1
|
Aerbajinai W, Zhu J, Chin K, Rodgers GP. Glia maturation factor-γ regulates amyloid-β42 phagocytosis through scavenger receptor class A type I in murine macrophages. J Leukoc Biol 2024; 117:qiae197. [PMID: 39243388 PMCID: PMC11685041 DOI: 10.1093/jleuko/qiae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Dysfunctional phagocytic clearance of β-amyloid (Aβ) in microglia and peripheral macrophages/monocytes has been implicated in Alzheimer's disease, but the mechanisms underlying this dysfunction are not yet well understood. In this study, we examined the role of glia maturation factor-γ (GMFG), an actin-disassembly protein, i.e. highly expressed in immune cells, in macrophage Aβ phagocytosis and in regulating type I class A scavenger receptor, a cell-surface receptor that has previously been implicated in Aβ clearance. GMFG knockdown-increased phagocytosis of Aβ42 in bone marrow-derived macrophages and RAW264.7 murine macrophages, while GMFG overexpression reduced Aβ42 uptake in these cells. Blocking with anti-type I class A scavenger receptor antibodies inhibited Aβ42 uptake in GMFG-knockdown cells, establishing a role for type I class A scavenger receptor in Aβ42 phagocytosis. GMFG knockdown-increased type I class A scavenger receptor protein expression under both basal conditions and in response to Aβ42 treatment via both the transcriptional and posttranscriptional levels in RAW264.7 macrophages. GMFG knockdown modulated Aβ42-induced K48-linked and K63-polyubiquitination of type I class A scavenger receptor, the phosphorylation of type I class A scavenger receptor and c-Jun N-Terminal kinase (JNK), suggesting that GMFG plays a role for intracellular signaling in the type I class A scavenger receptor--mediated uptake of Aβ. Further, GMFG-knockdown cells displayed increased levels of the transcriptional factor MafB, and silencing of MafB in these cells reduced their type I class A scavenger receptor expression. Finally, GMFG was found to interact with the nuclear pore complex component RanBP2, and silencing of RanBP2 in GMFG-knockdown cells reduced their type I class A scavenger receptor expression. Collectively, these data support the role of GMFG as a novel regulator of type I class A scavenger receptor in macrophage Aβ phagocytosis and may provide insight into therapeutic approaches to potentially slow or prevent the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, BG 10, RM 9N113, 10 Center Dr., Bethesda, MD 20892, United States
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, BG 10, RM 9N113, 10 Center Dr., Bethesda, MD 20892, United States
| | - Kyung Chin
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, BG 10, RM 9N113, 10 Center Dr., Bethesda, MD 20892, United States
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, BG 10, RM 9N113, 10 Center Dr., Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
3
|
Li J, Su L, Jiang J, Wang YE, Ling Y, Qiu Y, Yu H, Huang Y, Wu J, Jiang S, Zhang T, Palazzo AF, Shen Q. RanBP2/Nup358 Mediates Sumoylation of STAT1 and Antagonizes Interferon-α-Mediated Antiviral Innate Immunity. Int J Mol Sci 2023; 25:299. [PMID: 38203469 PMCID: PMC10778711 DOI: 10.3390/ijms25010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Type I interferon (IFN-I)-induced signaling plays a critical role in host antiviral innate immune responses. Despite this, the mechanisms that regulate this signaling pathway have yet to be fully elucidated. The nucleoporin Ran Binding Protein 2 (RanBP2) (also known as Nucleoporin 358 KDa, Nup358) has been implicated in a number of cellular processes, including host innate immune signaling pathways, and is known to influence viral infection. In this study, we documented that RanBP2 mediates the sumoylation of signal transducers and activators of transcription 1 (STAT1) and inhibits IFN-α-induced signaling. Specifically, we found that RanBP2-mediated sumoylation inhibits the interaction of STAT1 and Janus kinase 1 (JAK1), as well as the phosphorylation and nuclear accumulation of STAT1 after IFN-α stimulation, thereby antagonizing the IFN-α-mediated antiviral innate immune signaling pathway and promoting viral infection. Our findings not only provide insights into a novel function of RanBP2 in antiviral innate immunity but may also contribute to the development of new antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Lili Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Jing Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Yingying Ling
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Huahui Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Yucong Huang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Jiangmin Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Shan Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| | - Alexander F. Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; (Y.E.W.); (Y.Q.)
| | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (J.L.); (L.S.); (J.J.); (Y.L.); (H.Y.); (Y.H.); (J.W.); (S.J.); (T.Z.)
| |
Collapse
|
4
|
Qian L, Liang Z, Wang Z, Wang J, Li X, Zhao J, Li Z, Chen L, Liu Y, Ju Y, Li C, Meng S. Cellular gp96 upregulates AFP expression by blocking NR5A2 SUMOylation and ubiquitination in hepatocellular carcinoma. J Mol Cell Biol 2023; 15:mjad027. [PMID: 37204028 DOI: 10.1093/jmcb/mjad027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Alpha-fetoprotein (AFP) is the most widely used biomarker for the diagnosis of hepatocellular carcinoma (HCC). However, a substantial proportion of HCC patients have either normal or marginally increased AFP levels in serum, and the underlying mechanisms are not fully understood. In the present study, we provided in vitro and in vivo evidence that heat shock protein gp96 promoted AFP expression at the transcriptional level in HCC. NR5A2 was identified as a key transcription factor for the AFP gene, and its stability was enhanced by gp96. A further mechanistic study by co-immunoprecipitation, GST pull-down, and molecular docking showed gp96 and the SUMO E3 ligase RanBP2 competitively binding to NR5A2 at the sites spanning from aa 507 to aa 539. The binding of gp96 inhibited SUMOylation, ubiquitination, and subsequent degradation of NR5A2. In addition, clinical analysis of HCC patients indicated that gp96 expression in tumors was positively correlated with serum AFP levels. Therefore, our study uncovered a novel mechanism that gp96 regulates the stability of its client proteins by directly affecting their SUMOylation and ubiquitination. These findings will help in designing more accurate AFP-based HCC diagnosis and progression monitoring approaches.
Collapse
Affiliation(s)
- Liyuan Qian
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Liang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jiuru Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH 43210, USA
| | - Lizhao Chen
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongai Liu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Ying Ju
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfei Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
5
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
6
|
Jiang J, Wang YE, Palazzo AF, Shen Q. Roles of Nucleoporin RanBP2/Nup358 in Acute Necrotizing Encephalopathy Type 1 (ANE1) and Viral Infection. Int J Mol Sci 2022; 23:3548. [PMID: 35408907 PMCID: PMC8998323 DOI: 10.3390/ijms23073548] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Ran Binding Protein 2 (RanBP2 or Nucleoporin358) is one of the main components of the cytoplasmic filaments of the nuclear pore complex. Mutations in the RANBP2 gene are associated with acute necrotizing encephalopathy type 1 (ANE1), a rare condition where patients experience a sharp rise in cytokine production in response to viral infection and undergo hyperinflammation, seizures, coma, and a high rate of mortality. Despite this, it remains unclear howRanBP2 and its ANE1-associated mutations contribute to pathology. Mounting evidence has shown that RanBP2 interacts with distinct viruses to regulate viral infection. In addition, RanBP2 may regulate innate immune response pathways. This review summarizes recent advances in our understanding of how mutations in RANBP2 contribute to ANE1 and discusses how RanBP2 interacts with distinct viruses and affects viral infection. Recent findings indicate that RanBP2 might be an important therapeutic target, not only in the suppression of ANE1-driven cytokine storms, but also to combat hyperinflammation in response to viral infections.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| | - Yifan E. Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada;
| | | | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| |
Collapse
|
7
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
8
|
Mboukou A, Rajendra V, Kleinova R, Tisné C, Jantsch MF, Barraud P. Transportin-1: A Nuclear Import Receptor with Moonlighting Functions. Front Mol Biosci 2021; 8:638149. [PMID: 33681296 PMCID: PMC7930572 DOI: 10.3389/fmolb.2021.638149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Transportin-1 (Trn1), also known as karyopherin-β2 (Kapβ2), is probably the best-characterized nuclear import receptor of the karyopherin-β family after Importin-β, but certain aspects of its functions in cells are still puzzling or are just recently emerging. Since the initial identification of Trn1 as the nuclear import receptor of hnRNP A1 ∼25 years ago, several molecular and structural studies have unveiled and refined our understanding of Trn1-mediated nuclear import. In particular, the understanding at a molecular level of the NLS recognition by Trn1 made a decisive step forward with the identification of a new class of NLSs called PY-NLSs, which constitute the best-characterized substrates of Trn1. Besides PY-NLSs, many Trn1 cargoes harbour NLSs that do not resemble the archetypical PY-NLS, which complicates the global understanding of cargo recognition by Trn1. Although PY-NLS recognition is well established and supported by several structures, the recognition of non-PY-NLSs by Trn1 is far less understood, but recent reports have started to shed light on the recognition of this type of NLSs. Aside from its principal and long-established activity as a nuclear import receptor, Trn1 was shown more recently to moonlight outside nuclear import. Trn1 has for instance been caught in participating in virus uncoating, ciliary transport and in modulating the phase separation properties of aggregation-prone proteins. Here, we focus on the structural and functional aspects of Trn1-mediated nuclear import, as well as on the moonlighting activities of Trn1.
Collapse
Affiliation(s)
- Allegra Mboukou
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Vinod Rajendra
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Renata Kleinova
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Carine Tisné
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| | - Michael F. Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Pierre Barraud
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université de Paris, Paris, France
| |
Collapse
|
9
|
Lyngdoh DL, Nag N, Uversky VN, Tripathi T. Prevalence and functionality of intrinsic disorder in human FG-nucleoporins. Int J Biol Macromol 2021; 175:156-170. [PMID: 33548309 DOI: 10.1016/j.ijbiomac.2021.01.218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/27/2022]
Abstract
The nuclear-cytoplasmic transport of biomolecules is assisted by the nuclear pores composed of evolutionarily conserved proteins termed nucleoporins (Nups). The central Nups, characterized by multiple FG-repeats, are highly dynamic and contain a high level of intrinsically disordered regions (IDPRs). FG-Nups bind several protein partners and play critical roles in molecular interactions and the regulation of cellular functions through their IDPRs. In the present study, we performed a multiparametric bioinformatics analysis to characterize the prevalence and functionality of IDPRs in human FG-Nups. These analyses revealed that the sequence of all FG-Nups contained >50% IDPRs (except Nup54 and Nup358). Nup98, Nup153, and POM121 were extremely disordered with ~80% IDPRs. The functional disorder-based binding regions in the FG-Nups were identified. The phase separation behavior of FG-Nups indicated that all FG-Nups have the potential to undergo liquid-to-liquid phase separation that could stabilize their liquid state. The inherent structural flexibility in FG-Nups is mechanistically and functionally advantageous. Since certain FG-Nups interact with disease-relevant protein aggregates, their complexes can be exploited for drug design. Furthermore, consideration of the FG-Nups from the intrinsic disorder perspective provides critical information that can guide future experimental studies to uncover novel pathways associated with diseases linked with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Denzelle Lee Lyngdoh
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Lee J, Park J, Kim JH, Lee G, Park TE, Yoon KJ, Kim YK, Lim C. LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol 2020; 18:e3001002. [PMID: 33362237 PMCID: PMC7757817 DOI: 10.1371/journal.pbio.3001002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleocytoplasmic transport (NCT) defects have been implicated in neurodegenerative diseases such as C9ORF72-associated amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we identify a neuroprotective pathway of like-Sm protein 12 (LSM12) and exchange protein directly activated by cyclic AMP 1 (EPAC1) that sustains the nucleocytoplasmic RAN gradient and thereby suppresses NCT dysfunction by the C9ORF72-derived poly(glycine-arginine) protein. LSM12 depletion in human neuroblastoma cells aggravated poly(GR)-induced impairment of NCT and nuclear integrity while promoting the nuclear accumulation of poly(GR) granules. In fact, LSM12 posttranscriptionally up-regulated EPAC1 expression, whereas EPAC1 overexpression rescued the RAN gradient and NCT defects in LSM12-deleted cells. C9-ALS patient-derived neurons differentiated from induced pluripotent stem cells (C9-ALS iPSNs) displayed low expression of LSM12 and EPAC1. Lentiviral overexpression of LSM12 or EPAC1 indeed restored the RAN gradient, mitigated the pathogenic mislocalization of TDP-43, and suppressed caspase-3 activation for apoptosis in C9-ALS iPSNs. EPAC1 depletion biochemically dissociated RAN-importin β1 from the cytoplasmic nuclear pore complex, thereby dissipating the nucleocytoplasmic RAN gradient essential for NCT. These findings define the LSM12-EPAC1 pathway as an important suppressor of the NCT-related pathologies in C9-ALS/FTD. A post-transcriptional circuit comprising LSM12 and EPAC1 suppresses neurodegenerative pathologies in C9ORF72-associated amyotrophic lateral sclerosis by establishing the RAN gradient and sustaining nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Jongbo Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jumin Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Giwook Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tae-Eun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, Republic of Korea
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Nup358 and Transportin 1 Cooperate in Adenoviral Genome Import. J Virol 2020; 94:JVI.00164-20. [PMID: 32161167 DOI: 10.1128/jvi.00164-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.
Collapse
|
12
|
Khalaf B, Roncador A, Pischedda F, Casini A, Thomas S, Piccoli G, Kiebler M, Macchi P. Ankyrin-G induces nucleoporin Nup358 to associate with the axon initial segment of neurons. J Cell Sci 2019; 132:jcs.222802. [PMID: 31427429 DOI: 10.1242/jcs.222802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Nup358 (also known as RanBP2) is a member of the large nucleoporin family that constitutes the nuclear pore complex. Depending on the cell type and the physiological state, Nup358 interacts with specific partner proteins and influences distinct mechanisms independent of its role in nucleocytoplasmic transport. Here, we provide evidence that Nup358 associates selectively with the axon initial segment (AIS) of mature neurons, mediated by the AIS scaffold protein ankyrin-G (AnkG, also known as Ank3). The N-terminus of Nup358 is demonstrated to be sufficient for its localization at the AIS. Further, we show that Nup358 is expressed as two isoforms, one full-length and another shorter form of Nup358. These isoforms differ in their subcellular distribution in neurons and expression level during neuronal development. Overall, the present study highlights an unprecedented localization of Nup358 within the AIS and suggests its involvement in neuronal function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bouchra Khalaf
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Alessandro Roncador
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Francesca Pischedda
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Antonio Casini
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Sabine Thomas
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Giovanni Piccoli
- Dulbecco Telethon Laboratory of Biology of Synapses, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| | - Michael Kiebler
- Department for Cell Biology, Biomedical Center, Medical Faculty, Ludwig-Maximilian University of Munich, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
13
|
Cho KI, Yoon D, Yu M, Peachey NS, Ferreira PA. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cell Mol Life Sci 2019; 76:3407-3432. [PMID: 30944974 PMCID: PMC6698218 DOI: 10.1007/s00018-019-03078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal ganglion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain Ranbp2's function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormalities were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of the visual pathway's evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Hayama R, Sorci M, Keating IV JJ, Hecht LM, Plawsky JL, Belfort G, Chait BT, Rout MP. Interactions of nuclear transport factors and surface-conjugated FG nucleoporins: Insights and limitations. PLoS One 2019; 14:e0217897. [PMID: 31170242 PMCID: PMC6553764 DOI: 10.1371/journal.pone.0217897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
Protein-protein interactions are central to biological processes. In vitro methods to examine protein-protein interactions are generally categorized into two classes: in-solution and surface-based methods. Here, using the multivalent interactions between nucleocytoplasmic transport factors and intrinsically disordered FG repeat containing nuclear pore complex proteins as a model system, we examined the utility of three surface-based methods: atomic force microscopy, quartz crystal microbalance with dissipation, and surface plasmon resonance. Although results were comparable to those of previous reports, the apparent effect of mass transport limitations was demonstrated. Additional experiments with a loss-of-interaction FG repeat mutant variant demonstrated that the binding events that take place on surfaces can be unexpectedly complex, suggesting particular care must be exercised in interpretation of such data.
Collapse
Affiliation(s)
- Ryo Hayama
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
| | - Mirco Sorci
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - John J. Keating IV
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Lee M. Hecht
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
| | - Joel L. Plawsky
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Georges Belfort
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Chemistry, the Rockefeller University, New York, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, the Rockefeller University, New York, NY, United States of America
- * E-mail: (GB); (BTC); (MPR)
| |
Collapse
|
15
|
Ferreira PA. The coming-of-age of nucleocytoplasmic transport in motor neuron disease and neurodegeneration. Cell Mol Life Sci 2019; 76:2247-2273. [PMID: 30742233 PMCID: PMC6531325 DOI: 10.1007/s00018-019-03029-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
The nuclear pore is the gatekeeper of nucleocytoplasmic transport and signaling through which a vast flux of information is continuously exchanged between the nuclear and cytoplasmic compartments to maintain cellular homeostasis. A unifying and organizing principle has recently emerged that cements the notion that several forms of amyotrophic lateral sclerosis (ALS), and growing number of other neurodegenerative diseases, co-opt the dysregulation of nucleocytoplasmic transport and that this impairment is a pathogenic driver of neurodegeneration. The understanding of shared pathomechanisms that underpin neurodegenerative diseases with impairments in nucleocytoplasmic transport and how these interface with current concepts of nucleocytoplasmic transport is bound to illuminate this fundamental biological process in a yet more physiological context. Here, I summarize unresolved questions and evidence and extend basic and critical concepts and challenges of nucleocytoplasmic transport and its role in the pathogenesis of neurodegenerative diseases, such as ALS. These principles will help to appreciate the roles of nucleocytoplasmic transport in the pathogenesis of ALS and other neurodegenerative diseases, and generate a framework for new ideas of the susceptibility of motoneurons, and possibly other neurons, to degeneration by dysregulation of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Li Y, Zhou J, Min S, Zhang Y, Zhang Y, Zhou Q, Shen X, Jia D, Han J, Sun Q. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 2019; 8:e41331. [PMID: 31021318 PMCID: PMC6524963 DOI: 10.7554/elife.41331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Ran binding protein 1 (RanBP1) is a cytoplasmic-enriched and nuclear-cytoplasmic shuttling protein, playing important roles in nuclear transport. Much of what we know about RanBP1 is learned from fungi. Intrigued by the long-standing paradox of harboring an extra NES in animal RanBP1, we discovered utterly unexpected cargo dissociation and nuclear export mechanisms for animal RanBP1. In contrast to CRM1-RanGTP sequestration mechanism of cargo dissociation in fungi, animal RanBP1 solely sequestered RanGTP from nuclear export complexes. In fungi, RanBP1, CRM1 and RanGTP formed a 1:1:1 nuclear export complex; in contrast, animal RanBP1, CRM1 and RanGTP formed a 1:1:2 nuclear export complex. The key feature for the two mechanistic changes from fungi to animals was the loss of affinity between RanBP1-RanGTP and CRM1, since residues mediating their interaction in fungi were not conserved in animals. The biological significances of these different mechanisms in fungi and animals were also studied.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Jinhan Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Sui Min
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yang Zhang
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|
17
|
Patil H, Yoon D, Bhowmick R, Cai Y, Cho KI, Ferreira PA. Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I (ubc9) and Ranbp2. Small GTPases 2017; 10:146-161. [PMID: 28877029 DOI: 10.1080/21541248.2017.1356432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ran-binding protein 2 (Ranbp2/Nup358) is a cytoplasmic and peripheral nucleoporin comprised of 4 Ran-GTP-binding domains (RBDs) that are interspersed among diverse structural domains with multifunctional activities. Our prior studies found that the RBD2 and RBD3 of Ranbp2 control mitochondrial motility independently of Ran-GTP-binding in cultured cells, whereas loss of Ran-GTP-binding to RBD2 and RBD3 are essential to support cone photoreceptor development and the survival of mature retinal pigment epithelium (RPE) in mice. Here, we uncover that loss of Ran-GTP-binding to RBD3 alone promotes the robust age-dependent increase of ubiquitylated substrates and S1 subunit (Pmsd1) of the 19S cap of the proteasome in the retina and RPE and that such loss in RBD3 also compromises the structural integrity of the outer segment compartment of cone photoreceptors only and without affecting the viability of these neurons. We also found that the E2-ligase and partner of Ranbp2, ubc9, is localized prominently in the mitochondrial-rich ellipsoid compartment of photoreceptors, where Ranbp2 is also known to localize with and modulate the activity of mitochondrial proteins. However, the natures of Ranbp2 and ubc9 isoforms to the mitochondria are heretofore elusive. Subcellular fractionation, co-immunolocalization and immunoaffinity purification of Ranbp2 complexes show that novel isoforms of Ranbp2 and ubc9 with molecular masses distinct from the large Ranbp2 and unmodified ubc9 isoforms localize specifically to the mitochondrial fraction or associate with mitochondrial components, whereas unmodified and SUMOylated Ran GTPase are excluded from the mitochondrial fraction. Further, liposome-mediated intracellular delivery of an antibody against a domain shared by the mitochondrial and nuclear pore isoforms of Ranbp2 causes the profound fragmentation of mitochondria and their delocalization from Ranbp2 and without affecting Ranbp2 localization at the nuclear pores. Collectively, the data support that Ran GTPase-dependent and independent and moonlighting roles of Ranbp2 or domains thereof and ubc9 control selectively age-dependent, neural-type and mitochondrial functions.
Collapse
Affiliation(s)
- Hemangi Patil
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Dosuk Yoon
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Reshma Bhowmick
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Yunfei Cai
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Kyoung-In Cho
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Paulo A Ferreira
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
18
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Nuclear pore complex tethers to the cytoskeleton. Semin Cell Dev Biol 2017; 68:52-58. [PMID: 28676424 DOI: 10.1016/j.semcdb.2017.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed.
Collapse
|
20
|
Cho KI, Yoon D, Qiu S, Danziger Z, Grill WM, Wetsel WC, Ferreira PA. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech 2017; 10:559-579. [PMID: 28100513 PMCID: PMC5451164 DOI: 10.1242/dmm.027730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The pathogenic drivers of sporadic and familial motor neuron disease (MND), such amyotrophic lateral sclerosis (ALS), are unknown. MND impairs the Ran GTPase cycle, which controls nucleocytoplasmic transport, ribostasis and proteostasis; however, cause-effect mechanisms of Ran GTPase modulators in motoneuron pathobiology have remained elusive. The cytosolic and peripheral nucleoporin Ranbp2 is a crucial regulator of the Ran GTPase cycle and of the proteostasis of neurological disease-prone substrates, but the roles of Ranbp2 in motoneuron biology and disease remain unknown. This study shows that conditional ablation of Ranbp2 in mouse Thy1 motoneurons causes ALS syndromes with hypoactivity followed by hindlimb paralysis, respiratory distress and, ultimately, death. These phenotypes are accompanied by: a decline in the nerve conduction velocity, free fatty acids and phophatidylcholine of the sciatic nerve; a reduction in the g-ratios of sciatic and phrenic nerves; and hypertrophy of motoneurons. Furthermore, Ranbp2 loss disrupts the nucleocytoplasmic partitioning of the import and export nuclear receptors importin β and exportin 1, respectively, Ran GTPase and histone deacetylase 4. Whole-transcriptome, proteomic and cellular analyses uncovered that the chemokine receptor Cxcr4, its antagonizing ligands Cxcl12 and Cxcl14, and effector, latent and activated Stat3 all undergo early autocrine and proteostatic deregulation, and intracellular sequestration and aggregation as a result of Ranbp2 loss in motoneurons. These effects were accompanied by paracrine and autocrine neuroglial deregulation of hnRNPH3 proteostasis in sciatic nerve and motoneurons, respectively, and post-transcriptional downregulation of metalloproteinase 28 in the sciatic nerve. Mechanistically, our results demonstrate that Ranbp2 controls nucleocytoplasmic, chemokine and metalloproteinase 28 signaling, and proteostasis of substrates that are crucial to motoneuronal homeostasis and whose impairments by loss of Ranbp2 drive ALS-like syndromes. Summary: Loss of Ranbp2 in spinal motoneurons drives ALS syndromes in mice and Ranbp2 functions in nucleocytoplasmic trafficking, proteostasis and chemokine signaling uncover novel therapeutic targets and mechanisms for motoneuron disease.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sunny Qiu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary Danziger
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA .,Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
21
|
Le LTM, Kang W, Kim JY, Le OTT, Lee SY, Yang JK. Structural Details of Ufd1 Binding to p97 and Their Functional Implications in ER-Associated Degradation. PLoS One 2016; 11:e0163394. [PMID: 27684549 PMCID: PMC5042407 DOI: 10.1371/journal.pone.0163394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The hexameric ATPase p97 has been implicated in diverse cellular processes through interactions with many different adaptor proteins at its N-terminal domain. Among these, the Ufd1-Npl4 heterodimer is a major adaptor, and the p97-Ufd1-Npl4 complex plays an essential role in endoplasmic reticulum-associated degradation (ERAD), acting as a segregase that translocates the ubiquitinated client protein from the ER membrane into the cytosol for proteasomal degradation. We determined the crystal structure of the complex of the N-terminal domain of p97 and the SHP box of Ufd1 at a resolution of 1.55 Å. The 11-residue-long SHP box of Ufd1 binds at the far-most side of the Nc lobe of the p97 N domain primarily through hydrophobic interactions, such that F225, F228, N233 and L235 of the SHP box contact hydrophobic residues on the surface of the p97 Nc lobe. Mutating these key interface residues abolished the interactions in two different binding experiments, isothermal titration calorimetry and co-immunoprecipitation. Furthermore, cycloheximide chase assays showed that these same mutations caused accumulation of tyrosinase-C89R, a well-known ERAD substrate, thus implying decreased rate of protein degradation due to their defects in ERAD function. Together, these results provide structural and biochemical insights into the interaction between p97 N domain and Ufd1 SHP box.
Collapse
Affiliation(s)
- Le Thi My Le
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156–743, Korea
| | - Wonchull Kang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156–743, Korea
| | - Ji-Yun Kim
- Department of Biomedical Sciences and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443–721, Korea
| | - Oanh Thi Tu Le
- Department of Biomedical Sciences and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443–721, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 443–721, Korea
- * E-mail: (JKY); (SYL)
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 156–743, Korea
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 156–743, Korea
- * E-mail: (JKY); (SYL)
| |
Collapse
|
22
|
Abstract
The nuclear pore complex (NPC) mediates the shuttle transport of macromolecules between the nucleus and cytoplasm in eukaryotic cells. The permeability barrier formed by intrinsically disordered phenylalanine-glycine-rich nucleoporins (FG-Nups) in the NPC functions as the critical selective control for nucleocytoplasmic transport. Signal-independent small molecules (< 40 kDa) passively diffuse through the pore, but passage of large cargo molecules is inhibited unless they are chaperoned by nuclear transport receptors (NTRs). NTRs are capable of interacting with FG-Nups and guide the cargos to cross the barrier by facilitated diffusion. The native conformation of the FG-Nups permeability barrier and the competition among multiple NTRs interacting with this barrier in the native NPCs are the 2 core questions still being highly debated in the field. Recently, we applied high-speed super-resolution fluorescence microscopy to map out the natural structure of the FG-Nups barrier and determined the competition among multiple NTRs as they interact with the barrier in the native NPCs. In this extra-view article, we will review the current understanding in the configuration and function of FG-Nups barrier and highlight the new evidence obtained recently to answer the core questions in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Christina Li
- a Department of Biology , Temple University , Philadelphia , PA , USA
| | | | - Weidong Yang
- a Department of Biology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
23
|
Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun 2016; 7:11482. [PMID: 27160050 PMCID: PMC4866044 DOI: 10.1038/ncomms11482] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions.
Collapse
Affiliation(s)
- Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Hrishikesh Das
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Rasmus R. Schröder
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| |
Collapse
|
24
|
Raghunayakula S, Subramonian D, Dasso M, Kumar R, Zhang XD. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells. PLoS One 2015; 10:e0144508. [PMID: 26642330 PMCID: PMC4671610 DOI: 10.1371/journal.pone.0144508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/19/2015] [Indexed: 01/26/2023] Open
Abstract
Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological significance of the interaction between annulate lamellae pore complexes and nuclear transport complexes in mammalian cells.
Collapse
Affiliation(s)
- Sarita Raghunayakula
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Divya Subramonian
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Rita Kumar
- Departments of Emergency Medicine and Physiology, Wayne State University, Detroit, Michigan, United States of America
| | - Xiang-Dong Zhang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
25
|
Cho KI, Haney V, Yoon D, Hao Y, Ferreira PA. Uncoupling phototoxicity-elicited neural dysmorphology and death by insidious function and selective impairment of Ran-binding protein 2 (Ranbp2). FEBS Lett 2015; 589:3959-68. [PMID: 26632511 DOI: 10.1016/j.febslet.2015.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 01/27/2023]
Abstract
Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Victoria Haney
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yin Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, United States; Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
26
|
Schnepp RW, Khurana P, Attiyeh EF, Raman P, Chodosh SE, Oldridge DA, Gagliardi ME, Conkrite KL, Asgharzadeh S, Seeger RC, Madison BB, Rustgi AK, Maris JM, Diskin SJ. A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. Cancer Cell 2015; 28:599-609. [PMID: 26481147 PMCID: PMC4643330 DOI: 10.1016/j.ccell.2015.09.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
A more complete understanding of aberrant oncogenic signaling in neuroblastoma, a malignancy of the developing sympathetic nervous system, is paramount to improving patient outcomes. Recently, we identified LIN28B as an oncogenic driver in high-risk neuroblastoma. Here, we identify the oncogene RAN as a LIN28B target and show regional gain of chromosome 12q24 as an additional somatic alteration resulting in increased RAN expression. We show that LIN28B influences RAN expression by promoting RAN Binding Protein 2 expression and by directly binding RAN mRNA. Further, we demonstrate a convergence of LIN28B and RAN signaling on Aurora kinase A activity. Collectively, these findings demonstrate that LIN28B-RAN-AURKA signaling drives neuroblastoma oncogenesis, suggesting that this pathway may be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Robert W Schnepp
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Priya Khurana
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward F Attiyeh
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara E Chodosh
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Derek A Oldridge
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria E Gagliardi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Karina L Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Robert C Seeger
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anil K Rustgi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Cho KI, Orry A, Park SE, Ferreira PA. Targeting the cyclophilin domain of Ran-binding protein 2 (Ranbp2) with novel small molecules to control the proteostasis of STAT3, hnRNPA2B1 and M-opsin. ACS Chem Neurosci 2015; 6:1476-85. [PMID: 26030368 DOI: 10.1021/acschemneuro.5b00134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyclophilins are peptidyl cis-trans prolyl isomerases (PPIases), whose activity is typically inhibited by cyclosporine A (CsA), a potent immunosuppressor. Cyclophilins are also chaperones. Emerging evidence supports that cyclophilins present nonoverlapping PPIase and chaperone activities. The proteostasis of the disease-relevant substrates, signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1), and M-opsin, is regulated by nonoverlapping chaperone and PPIase activities of the cyclophilin domain (CY) of Ranbp2, a multifunctional and modular scaffold that controls nucleocytoplasmic shuttling and proteostasis of selective substrates. Although highly homologous, CY and the archetypal cyclophilin A (CyPA) present distinct catalytic and CsA-binding activities owing to unique structural features between these cylophilins. We explored structural idiosyncrasies between CY and CyPA to screen in silico nearly 9 million small molecules (SM) against the CY PPIase pocket and identify SMs with selective bioactivity toward STAT3, hnRNPA2B1, or M-opsin proteostasis. We found three classes of SMs that enhance the cytokine-stimulated transcriptional activity of STAT3 without changing latent and activated STAT3 levels, down-regulate hnRNPA2B1 or M-opsin proteostasis, or a combination of these. Further, a SM that suppresses hnRNPA2B1 proteostasis also inhibits strongly and selectively the PPIase activity of CY. This study unravels chemical probes for multimodal regulation of CY of Ranbp2 and its substrates, and this regulation likely results in the allosterism stemming from the interconversion of conformational substates of cyclophilins. The results also demonstrate the feasibility of CY in drug discovery against disease-relevant substrates controlled by Ranbp2, and they open new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Andrew Orry
- MolSoft LLC, San Diego, California 92121, United States
| | - Se Eun Park
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
28
|
Gaik M, Flemming D, von Appen A, Kastritis P, Mücke N, Fischer J, Stelter P, Ori A, Bui KH, Baßler J, Barbar E, Beck M, Hurt E. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. ACTA ACUST UNITED AC 2015; 208:283-97. [PMID: 25646085 PMCID: PMC4315244 DOI: 10.1083/jcb.201411003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits that mediate its anchorage to the NPC scaffold and its concomitant interaction with the soluble nucleocytoplasmic transport machinery. Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82–Nup159–Nsp1–Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery.
Collapse
Affiliation(s)
- Monika Gaik
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| | - Dirk Flemming
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| | - Alexander von Appen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Panagiotis Kastritis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Norbert Mücke
- Division of Biophysics of Macromolecules, German Center Research Center, D-69120 Heidelberg, Germany
| | - Jessica Fischer
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| | - Philipp Stelter
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| | - Alessandro Ori
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Khanh Huy Bui
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jochen Baßler
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Patil H, Saha A, Senda E, Cho KI, Haque M, Yu M, Qiu S, Yoon D, Hao Y, Peachey NS, Ferreira PA. Selective impairment of a subset of Ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation. J Biol Chem 2014; 289:29767-89. [PMID: 25187515 DOI: 10.1074/jbc.m114.586834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retinal pigment epithelium (RPE) degeneration underpins diseases triggered by disparate genetic lesions, noxious insults, or both. The pleiotropic Ranbp2 controls the expression of intrinsic and extrinsic pathological stressors impinging on cellular viability. However, the physiological targets and mechanisms controlled by Ranbp2 in tissue homeostasis, such as RPE, are ill defined. We show that mice, RPE-cre::Ranbp2(-/-), with selective Ranbp2 ablation in RPE develop pigmentary changes, syncytia, hypoplasia, age-dependent centrifugal and non-apoptotic degeneration of the RPE, and secondary leakage of choriocapillaris. These manifestations are accompanied by the development of F-actin clouds, metalloproteinase-11 activation, deregulation of expression or subcellular localization of critical RPE proteins, atrophic cell extrusions into the subretinal space, and compensatory proliferation of peripheral RPE. To gain mechanistic insights into what Ranbp2 activities are vital to the RPE, we performed genetic complementation analyses of transgenic lines of bacterial artificial chromosomes of Ranbp2 harboring loss of function of selective Ranbp2 domains expressed in a Ranbp2(-/-) background. Among the transgenic lines produced, only Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-)-expressing mutations, which selectively impair binding of RBD2/3 (Ran-binding domains 2 and 3) of Ranbp2 to Ran-GTP, recapitulate RPE degeneration, as observed with RPE-cre::Ranbp2(-/-). By contrast, Tg(RBD2/3*-HA) expression rescues the degeneration of cone photoreceptors lacking Ranbp2. The RPE of RPE-cre::Ranbp2(-/-) and Tg(RBD2/3*-HA)::RPE-cre::Ranbp2(-/-) share proteostatic deregulation of Ran GTPase, serotransferrin, and γ-tubulin and suppression of light-evoked electrophysiological responses. These studies unravel selective roles of Ranbp2 and its RBD2 and RBD3 in RPE survival and functions. We posit that the control of Ran GTPase by Ranbp2 emerges as a novel therapeutic target in diseases promoting RPE degeneration.
Collapse
Affiliation(s)
| | - Arjun Saha
- From the Departments of Ophthalmology and
| | | | | | | | - Minzhong Yu
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
| | - Sunny Qiu
- From the Departments of Ophthalmology and
| | - Dosuk Yoon
- From the Departments of Ophthalmology and
| | - Ying Hao
- From the Departments of Ophthalmology and
| | - Neal S Peachey
- the Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, the Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, and the Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Paulo A Ferreira
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710,
| |
Collapse
|
30
|
Frohnert C, Hutten S, Wälde S, Nath A, Kehlenbach RH. Importin 7 and Nup358 promote nuclear import of the protein component of human telomerase. PLoS One 2014; 9:e88887. [PMID: 24586428 PMCID: PMC3930611 DOI: 10.1371/journal.pone.0088887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/13/2014] [Indexed: 01/18/2023] Open
Abstract
In actively dividing eukaryotic cells, chromosome ends (telomeres) are subject to progressive shortening, unless they are maintained by the action of telomerase, a dedicated enzyme that adds DNA sequence repeats to chromosomal 3′end. For its enzymatic function on telomeres, telomerase requires nuclear import of its protein component (hTERT in human cells) and assembly with the RNA component, TERC. We now confirm a major nuclear localization signal (NLS) in the N-terminal region of hTERT and describe a novel one in the C-terminal part. Using an siRNA approach to deplete several import receptors, we identify importin 7 as a soluble nuclear transport factor that is required for efficient import. At the level of the nuclear pore complex (NPC), Nup358, a nucleoporin that forms the cytoplasmic filaments of the NPC, plays an important role in nuclear import of hTERT. A structure-function analysis of Nup358 revealed that the zinc finger region of the nucleoporin is of particular importance for transport of hTERT. Together, our study sheds light on the nuclear import pathway of hTERT.
Collapse
Affiliation(s)
- Cornelia Frohnert
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Saskia Hutten
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Sarah Wälde
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Annegret Nath
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Ralph H. Kehlenbach
- Institute of Molecular Biology, Faculty of Medicine, University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Cho KI, Patil H, Senda E, Wang J, Yi H, Qiu S, Yoon D, Yu M, Orry A, Peachey NS, Ferreira PA. Differential loss of prolyl isomerase or chaperone activity of Ran-binding protein 2 (Ranbp2) unveils distinct physiological roles of its cyclophilin domain in proteostasis. J Biol Chem 2014; 289:4600-25. [PMID: 24403063 DOI: 10.1074/jbc.m113.538215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2(WT-HA)) or without PPIase activities (Tg-Ranbp2(R2944A-HA)). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2(R2944A-HA)::Ranbp2(-/-). This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2(CLDm-HA)::Ranbp2(-/-), harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil distinct mechanistic and biological links between PPIase and chaperone activities of Ranbp2 cyclophilin toward proteostasis of selective substrates and with novel therapeutic potential.
Collapse
Affiliation(s)
- Kyoung-in Cho
- From the Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 2013; 178:187-96. [PMID: 24051001 DOI: 10.1016/j.virusres.2013.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Human Immunodeficiency virus type 1 (HIV-1), as well as many other viruses that depend on nuclear entry for replication, has developed an evolutionary strategy to dock and translocate through the nuclear pore complex (NPC). In particular, the nuclear pore is not a static window but it is a dynamic structure involved in many vital cellular functions, as nuclear import/export, gene regulation, chromatin organization and genome stability. This review aims to shed light on viral mechanisms developed by HIV-1 to usurp cellular machinery to favor viral gene expression and their replication. In particular, it will be reviewed both what is known and what is speculated about the link between HIV translocation through the nuclear pore and the proviral integration in the host chromatin.
Collapse
|
33
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
34
|
Roloff S, Spillner C, Kehlenbach RH. Several phenylalanine-glycine motives in the nucleoporin Nup214 are essential for binding of the nuclear export receptor CRM1. J Biol Chem 2013; 288:3952-63. [PMID: 23264634 PMCID: PMC3567648 DOI: 10.1074/jbc.m112.433243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/12/2012] [Indexed: 02/06/2023] Open
Abstract
Nucleoporins containing phenylalanine glycine (FG) repeats play an important role in nucleocytoplasmic transport as they bind to transport receptors and mediate translocation of transport complexes across the nuclear pore complex (NPC). Nup214/CAN, a nucleoporin that is found at the cytoplasmic side of the NPC, interacts with both import and export receptors. In functional assays, dominant-negative fragments of Nup214 inhibited CRM1-dependent nuclear export, as the export receptor became rate-limiting. Several nuclear import pathways, by contrast, were not affected by the Nup214 fragments. We now characterize the CRM1-binding region of Nup214 in detail and identify several FG motives that are required for this interaction. Our results support a model where CRM1, like other transport receptors, contacts FG-Nups via multiple binding sites.
Collapse
Affiliation(s)
- Stephanie Roloff
- From the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christiane Spillner
- From the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Ralph H. Kehlenbach
- From the Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
35
|
Cho KI, Searle K, Webb M, Yi H, Ferreira PA. Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell Mol Life Sci 2012; 69:3511-27. [PMID: 22821000 PMCID: PMC3445802 DOI: 10.1007/s00018-012-1071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH+) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2+/− than wild-type mice without viability changes of brain TH+-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2+/− TH+-neurons. Conversely, the number of wild-type retinal TH+-amacrine neurons compared to Ranbp2+/− underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU+-proliferative cells and non-proliferative gliosis of GFAP+-Müller cells in wild-type than Ranbp2+/− that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2+/− mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their β-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Kelly Searle
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, 21205 MD
| | - Mason Webb
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
36
|
Marfori M, Lonhienne TG, Forwood JK, Kobe B. Structural Basis of High-Affinity Nuclear Localization Signal Interactions with Importin-α. Traffic 2012; 13:532-48. [DOI: 10.1111/j.1600-0854.2012.01329.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jade K. Forwood
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2650; Australia
| | | |
Collapse
|
37
|
Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Wälde S, Joseph J, Kehlenbach RH, van Deursen JM. Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. ACTA ACUST UNITED AC 2011; 194:597-612. [PMID: 21859863 PMCID: PMC3160583 DOI: 10.1083/jcb.201102018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RanBP2/Nup358, the major component of the cytoplasmic filaments of the nuclear pore complex (NPC), is essential for mouse embryogenesis and is implicated in both macromolecular transport and mitosis, but its specific molecular functions are unknown. Using RanBP2 conditional knockout mouse embryonic fibroblasts and a series of mutant constructs, we show that transport, rather than mitotic, functions of RanBP2 are required for cell viability. Cre-mediated RanBP2 inactivation caused cell death with defects in M9- and classical nuclear localization signal (cNLS)-mediated protein import, nuclear export signal-mediated protein export, and messenger ribonucleic acid export but no apparent mitotic failure. A short N-terminal RanBP2 fragment harboring the NPC-binding domain, three phenylalanine-glycine motifs, and one Ran-binding domain (RBD) corrected all transport defects and restored viability. Mutation of the RBD within this fragment caused lethality and perturbed binding to Ran guanosine triphosphate (GTP)-importin-β, accumulation of importin-β at nuclear pores, and cNLS-mediated protein import. These data suggest that a critical function of RanBP2 is to capture recycling RanGTP-importin-β complexes at cytoplasmic fibrils to allow for adequate cNLS-mediated cargo import.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Biochemistry and Molecular Biology and 2 Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gloerich M, Vliem MJ, Prummel E, Meijer LAT, Rensen MGA, Rehmann H, Bos JL. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. ACTA ACUST UNITED AC 2011; 193:1009-20. [PMID: 21670213 PMCID: PMC3115801 DOI: 10.1083/jcb.201011126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Direct interaction between the catalytic domain of Epac1 and the nuclear pore component RanBP2 blocks Epac1 catalytic activity and downstream cAMP signaling. Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.
Collapse
Affiliation(s)
- Martijn Gloerich
- Molecular Cancer Research, Centre for Biomedical Genetics and Cancer Genomics Centre, University Medical Center Utrecht, 3584 CG Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc Natl Acad Sci U S A 2011; 108:E351-8. [PMID: 21690354 DOI: 10.1073/pnas.1104521108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To study transport through the nuclear pore complex, we developed a computational simulation that is based on known structural elements rather than a particular transport model. Results agree with a variety of experimental data including size cutoff for cargo transport with (30-nm diameter) and without (< 10 nm) nuclear localization signals (NLS), macroscopic transport rates (hundreds per second), and single cargo transit times (milliseconds). The recently observed bimodal cargo distribution is predicted, as is the relative invariance of single cargo transit times out to large size (even as macroscopic transport rate decreases). Additional predictions concern the effects of the number of NLS tags, the RanGTP gradient, and phenylalanine-glycine nucleopore protein (FG-Nup) structure, flexibility, and cross-linking. Results are consistent with and elucidate the molecular mechanisms of some existing hypotheses (selective phase, virtual gate, and selective gate models). A model emerges that is a hybrid of a number of preexisting models as well as a Brownian ratchet model, in which a cargo-karyopherin complex remains bound to the same FG-Nups for its entire trajectory through the nuclear pore complex until RanGTP severs the cargo-Nup bonds to effect release into the nucleus.
Collapse
|
40
|
Chatel G, Fahrenkrog B. Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell Signal 2011; 23:1555-62. [PMID: 21683138 DOI: 10.1016/j.cellsig.2011.05.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/31/2011] [Indexed: 12/01/2022]
Abstract
The nuclear envelope (NE) separates the cytoplasm and the cell nucleus of interphase eukaryotic cells and nuclear pore complexes (NPCs) mediate the macromolecular exchange between these two compartments. The NE and the NPCs of vertebrate cells disassemble during prophase and the nuclear pore proteins (nucleoporins) are distributed within the mitotic cytoplasm. For an increasing number of them active mitotic functions have been assigned over the past few years. Nucleoporins are participating in spindle assembly, kinetochore organisation, and the spindle assembly checkpoint, all processes that control chromosome segregation and are important for maintenance of genome integrity. But nucleoporins are also engaged in early and late mitotic events, such as centrosome positioning and cytokinesis. Here we will highlight recent progress in deciphering the roles for nucleoporins in the distinct steps of mitosis.
Collapse
Affiliation(s)
- Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
41
|
Lindenboim L, Borner C, Stein R. Nuclear proteins acting on mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:584-96. [PMID: 21130123 DOI: 10.1016/j.bbamcr.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 12/23/2022]
Abstract
An important mechanism in apoptotic regulation is changes in the subcellular distribution of pro- and anti-apoptotic proteins. Among the proteins that change in their localization and may promote apoptosis are nuclear proteins. Several of these nuclear proteins such as p53, Nur77, histone H1.2, and nucleophosmin were reported to accumulate in the cytosol and/or mitochondria and to promote the mitochondrial apoptotic pathway in response to apoptotic stressors. In this review, we will discuss the functions of these and other nuclear proteins in promoting the mitochondrial apoptotic pathway, the mechanisms that regulate their accumulation in the cytosol and/or mitochondria and the potential role of Bax and Bak in this process. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | | | | |
Collapse
|
42
|
Cho KI, Yi H, Tserentsoodol N, Searle K, Ferreira PA. Neuroprotection resulting from insufficiency of RANBP2 is associated with the modulation of protein and lipid homeostasis of functionally diverse but linked pathways in response to oxidative stress. Dis Model Mech 2010; 3:595-604. [PMID: 20682751 DOI: 10.1242/dmm.004648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Wozniak R, Burke B, Doye V. Nuclear transport and the mitotic apparatus: an evolving relationship. Cell Mol Life Sci 2010; 67:2215-30. [PMID: 20372967 PMCID: PMC11115906 DOI: 10.1007/s00018-010-0325-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
The trafficking of macromolecules between the cytoplasm and the nucleus is controlled by the nuclear pore complexes (NPCs) and various transport factors that facilitate the movement of cargos through the NPCs and their accumulation in the target compartment. While their functions in transport are well established, an ever-growing number of observations have also linked components of the nuclear transport machinery to processes that control chromosome segregation during mitosis, including spindle assembly, kinetochore function, and the spindle assembly checkpoint. In this review, we will discuss this evolving area of study and emerging hypotheses that propose key roles for components of the nuclear transport apparatus in mitotic progression.
Collapse
Affiliation(s)
- Richard Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
44
|
The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol Cell Biol 2010; 30:3956-69. [PMID: 20547757 DOI: 10.1128/mcb.00242-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epac1 (exchange protein directly activated by cyclic AMP [cAMP]) couples intracellular cAMP to the activation of Rap1, a Ras family GTPase that regulates cell adhesion, proliferation, and differentiation. Using mass spectrometry, we identified the small G protein Ran and Ran binding protein 2 (RanBP2) as potential binding partners of Epac1. Ran is a small G protein best known for its role in nuclear transport and can be found at the nuclear pore through its interaction with RanBP2. Here we demonstrate that Ran-GTP and Epac1 interact with each other in vivo and in vitro. This binding requires a previously uncharacterized Ras association (RA) domain in Epac1. Surprisingly, the interaction of Epac1 with Ran is necessary for the efficient activation of Rap1 by Epac1. We propose that Ran and RanBP2 anchor Epac1 to the nuclear pore, permitting cAMP signals to activate Rap1 at the nuclear envelope.
Collapse
|
45
|
Abstract
RPGRIP1 encodes the retinitis pigmentosa GTPase interacting protein 1 and interacts with RPGR, the latter represents the major X-linked RP (XRRP) gene, as it accounts for 70-80% of the XRRP patients and up to 13% of all RP patients. RPGRIP1 contains a C-terminal RPGR interacting domain (RID) and a coiled-coil (CC) domain, which is homologous to proteins involved in vesicular trafficking. The interactions between the two proteins is between the RCC1-homologous domain of RPGR (RHD) and the RPGR-interacting domain of RPGRIP1 (RID). Both proteins co-localize to the photoreceptor connecting cilium and RPGRIP1 appears to be a structural component of the ciliary axoneme of the connecting cilium (which connects the inner to the outer segment of the photoreceptors) of both rods and cones and functions to anchor RPGR within the cilium.RPGRIP1 loci encode several different isoforms, which have distinct cellular, sub cellular and biochemical properties. RPGRIP1 is uniquely expressed in amacrine cells of the inner retina. Knockout mice studies have shown that RPGRIP1 is required for disc morphogenesis of the outer segments in the mouse, perhaps by regulating cytoskeleton dynamics. Thus far RPGRIP1 appears to be only mutated in LCA and is associated with 6% of LCA in two series. The purpose of this review is to highlight recent advances in our understanding of RPGRIP1 function in normal and diseased retinas.
Collapse
Affiliation(s)
- Robert K Koenekoop
- McGill Ocular Genetics Laboratory, Montreal Children's Hospital Research Institute, McGill University Health Center, Montreal, Canada.
| |
Collapse
|
46
|
Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 2009; 284:22549-58. [PMID: 19549784 DOI: 10.1074/jbc.m109.019935] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.
Collapse
Affiliation(s)
- Thierry G Lonhienne
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072, St. Lucia, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
48
|
Hutten S, Wälde S, Spillner C, Hauber J, Kehlenbach RH. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J Cell Sci 2009; 122:1100-10. [PMID: 19299463 DOI: 10.1242/jcs.040154] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nup358 (also known as RanBP2), a component of the cytoplasmic filaments of the nuclear pore complex, has been implicated in various nucleocytoplasmic transport pathways. Here, we identify Nup358 as an important factor for transportin-mediated nuclear import. Depletion of Nup358 resulted in a strong inhibition of nuclear import of the human immunodeficiency virus type 1 (HIV-1) Rev protein. HIV-1 Rev is an RNA-binding protein that is required for CRM1 (also known as exportin 1)-dependent nuclear export of unspliced or partially spliced viral RNA. We show that transportin is the major nuclear import receptor for HIV-1 Rev in HeLa cells. Overexpression of transportin strongly promoted nuclear import of HIV-1 Rev in Nup358-depleted cells, indicating that the import receptor becomes rate-limiting under these conditions. Importantly, the import rate of other transportin-dependent proteins was also significantly reduced in Nup358-depleted cells. Our data therefore suggest a general role for Nup358 in transportin-mediated nuclear import.
Collapse
Affiliation(s)
- Saskia Hutten
- Department of Biochemistry I, Faculty of Medicine, Georg-August-University of Göttingen, 37073, Göttingen, Germany
| | | | | | | | | |
Collapse
|
49
|
Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. J Virol 2008; 83:1660-8. [PMID: 19073727 DOI: 10.1128/jvi.01139-08] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.
Collapse
|
50
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|