herein, we validated that our culture system on 2D Matrigel expressed putative TM markers and myocilin, of which the latter was upregulated by dexamethasone. Continuous passage of these cells on 2D Matrigel resulted in a gradual loss of expression of these markers. However, such a loss was restored by seeding cells in 3D Matrigel where expression of TM markers was further upregulated upon continuous passage. In contrast, TM cells seeded on fibronectin, collagen I/IV, or laminin lost expression of these markers and turned into myofibroblasts with expression of αSMA, which were dose-dependently upregulated by TGF-β1/TGF-β2. TM cells in 3D Matrigel also expressed TGF-β1/TGF-β3 despite challenge of TGF-β1. The maintenance of TM phenotype by 3D Matrigel was linked to inhibition of canonical TGF-β signaling and activation of pFAK-pSrc-pP190RhoGAP-P120RasGAP signaling. These findings indicate that basement membrane matrix with low rigidity plays an active role in maintaining TM phenotype in the presence of TGF-β1 and shed light on its physiological role. Furthermore, abnormal matrices may perpetuate the pathological TM phenotype when the level of TGF-β2 is elevated in glaucoma patients.
Collapse
|
7
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
8
|
Tsata V, Beis D. In Full Force. Mechanotransduction and Morphogenesis during Homeostasis and Tissue Regeneration. J Cardiovasc Dev Dis 2020; 7:jcdd7040040. [PMID: 33019569 PMCID: PMC7711708 DOI: 10.3390/jcdd7040040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
The interactions of form and function have been the focus of numerous studies in the context of development and more recently regeneration. Our understanding on how cells, tissues and organs sense and interpret external cues, such as mechanical forces, is becoming deeper as novel techniques in imaging are applied and the relevant signaling pathways emerge. These cellular responses can be found from bacteria to all multicellular organisms such as plants and animals. In this review, we focus on hemodynamic flow and endothelial shear stress during cardiovascular development and regeneration, where the interactions of morphogenesis and proper function are more prominent. In addition, we address the recent literature on the role of extracellular matrix and fibrotic response during tissue repair and regeneration. Finally, we refer to examples where the integration of multi-disciplinary approaches to understand the biomechanics of cellular responses could be utilized in novel medical applications.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| | - Dimitris Beis
- Correspondence: (V.T.); (D.B.); Tel.: +3021-0659-7439 (V.T. & D.B.)
| |
Collapse
|
9
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
10
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
11
|
Fang L, Chakraborty S, Dieter EM, Potter ZE, Lombard CK, Maly DJ. Chemoproteomic Method for Profiling Inhibitor-Bound Kinase Complexes. J Am Chem Soc 2019; 141:11912-11922. [PMID: 31274292 DOI: 10.1021/jacs.9b02963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecule inhibitors often only block a subset of the cellular functions of their protein targets. In many cases, how inhibiting only a portion of a multifunctional protein's functions affects the state of the cell is not well-understood. Therefore, tools that allow the systematic characterization of the cellular interactions that inhibitor-bound proteins make would be of great utility, especially for multifunctional proteins. Here, we describe a chemoproteomic strategy for interrogating the cellular localization and interactomes of inhibitor-bound kinases. By developing a set of orthogonal inhibitors that contain a trans-cyclooctene (TCO) click handle, we are able to enrich and characterize the proteins complexed to a drug-sensitized variant of the multidomain kinase Src. We show that Src's cellular interactions are highly influenced by the intermolecular accessibility of its regulatory domains, which can be allosterically modulated through its ATP-binding site. Furthermore, we find that the signaling status of the cell also has a large effect on Src's interactome. Finally, we demonstrate that our TCO-conjugated probes can be used as a part of a proximity ligation assay to study Src's localization and interactions in situ. Together, our chemoproteomic strategy represents a comprehensive method for studying the localization and interactomes of inhibitor-bound kinases and, potentially, other druggable protein targets.
Collapse
|
12
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
13
|
Ge L, Zhang X, Hu S, Song Y, Kong J, Zhang B, Yang X. H19 suppresses the growth of hepatoblastoma cells by promoting their apoptosis via the signaling pathways of miR-675/FADD and miR-138/PTK2. J Cell Biochem 2019; 120:5218-5231. [PMID: 30367502 DOI: 10.1002/jcb.27797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this study was to clarify the molecular pathways involved in hepatitis B virus (HBV)-induced hepatoblastoma. METHOD The expression of factors in different signaling pathways (H19, miR-675, miR-138, protein tyrosine kinase 2 [PTK2], fas-associated death domain [FADD], hypoxia-inducible factor 1-alpha [HIFIA], focal adhesion kinase [FAK], caspase-8, and caspase-3) was compared between HBV (+) and HBV (-) groups using quantitative real-time polymerase chain reaction and Western blot analysis. Subsequently, immunohistochemistry (IHC) and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays were used to verify the expression of above proteins in HBV (+) and HBV (-) groups. Computational analysis was conducted to predict the target genes of miR-675 and miR-138, whose regulatory relationships were then clarified using luciferase assays and cell transfection studies. RESULT The expression of H19, miR-675, PTK2, HIFIA, and FAK was increased in the HBV (+) group, while the expression of miR-138, FADD, caspase-8, and caspase-3 was decreased in the HBV (+) group. FADD and PTK2 were identified as target genes of miR-675 and miR-138, respectively. In addition, miR-675 was upregulated while miR-138 was downregulated by X protein (HBx). CONCLUSION In summary, the results of this study revealed the molecular pathways involved in HBV-induced hepatoblastoma. In the presence of HBV, HBX upregulated the expression of H19 through HIFIA. Consecutively, overexpressed H19 upregulated the expression of PTK2 via targeting miR-138 and downregulated the expression of FADD via targeting miR-675. Finally, increased expression of PTK2 and reduced expression of FADD both led to the inhibition of cell apoptosis, thus promoting the tumorigenesis of hepatoblastoma.
Collapse
Affiliation(s)
- Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Xianwei Zhang
- Department of Pediatric Oncologic Surgery, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Shengnan Hu
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yinsen Song
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Jinghui Kong
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Bo Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Xiaoang Yang
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
DeLalio LJ, Billaud M, Ruddiman CA, Johnstone SR, Butcher JT, Wolpe AG, Jin X, Keller TCS, Keller AS, Rivière T, Good ME, Best AK, Lohman AW, Swayne LA, Penuela S, Thompson RJ, Lampe PD, Yeager M, Isakson BE. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem 2019; 294:6940-6956. [PMID: 30814251 DOI: 10.1074/jbc.ra118.006982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.
Collapse
Affiliation(s)
- Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Marie Billaud
- the Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | | | - Joshua T Butcher
- the Department of Physiology, Augusta University, Augusta, Georgia 30912
| | - Abigail G Wolpe
- From the Robert M. Berne Cardiovascular Research Center.,Department of Cell Biology, and
| | - Xueyao Jin
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Thibaud Rivière
- the Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France
| | | | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center
| | - Alexander W Lohman
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Leigh Anne Swayne
- the Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Silvia Penuela
- the Departments of Anatomy and Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Roger J Thompson
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul D Lampe
- the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Yeager
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
15
|
Ólafsson EB, Ross EC, Varas-Godoy M, Barragan A. TIMP-1 promotes hypermigration of Toxoplasma-infected primary dendritic cells via CD63-ITGB1-FAK signaling. J Cell Sci 2019; 132:jcs.225193. [PMID: 30635444 DOI: 10.1242/jcs.225193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) exerts pleiotropic effects on cells including conferring metastatic properties to cancer cells. As for metastatic cells, recent paradigms of leukocyte migration attribute important roles to the amoeboid migration mode of dendritic cells (DCs) for rapid locomotion in tissues. However, the role of TIMP-1 in immune cell migration and in the context of infection has not been addressed. We report that, upon challenge with the obligate intracellular parasite Toxoplasma gondii, primary DCs secrete TIMP-1 with implications for their migratory properties. Using a short hairpin RNA (shRNA) gene silencing approach, we demonstrate that secreted TIMP-1 and its ligand CD63 are required for the onset of hypermotility in DCs challenged with T. gondii Further, gene silencing and antibody blockade of the β1-integrin CD29 (ITGB1) inhibited DC hypermotility, indicating that signal transduction occurred via ITGB1. Finally, gene silencing of the ITGB1-associated focal adhesion kinase (FAK, also known as PTK2), as well as pharmacological antagonism of FAK and associated kinases SRC and PI3K, abrogated hypermotility. The present study identifies a TIMP-1-CD63-ITGB1-FAK signaling axis in primary DCs, which T. gondii hijacks to drive high-speed amoeboid migration of the vehicle cells that facilitate its systemic dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| | - Emily C Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Faculty of Medicine, Universidad de los Andes, 7620001 Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| |
Collapse
|
16
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
17
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
18
|
Roycroft A, Szabó A, Bahm I, Daly L, Charras G, Parsons M, Mayor R. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Dev Cell 2018; 45:565-579.e3. [PMID: 29870718 PMCID: PMC5988567 DOI: 10.1016/j.devcel.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Contact inhibition of locomotion is defined as the behavior of cells to cease migrating in their former direction after colliding with another cell. It has been implicated in multiple developmental processes and its absence has been linked to cancer invasion. Cellular forces are thought to govern this process; however, the exact role of traction through cell-matrix adhesions and tension through cell-cell adhesions during contact inhibition of locomotion remains unknown. Here we use neural crest cells to address this and show that cell-matrix adhesions are rapidly disassembled at the contact between two cells upon collision. This disassembly is dependent upon the formation of N-cadherin-based cell-cell adhesions and driven by Src and FAK activity. We demonstrate that the loss of cell-matrix adhesions near the contact leads to a buildup of tension across the cell-cell contact, a step that is essential to drive cell-cell separation after collision. Focal adhesions disassemble at cell-cell contacts in contact inhibition of locomotion FA disassembly at the cell contact during CIL requires N-cadherin/Src/FAK signaling Cell separation during CIL involves a buildup of tension across the cell contact
Collapse
Affiliation(s)
- Alice Roycroft
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - András Szabó
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Isabel Bahm
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Liam Daly
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, UCL, London WC1H 0AH, UK; Institute for the Physics of Living Systems, UCL, London WC1E 6BT, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Jaiswal RK, Varshney AK, Yadava PK. Diversity and functional evolution of the plasminogen activator system. Biomed Pharmacother 2018; 98:886-898. [PMID: 29571259 DOI: 10.1016/j.biopha.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The urokinase plasminogen activator system is a family of serine proteases which consists of uPA (urokinase plasminogen activator), uPAR (urokinase type plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1). In addition to their significant roles in activation, these proteases act as key regulators of the tumor microenvironment and are involved in the metastatic process in many cancers. High levels of uPA system proteases in many human cancer predicts poor patient prognosis and strongly indicated a key role of uPA system in cancer metastasis. Individual components of uPA system are found to be differentially expressed in cancer cells compared to normal cells and therefore are potential therapeutic targets. In this review, we present the molecular and cellular mechanisms underlying the role of uPA system in cancer progression. Epithelial to mesenchymal transitions (EMT) is the main cause of the cancer cell metastasis. We have also attempted to relate the role of uPA signaling in EMT of cancer cells.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Kumar Varshney
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
20
|
Portillo JAC, Muniz-Feliciano L, Lopez Corcino Y, Lee SJ, Van Grol J, Parsons SJ, Schiemman WP, Subauste CS. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy. PLoS Pathog 2017; 13:e1006671. [PMID: 29036202 PMCID: PMC5658194 DOI: 10.1371/journal.ppat.1006671] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/26/2017] [Accepted: 09/26/2017] [Indexed: 02/01/2023] Open
Abstract
Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.
Collapse
Affiliation(s)
- Jose-Andres C. Portillo
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Luis Muniz-Feliciano
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Yalitza Lopez Corcino
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - So Jung Lee
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Jennifer Van Grol
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Sarah J. Parsons
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA, United States of America
| | - William P. Schiemman
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Carlos S. Subauste
- Department of Medicine, Division of Infectious Disease and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hyaluronic acid based extracellular matrix regulates surface expression of GluN2B containing NMDA receptors. Sci Rep 2017; 7:10991. [PMID: 28887453 PMCID: PMC5591221 DOI: 10.1038/s41598-017-07003-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cortical areas of the juvenile rodent brain display a high degree of structural and functional plasticity, which disappears later in development. Coincident with the decline of plasticity 1) the hyaluronic acid-based extracellular matrix (ECM) of the brain, which stabilizes synapses and neuronal circuit is formed and 2) N-methyl-D-aspartate subtype of ionotropic glutamate receptors (NMDARs) implied in synaptic plasticity switch from mainly GluN2B to GluN2A subunit-containing receptors. Here we tested the hypothesis that ECM influences the NMDAR subunit composition in dissociated neuronal cultures. Experimental removal of ECM using hyaluronidase induced an increase in surface expression of GluN2B. This was due to decreased endocytosis of surface GluNB-containing receptors. We further found a reduction in phosphorylation at Tyr1472, which negatively regulates their binding to the endocytotic AP2 complex. We propose that maturation of ECM could induce switch in NMDAR composition necessary for normal adult synaptic plasticity and that increased expression of GluN2B contributes to rejuvenation of plasticity after ECM removal in vivo.
Collapse
|
22
|
Velleman SG, Song Y. Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation. Front Physiol 2017; 8:577. [PMID: 28848451 PMCID: PMC5550705 DOI: 10.3389/fphys.2017.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State UniversityWooster, OH, United States
| | - Yan Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
23
|
Zha GF, Qin HL, Youssif BG, Amjad MW, Raja MAG, Abdelazeem AH, Bukhari SNA. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur J Med Chem 2017; 135:34-48. [DOI: 10.1016/j.ejmech.2017.04.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/09/2023]
|
24
|
Melfi S, Montt Guevara MM, Bonalume V, Ruscica M, Colciago A, Simoncini T, Magnaghi V. Src and phospho-FAK kinases are activated by allopregnanolone promoting Schwann cell motility, morphology and myelination. J Neurochem 2017; 141:165-178. [PMID: 28072455 DOI: 10.1111/jnc.13951] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 01/11/2023]
Abstract
Schwann cells' (SCs) development and maturation require coordinate and complementary activation of several signals and intracellular pathways. Among factors controlling these processes, the signalling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) are relevant for SCs', participating in regulation of their adhesion, motility and migration. Recently, the progesterone metabolite allopregnanolone (ALLO) was proved to be synthesized by SCs, whereas it acts autocrinally on SCs motility and proliferation, which are crucial processes for nerve development, maturation and regeneration. Herein, we investigate the hypothesis that the molecular mechanisms behind the ALLO's action on SCs involve the signalling intermediates Src and FAK. We first demonstrated that ALLO 10-6 M regulates SCs morphology, motility and myelination, also increasing the internode distance in the in vitro myelination model of neuron/SCs co-culture. ALLO's actions were mediated by the modulation of Src/FAK pathway, since they were counteracted by PP2 10-5 M, a selective inhibitor of Src kinase. Then, we proved that Src/FAK activation in SCs involves GABA-A dependent mechanisms and actin re-arrangements. In conclusion, our findings are the first to corroborate the importance of the neuroactive steroid ALLO in regulating SCs development and maturation via the Src and phospho-FAK signalling activation. Cover Image for this issue: doi: 10.1111/jnc.13795.
Collapse
Affiliation(s)
- Simona Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
25
|
Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res 2017; 12:1013-1023. [PMID: 28852375 PMCID: PMC5558472 DOI: 10.4103/1673-5374.211172] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development, maturation and regeneration of Schwann cells (SCs), the main glial cells of the peripheral nervous system, require the coordinate and complementary interaction among several factors, signals and intracellular pathways. These regulatory molecules consist of integrins, neuregulins, growth factors, hormones, neurotransmitters, as well as entire intracellular pathways including protein-kinase A, C, Akt, Erk/MAPK, Hippo, mTOR, etc. For instance, Hippo pathway is overall involved in proliferation, apoptosis, regeneration and organ size control, being crucial in cancer proliferation process. In SCs, Hippo is linked to merlin and YAP/TAZ signaling and it seems to respond to mechanic/physical challenges. Recently, among factors regulating SCs, also the signaling intermediates Src tyrosine kinase and focal adhesion kinase (FAK) proved relevant for SC fate, participating in the regulation of adhesion, motility, migration and in vitro myelination. In SCs, the factors Src and FAK are regulated by the neuroactive steroid allopregnanolone, thus corroborating the importance of this steroid in the control of SC maturation. In this review, we illustrate some old and novel signaling pathways modulating SC biology and functions during the different developmental, mature and regenerative states.
Collapse
Affiliation(s)
- Luca Franco Castelnovo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Bonalume
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Melfi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marinella Ballabio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms. Oncotarget 2016; 7:3018-32. [PMID: 26689988 PMCID: PMC4823087 DOI: 10.18632/oncotarget.6576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022] Open
Abstract
NDN is a maternally imprinted gene consistently expressed in normal ovarian epithelium, is dramatically downregulated in the majority of ovarian cancers. Little or no NDN expression could be detected in 73% of 351 epithelial ovarian cancers. NDN was also downregulated in 10 ovarian cancer cell lines with total loss in 6 of 10. Re-expression of NDN decreased Bcl-2 levels and induced apoptosis, which significantly inhibited ovarian cancer cell growth in cell culture and in xenografts. In addition, re-expression of NDN inhibited cell migration by decreasing actin stress fiber and focal adhesion complex formation through deactivation of Src, FAK and RhoA. Loss of NDN expression in ovarian cancers could be attributed to LOH in 28% of 18 informative cases and to hypermethylation of CpG sites 1 and 2 of NDN promoter in 23% and 30% of 43 ovarian cancers, respectively. Promoter hypermethylation was also found in 5 of 10 ovarian cancer cell lines. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored NDN expression in 4 of 7 cell lines with enhanced promoter methylation levels. These observations support the conclusion that NDN is an imprinted tumor suppressor gene which affects cancer cell motility, invasion and growth and that its loss of function in ovarian cancer can be caused by both genetic and epigenetic mechanisms.
Collapse
|
27
|
Hu T, Zhou R, Zhao Y, Wu G. Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep 2016; 6:33376. [PMID: 27624978 PMCID: PMC5022055 DOI: 10.1038/srep33376] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022] Open
Abstract
Integrin α6 (ITGA6), a transmembrane glycoprotein adhesion receptor protein, is widely upregulated in many types of tumors and promotes migration and invasion in cancer cells. However, the role that the ITGA6-associated signaling network plays in radiosensitivity in breast cancer has not been described. The expression of ITGA6 was examined in human breast cancer and normal breast cell lines using western blot analysis. We also explored the role of ITGA6 in the regulation of radiation sensitivity in breast cancer using the colony formation assays, cell cycle analyses, apoptosis assays and immunofluorescence analyses. The results showed that the protein and mRNA expression levels of ITGA6 was higher in breast cancer cells than in normal cells. ITGA6 protectived responses to radiotherapy in breast cancer cells by altering cell apoptosis, DNA damage repair and cell-cycle regulation. Furthermore, ITGA6 enhanced radiation resistance via PI3K/Akt and MEK/Erk signaling. In addition, overexpressing ITGA6 promoted radiation resistance in cells, and this effect was neutralized by the PI3K inhibitor LY294002 and MEK inhibitor U0126. Taken together, these findings indicate that ITGA6 might be involved in a mechanism that underlies radiation resistance and that ITGA6 could be a potential target for therapies aimed at overcoming radiation resistance in breast cancer.
Collapse
Affiliation(s)
- Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| |
Collapse
|
28
|
Waters AM, Stafman LL, Garner EF, Mruthyunjayappa S, Stewart JE, Mroczek-Musulman E, Beierle EA. Targeting Focal Adhesion Kinase Suppresses the Malignant Phenotype in Rhabdomyosarcoma Cells. Transl Oncol 2016; 9:263-73. [PMID: 27567948 PMCID: PMC4925808 DOI: 10.1016/j.tranon.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
Abstract
Despite the tremendous advances in the treatment of childhood solid tumors, rhabdomyosarcoma (RMS) continues to provide a therapeutic challenge. Children with metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumorigenesis. Signaling pathways both upstream and downstream to FAK have been found to be important in sarcoma tumorigenesis, leading us to hypothesize that FAK would be present in RMS and would impact cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric alveolar and embryonal RMS tumor specimens and cell lines. We also examined the effects of FAK inhibition upon two RMS cell lines utilizing parallel approaches including RNAi and small molecule inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Furthermore, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse RMS xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in RMS and may provide desperately needed novel therapeutic strategies for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Alicia M Waters
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Evan F Garner
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Smitha Mruthyunjayappa
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | - Jerry E Stewart
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL
| | | | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL.
| |
Collapse
|
29
|
Thiyagarajan V, Lin SH, Chang YC, Weng CF. Identification of novel FAK and S6K1 dual inhibitors from natural compounds via ADMET screening and molecular docking. Biomed Pharmacother 2016; 80:52-62. [DOI: 10.1016/j.biopha.2016.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/26/2023] Open
|
30
|
Broecker F, Hardt C, Herwig R, Timmermann B, Kerick M, Wunderlich A, Schweiger MR, Borsig L, Heikenwalder M, Lehrach H, Moelling K. Transcriptional signature induced by a metastasis-promoting c-Src mutant in a human breast cell line. FEBS J 2016; 283:1669-88. [PMID: 26919036 DOI: 10.1111/febs.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Deletions at the C-terminus of the proto-oncogene protein c-Src kinase are found in the viral oncogene protein v-Src as well as in some advanced human colon cancers. They are associated with increased kinase activity and cellular invasiveness. Here, we analyzed the mRNA expression signature of a constitutively active C-terminal mutant of c-Src, c-Src(mt), in comparison with its wild-type protein, c-Src(wt), in the human non-transformed breast epithelial cell line MCF-10A. We demonstrated previously that the mutant altered migratory and metastatic properties. Genome-wide transcriptome analysis revealed that c-Src(mt) de-regulated the expression levels of approximately 430 mRNAs whose gene products are mainly involved in the cellular processes of migration and adhesion, apoptosis and protein synthesis. 82.9% of these genes have previously been linked to cellular migration, while the others play roles in RNA transport and splicing processes, for instance. Consistent with the transcriptome data, cells expressing c-Src(mt), but not those expressing c-Src(wt), showed the capacity to metastasize into the lungs of mice in vivo. The mRNA expression profile of c-Src(mt)-expressing cells shows significant overlap with that of various primary human tumor samples, possibly reflecting elevated Src activity in some cancerous cells. Expression of c-Src(mt) led to elevated migratory potential. We used this model system to analyze the transcriptional changes associated with an invasive cellular phenotype. These genes and pathways de-regulated by c-Src(mt) may provide suitable biomarkers or targets of therapeutic approaches for metastatic cells. DATABASE This project was submitted to the National Center for Biotechnology Information BioProject under ID PRJNA288540. The Illumina RNA-Seq reads are available in the National Center for Biotechnology Information Sequence Read Archive under study ID SRP060008 with accession numbers SRS977414 for MCF-10A cells, SRS977717 for mock cells, SRS978053 for c-Src(wt) cells and SRS978046 for c-Src(mt) cells.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Lubor Borsig
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Germany.,Institute of Virology, Helmholtz Zentrum Munich, Germany.,Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK) phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.
Collapse
|
32
|
González Wusener AE, González Á, Nakamura F, Arregui CO. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility. Biol Open 2015; 5:32-44. [PMID: 26700725 PMCID: PMC4728310 DOI: 10.1242/bio.015883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. Summary: Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to transiently repress RhoA-myosin-dependent contractility, stimulating adhesion and lamellipodium assembly during cell spreading and migration.
Collapse
Affiliation(s)
- Ana E González Wusener
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Ángela González
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| | - Fumihiko Nakamura
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Carlos O Arregui
- IIB-INTECH, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
33
|
Banerjee M, Duan Q, Xie Z. SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase. PLoS One 2015; 10:e0142119. [PMID: 26551526 PMCID: PMC4638348 DOI: 10.1371/journal.pone.0142119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023] Open
Abstract
Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, United States of America
| | - Qiming Duan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, Cleveland, Ohio, United States of America
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Shaifta Y, Irechukwu N, Prieto-Lloret J, MacKay CE, Marchon KA, Ward JPT, Knock GA. Divergent modulation of Rho-kinase and Ca(2+) influx pathways by Src family kinases and focal adhesion kinase in airway smooth muscle. Br J Pharmacol 2015; 172:5265-80. [PMID: 26294392 PMCID: PMC4864488 DOI: 10.1111/bph.13313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/02/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background and Purpose The importance of tyrosine kinases in airway smooth muscle (ASM) contraction is not fully understood. The aim of this study was to investigate the role of Src‐family kinases (SrcFK) and focal adhesion kinase (FAK) in GPCR‐mediated ASM contraction and associated signalling events. Experimental Approach Contraction was recorded in intact or α‐toxin permeabilized rat bronchioles. Phosphorylation of SrcFK, FAK, myosin light‐chain‐20 (MLC20) and myosin phosphatase targeting subunit‐1 (MYPT‐1) was evaluated in cultured human ASM cells (hASMC). [Ca2+]i was evaluated in Fura‐2 loaded hASMC. Responses to carbachol (CCh) and bradykinin (BK) and the contribution of SrcFK and FAK to these responses were determined. Key Results Contractile responses in intact bronchioles were inhibited by antagonists of SrcFK, FAK and Rho‐kinase, while after α‐toxin permeabilization, they were sensitive to inhibition of SrcFK and Rho‐kinase, but not FAK. CCh and BK increased phosphorylation of MYPT‐1 and MLC20 and auto‐phosphorylation of SrcFK and FAK. MYPT‐1 phosphorylation was sensitive to inhibition of Rho‐kinase and SrcFK, but not FAK. Contraction induced by SR Ca2+ depletion and equivalent [Ca2+]i responses in hASMC were sensitive to inhibition of both SrcFK and FAK, while depolarization‐induced contraction was sensitive to FAK inhibition only. SrcFK auto‐phosphorylation was partially FAK‐dependent, while FAK auto‐phosphorylation was SrcFK‐independent. Conclusions and Implications SrcFK mediates Ca2+‐sensitization in ASM, while SrcFK and FAK together and individually influence multiple Ca2+ influx pathways. Tyrosine phosphorylation is therefore a key upstream signalling event in ASM contraction and may be a viable target for modulating ASM tone in respiratory disease.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nneka Irechukwu
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jesus Prieto-Lloret
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Keisha A Marchon
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
35
|
Reinecke J, Caplan S. Endocytosis and the Src family of non-receptor tyrosine kinases. Biomol Concepts 2015; 5:143-55. [PMID: 25372749 DOI: 10.1515/bmc-2014-0003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 11/15/2022] Open
Abstract
The regulated intracellular transport of nutrient, adhesion, and growth factor receptors is crucial for maintaining cell and tissue homeostasis. Endocytosis, or endocytic membrane trafficking, involves the steps of intracellular transport that include, but are not limited to, internalization from the plasma membrane, sorting in early endosomes, transport to late endosomes/lysosomes followed by degradation, and/or recycling back to the plasma membrane through tubular recycling endosomes. In addition to regulating the localization of transmembrane receptor proteins, the endocytic pathway also controls the localization of non-receptor molecules. The non-receptor tyrosine kinase c-Src (Src) and its closely related family members Yes and Fyn represent three proteins whose localization and signaling activities are tightly regulated by endocytic trafficking. Here, we provide a brief overview of endocytosis, Src function and its biochemical regulation. We will then concentrate on recent advances in understanding how Src intracellular localization is regulated and how its subcellular localization ultimately dictates downstream functioning. As Src kinases are hyperactive in many cancers, it is essential to decipher the spatiotemporal regulation of this important family of tyrosine kinases.
Collapse
|
36
|
Genome-Wide Gene Expression Analysis Identifies the Proto-oncogene Tyrosine-Protein Kinase Src as a Crucial Virulence Determinant of Infectious Laryngotracheitis Virus in Chicken Cells. J Virol 2015; 90:9-21. [PMID: 26446601 PMCID: PMC4702564 DOI: 10.1128/jvi.01817-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Given the side effects of vaccination against infectious laryngotracheitis (ILT), novel strategies for ILT control and therapy are urgently needed. The modulation of host-virus interactions is a promising strategy to combat the virus; however, the interactions between the host and avian ILT herpesvirus (ILTV) are unclear. Using genome-wide transcriptome studies in combination with a bioinformatic analysis, we identified proto-oncogene tyrosine-protein kinase Src (Src) to be an important modulator of ILTV infection. Src controls the virulence of ILTV and is phosphorylated upon ILTV infection. Functional studies revealed that Src prolongs the survival of host cells by increasing the threshold of virus-induced cell death. Therefore, Src is essential for viral replication in vitro and in ovo but is not required for ILTV-induced cell death. Furthermore, our results identify a positive-feedback loop between Src and the tyrosine kinase focal adhesion kinase (FAK), which is necessary for the phosphorylation of either Src or FAK and is required for Src to modulate ILTV infection. To the best of our knowledge, we are the first to identify a key host regulator controlling host-ILTV interactions. We believe that our findings have revealed a new potential therapeutic target for ILT control and therapy. IMPORTANCE Despite the extensive administration of live attenuated vaccines starting from the mid-20th century and the administration of recombinant vaccines in recent years, infectious laryngotracheitis (ILT) outbreaks due to avian ILT herpesvirus (ILTV) occur worldwide annually. Presently, there are no drugs or control strategies that effectively treat ILT. Targeting of host-virus interactions is considered to be a promising strategy for controlling ILTV infections. However, little is known about the mechanisms governing host-ILTV interactions. The results from our study advance our understanding of host-ILTV interactions on a molecular level and provide experimental evidence that it is possible to control ILT via the manipulation of host-virus interactions.
Collapse
|
37
|
Shen B, Estevez B, Xu Z, Kreutz B, Karginov A, Bai Y, Qian F, Norifumi U, Mosher D, Du X. The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA. Mol Biol Cell 2015; 26:3658-70. [PMID: 26310447 PMCID: PMC4603935 DOI: 10.1091/mbc.e15-05-0274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G protein Gα13 is known to transmit G protein-coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding (767)EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13-β1 interaction and inhibited β1 integrin-dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin-dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.
Collapse
Affiliation(s)
- Bo Shen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Zheng Xu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Barry Kreutz
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Yanyan Bai
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Feng Qian
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Department of Internal Medicine, Section of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Urao Norifumi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Deane Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, WI 53792
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
38
|
Chichger H, Braza J, Duong H, Harrington EO. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function. Am J Respir Cell Mol Biol 2015; 52:695-707. [PMID: 25317600 DOI: 10.1165/rcmb.2013-0489oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients suffering from ALI.
Collapse
Affiliation(s)
- Havovi Chichger
- 1 Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and
| | | | | | | |
Collapse
|
39
|
Witucki LA, Borowicz LS, Pedley AM, Curtis-Fisk J, Kuszpit EG. Identification of FAK substrate peptides via colorimetric screening of a one-bead one-peptide combinatorial library. J Pept Sci 2015; 21:302-11. [PMID: 25728406 DOI: 10.1002/psc.2751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/19/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022]
Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that is associated with regulating cellular functions such as cell adhesion and migration and has emerged as an important target for cancer research. Short peptide substrates that are selectively and efficiently phosphorylated by FAK have not been previously identified and tested. Here we report the synthesis and screening of a one-bead one-peptide combinatorial library to identify novel substrates for FAK. Using a solid-phase colorimetric antibody tagging detection platform, the peptide beads phosphorylated by FAK were sequenced via Edman degradation and then validated through radioisotope kinetic studies with [γ-(32)P] ATP to derive Michaelis-Menton constants. The combination of results gathered from both colorimetric and radioisotope kinase assays led to the rational design of a second generation of FAK peptide substrates. Out of all the potential peptide substrates evaluated, the most active was GDYVEFKKK with a K(M) = 92 μM and a Vmax = 1920 nmol/min/mg. Peptide substrates discovered within this study may be useful diagnostic tools for future kinase investigations and may lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Laurie A Witucki
- Department of Chemistry, Grand Valley State University, Allendale, MI, 49401, USA
| | | | | | | | | |
Collapse
|
40
|
Che P, Yang Y, Han X, Hu M, Sellers JC, Londono-Joshi AI, Cai GQ, Buchsbaum DJ, Christein JD, Tang Q, Chen D, Li Q, Grizzle WE, Lu YY, Ding Q. S100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase. Sci Rep 2015; 5:8453. [PMID: 25677816 PMCID: PMC4326725 DOI: 10.1038/srep08453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
S100A4 expression is associated with poor clinical outcomes of patients with pancreatic cancer. The effects of loss or gain of S100A4 were examined in pancreatic cancer cell lines. S100A4 downregulation remarkably reduces cell migration and invasion, inhibits proliferation, and induces apoptosis in pancreatic tumor cells. S100A4 downregulation results in significant cell growth inhibition and apoptosis in response to TGF-β1, supporting a non-canonical role of S100A4 in pancreatic cancer. The role of S100A4 in tumor progression was studied by using an orthotopic human pancreatic cancer xenograft mouse model. Tumor mass is remarkably decreased in animals injected with S100A4-deficient pancreatic tumor cells. P27Kip1 expression and cleaved caspase-3 are increased, while cyclin E expression is decreased, in S100A4-deficient pancreatic tumors in vivo. S100A4-deficient tumors have lower expression of vascular endothelial growth factor, suggesting reduced angiogenesis. Biochemical assays revealed that S100A4 activates Src and focal adhesion kinase (FAK) signaling events, and inhibition of both kinases is required to maximally block the tumorigenic potential of pancreatic cancer cells. These findings support that S100A4 plays an important role in pancreatic cancer progression in vivo and S100A4 promotes tumorigenic phenotypes of pancreatic cancer cells through the Src-FAK mediated dual signaling pathway.
Collapse
Affiliation(s)
- Pulin Che
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Youfeng Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Hu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffery C Sellers
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Guo-Qiang Cai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John D Christein
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Dongquan Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qianjun Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yin Ying Lu
- Center of Therapeutic Research for Hepatocellular Carcinoma, 302 hospital, Beijing, China
| | - Qiang Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Fang X, Liu X, Yao L, Chen C, Lin J, Ni P, Zheng X, Fan Q. New insights into FAK phosphorylation based on a FAT domain-defective mutation. PLoS One 2014; 9:e107134. [PMID: 25226367 PMCID: PMC4166415 DOI: 10.1371/journal.pone.0107134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/27/2023] Open
Abstract
Mounting evidence suggests that the FAK N-terminal (FERM) domain controls FAK phosphorylation and function; however, little is known regarding the role of the C terminal (FAT) domain in FAK regulation. We identified a patient-derived FAK mutant, in which a 27-amino acid segment was deleted from the C-terminal FAT domain (named FAK-Del33). When FAK-Del33 was overexpressed in specific tumor cell lines, Y397 phosphorylation increased compared with that observed in cells expressing FAK-WT. Here, we attempt to unveil the mechanism of this increased phosphorylation. Using cell biology experiments, we show that FAK-Del33 is incapable of co-localizing with paxillin, and has constitutively high Y397 phosphorylation. With a kinase-dead mutation, it showed phosphorylation of FAK-Del33 has enhanced through auto-phosphorylation. It was also demonstrated that phosphorylation of FAK-Del33 is not Src dependent or enhanced intermolecular interactions, and that the hyperphosphorylation can be lowered using increasing amounts of transfected FERM domain. This result suggests that Del33 mutation disrupting of FAT's structural integrity and paxillin binding capacity leads to incapable of targeting Focal adhesions, but has gained the capacity for auto-phosphorylation in cis.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xiangfan Liu
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Ling Yao
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Jiafei Lin
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xinmin Zheng
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qishi Fan
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
42
|
Oliver KH, Jessen T, Crawford EL, Chung CY, Sutcliffe JS, Carneiro AM. Pro32Pro33 mutations in the integrin β3 PSI domain result in αIIbβ3 priming and enhanced adhesion: reversal of the hypercoagulability phenotype by the Src inhibitor SKI-606. Mol Pharmacol 2014; 85:921-31. [PMID: 24695082 PMCID: PMC4014669 DOI: 10.1124/mol.114.091736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/02/2014] [Indexed: 11/22/2022] Open
Abstract
The plasma-membrane integrin αIIbβ3 (CD41/CD61, GPIIbIIIa) is a major functional receptor in platelets during clotting. A common isoform of integrin β3, Leu33Pro is associated with enhanced platelet function and increased risk for coronary thrombosis and stroke, although these findings remain controversial. To better understand the molecular mechanisms by which this sequence variation modifies platelet function, we produced transgenic knockin mice expressing a Pro32Pro33 integrin β3. Consistent with reports utilizing human platelets, we found significantly reduced bleeding and clotting times, as well as increased in vivo thrombosis, in Pro32Pro33 homozygous mice. These alterations paralleled increases in platelet attachment and spreading onto fibrinogen resulting from enhanced integrin αIIbβ3 function. Activation with protease-activated receptor 4- activating peptide, the main thrombin signaling receptor in mice, showed no significant difference in activation of Pro32Pro33 mice as compared with controls, suggesting that inside-out signaling remains intact. However, under unstimulated conditions, the Pro32Pro33 mutation led to elevated Src phosphorylation, facilitated by increased talin interactions with the β3 cytoplasmic domain, indicating that the αIIbβ3 intracellular domains are primed for activation while the ligand-binding domain remains unchanged. Acute dosing of animals with a Src inhibitor was sufficient to rescue the clotting phenotype in knockin mice to wild-type levels. Together, our data establish that the Pro32Pro33 structural alteration modifies the function of integrin αIIbβ3, priming the integrin for outside-in signaling, ultimately leading to hypercoagulability. Furthermore, our data may support a novel approach to antiplatelet therapy by Src inhibition where hemostasis is maintained while reducing risk for cardiovascular disease.
Collapse
Affiliation(s)
- Kendra H Oliver
- Departments of Pharmacology (K.H.O., T.J., C.Y.C., A.M.C.) and Psychiatry, Molecular Physiology, and Biophysics (E.L.C., J.S.S.), Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
43
|
Mechanical loading in osteocytes induces formation of a Src/Pyk2/MBD2 complex that suppresses anabolic gene expression. PLoS One 2014; 9:e97942. [PMID: 24841674 PMCID: PMC4026426 DOI: 10.1371/journal.pone.0097942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
Mechanical stimulation of the skeleton promotes bone gain and suppresses bone loss, ultimately resulting in improved bone strength and fracture resistance. The molecular mechanisms directing anabolic and/or anti-catabolic actions on the skeleton during loading are not fully understood. Identifying molecular mechanisms of mechanotransduction (MTD) signaling cascades could identify new therapeutic targets. Most research into MTD mechanisms is typically focused on understanding the signaling pathways that stimulate new bone formation in response to load. However, we investigated the structural, signaling and transcriptional molecules that suppress the stimulatory effects of loading. The high bone mass phenotype of mice with global deletion of either Pyk2 or Src suggests a role for these tyrosine kinases in repression of bone formation. We used fluid shear stress as a MTD stimulus to identify a novel Pyk2/Src-mediated MTD pathway that represses mechanically-induced bone formation. Our results suggest Pyk2 and Src function as molecular switches that inhibit MTD in our mechanically stimulated osteocyte culture experiments. Once activated by oscillatory fluid shear stress (OFSS), Pyk2 and Src translocate to and accumulate in the nucleus, where they associate with a protein involved in DNA methylation and the interpretation of DNA methylation patterns –methyl-CpG-binding domain protein 2 (MBD2). OFSS-induced Cox-2 and osteopontin expression was enhanced in Pyk2 KO osteoblasts, while inhibition of Src enhanced osteocalcin expression in response to OFSS. We found that Src kinase activity increased in the nucleus of osteocytes in response to OFSS and an interaction activated between Src (Y418) and Pyk2 (Y402) increased in response to OFSS. Thus, as a mechanism to prevent an over-reaction to physical stimulation, mechanical loading may induce the formation of a Src/Pyk2/MBD2 complex in the nucleus that functions to suppress anabolic gene expression.
Collapse
|
44
|
Brami-Cherrier K, Gervasi N, Arsenieva D, Walkiewicz K, Boutterin MC, Ortega A, Leonard PG, Seantier B, Gasmi L, Bouceba T, Kadaré G, Girault JA, Arold ST. FAK dimerization controls its kinase-dependent functions at focal adhesions. EMBO J 2014; 33:356-70. [PMID: 24480479 DOI: 10.1002/embj.201386399] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK's kinase-dependent functions--autophosphorylation of tyrosine-397--requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation.
Collapse
|
45
|
Megison ML, Gillory LA, Stewart JE, Nabers HC, Mrozcek-Musulman E, Beierle EA. FAK inhibition abrogates the malignant phenotype in aggressive pediatric renal tumors. Mol Cancer Res 2014; 12:514-26. [PMID: 24464916 DOI: 10.1158/1541-7786.mcr-13-0505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Despite the tremendous advances in the treatment of childhood kidney tumors, there remain subsets of pediatric renal tumors that continue to pose a therapeutic challenge, mainly malignant rhabdoid kidney tumors and nonosseous renal Ewing sarcoma. Children with advanced, metastatic, or relapsed disease have a poor disease-free survival rate. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult renal cellular carcinoma, leading to the hypothesis that FAK contributes to pediatric kidney tumors and would affect cellular survival. In the current study, FAK was present and phosphorylated in pediatric kidney tumor specimens. Moreover, the effects of FAK inhibition upon G401 and SK-NEP-1 cell lines were examined using a number of parallel approaches to block FAK, including RNA interference and small-molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion and migration, and increased apoptosis. Furthermore, small-molecule inhibition of FAK led to decreased SK-NEP-1 xenograft growth in vivo. These data deepen the knowledge of the tumorigenic process in pediatric renal tumors, and provide desperately needed therapeutic strategies and targets for these rare, but difficult to treat, malignancies. IMPLICATIONS This study provides a fundamental understanding of tumorigenesis in difficult to treat renal tumors and provides an impetus for new avenues of research and potential for novel, targeted therapies.
Collapse
Affiliation(s)
- Michael L Megison
- University of Alabama at Birmingham, 1600 7th Avenue South, Lowder, Room 300, Birmingham, AL 35233.
| | | | | | | | | | | |
Collapse
|
46
|
Golubovskaya VM, Ho B, Zheng M, Magis A, Ostrov D, Cance WG. Mitoxantrone targets the ATP-binding site of FAK, binds the FAK kinase domain and decreases FAK, Pyk-2, c-Src, and IGF-1R in vitro kinase activities. Anticancer Agents Med Chem 2014; 13:546-54. [PMID: 22292772 DOI: 10.2174/1871520611313040003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 11/22/2022]
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor kinase that is overexpressed in many types of tumors and plays a key role in cell adhesion, spreading, motility, proliferation, invasion, angiogenesis, and survival. Recently, FAK has been proposed as a target for cancer therapy, and we performed computer modeling and screening of the National Cancer Institute (NCI) small molecule compounds database to target the ATP-binding site of FAK, K454. More than 140,000 small molecule compounds were docked into the crystal structure of the kinase domain of FAK in 100 different orientations using DOCK5.1 that identified small molecule compounds, targeting the K454 site, called A-compounds. To find the therapeutic efficacy of these compounds, we examined the effect of twenty small molecule compounds on cell viability by MTT assays in different cancer cell lines. One compound, A18 (1,4-bis(diethylamino)-5,8- dihydroxy anthraquinon) was a mitoxantrone derivative and significantly decreased viability in most of the cells comparable to the to the level of FAK kinase inhibitors TAE-226 (Novartis, Inc) and PF-573,228 (Pfizer). The A18 compound specifically blocked autophosphorylation of FAK like TAE-226 and PF-228. ForteBio Octet Binding assay demonstrated that mitoxantrone (1,4-dihydroxy- 5,8-bis[2-(2-hydroxyethylamino) ethylamino] anthracene-9,10-dione directly binds the FAK-kinase domain. In addition, mitoxantrone significantly decreased the viability of breast cancer cells in a dose-dependent manner and inhibited the kinase activity of FAK and Y56/577 FAK phosphorylation at 10-20 μM. Mitoxantrone did not affect phosphorylation of EGFR, but decreased Pyk-2, c-Src, and IGF-1R kinase activities. The data demonstrate that mitoxantrone decreases cancer viability, binds FAK-Kinase domain, inhibits its kinase activity, and also inhibits in vitro kinase activities of Pyk-2 and IGF-1R. Thus, this novel function of the mitoxantrone drug can be critical for future development of anti-cancer agents and FAK-targeted therapy research.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706. [PMID: 24389213 DOI: 10.2741/4236] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research.
Collapse
|
48
|
Zhang YJ, Tian ZL, Yu XY, Zhao XX, Yao L. Activation of integrin β1-focal adhesion kinase-RasGTP pathway plays a critical role in TGF beta1-induced podocyte injury. Cell Signal 2013; 25:2769-79. [DOI: 10.1016/j.cellsig.2013.08.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/31/2013] [Indexed: 12/22/2022]
|
49
|
Grb2 promotes integrin-induced focal adhesion kinase (FAK) autophosphorylation and directs the phosphorylation of protein tyrosine phosphatase α by the Src-FAK kinase complex. Mol Cell Biol 2013; 34:348-61. [PMID: 24248601 DOI: 10.1128/mcb.00825-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The integrin-activated Src-focal adhesion kinase (FAK) kinase complex phosphorylates PTPα at Tyr789, initiating PTPα-mediated signaling that promotes cell migration. Recruitment of the BCAR3-Cas complex by PTPα-phospho-Tyr789 at focal adhesions is one mechanism of PTPα signaling. The adaptor protein Grb2 is also recruited by PTPα-phospho-Tyr789, although the role of the PTPα-Grb2 complex in integrin signaling is unknown. We show that silencing Grb2 expression in fibroblasts abolishes PTPα-Tyr789 phosphorylation and that this is due to two unexpected actions of Grb2. First, Grb2 promotes integrin-induced autophosphorylation of FAK-Tyr397. This is impaired in Grb2-depleted cells and prohibits FAK activation and formation of the Src-FAK complex. Grb2-depleted cells contain less paxillin, and paxillin overexpression rescues FAK-Tyr397 phosphorylation, suggesting that the FAK-activating action of Grb2 involves paxillin. A second distinct role for Grb2 in PTPα-Tyr789 phosphorylation involves Grb2-mediated coupling of Src-FAK and PTPα. This requires two phosphosites, FAK-Tyr925 and PTPα-Tyr789, for Grb2-Src homology 2 (SH2) binding. We propose that a Grb2 dimer links FAK and PTPα, and this positions active Src-FAK in proximity with other, perhaps integrin-clustered, molecules of PTPα to enable maximal PTPα-Tyr789 phosphorylation. These findings identify Grb2 as a new FAK activator and reveal its essential role in coordinating PTPα tyrosine phosphorylation to enable downstream integrin signaling and migration.
Collapse
|
50
|
Abstract
The Src family kinases (SFKs) c-Src and Yes mediate vascular leakage in response to various stimuli including lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF). Here, we define an opposing function of another SFK, Lyn, which in contrast to other SFKs, strengthens endothelial junctions and thereby restrains the increase in vascular permeability. Mice lacking Lyn displayed increased mortality in LPS-induced endotoxemia and increased vascular permeability in response to LPS or VEGF challenge compared with wild-type littermates. Lyn knockout mice repopulated with wild-type bone marrow-derived cells have higher vascular permeability than wild-type mice, suggesting a role of endothelial Lyn in the maintenance of the vascular barrier. Small interfering RNA-mediated down-regulation of Lyn disrupted endothelial barrier integrity, whereas expression of a constitutively active mutant of Lyn enhanced the barrier. However, down-regulation of Lyn did not affect LPS-induced endothelial permeability. We demonstrate that Lyn association with focal adhesion kinase (FAK) and phosphorylation of FAK at tyrosine residues 576/577 and 925 were required for Lyn-dependent stabilization of endothelial adherens junctions. Thus, in contrast to c-Src and Yes, which increase vascular permeability in response to stimuli, Lyn stabilizes endothelial junctions through phosphorylation of FAK. Therefore, therapeutics activating Lyn kinase may strengthen the endothelial barrier junction and hence have anti-inflammatory potential.
Collapse
|