1
|
Kierans SJ, Taylor CT. Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem 2024; 300:107906. [PMID: 39442619 PMCID: PMC11605472 DOI: 10.1016/j.jbc.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Glycolysis is a highly conserved metabolic pathway responsible for the anaerobic production of adenosine triphosphate (ATP) from the breakdown of glucose molecules. While serving as a primary metabolic pathway in prokaryotes, glycolysis is also utilized by respiring eukaryotic cells, providing pyruvate to fuel oxidative metabolism. Furthermore, glycolysis is the primary source of ATP production in multiple cellular states (e.g., hypoxia) and is particularly important in maintaining bioenergetic homeostasis in the most abundant cell type in the human body, the erythrocyte. Beyond its role in ATP production, glycolysis also functions as a signaling hub, producing several metabolic intermediates which serve roles in both signaling and metabolic processes. These signals emanating from the glycolytic pathway can profoundly impact cell function, phenotype, and fate and have previously been overlooked. In this review, we will discuss the role of the glycolytic pathway as a source of signaling molecules in eukaryotic cells, emphasizing the newfound recognition of glycolysis' multifaceted nature and its importance in maintaining cellular homeostasis, beyond its traditional role in ATP synthesis.
Collapse
Affiliation(s)
- Sarah J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch 2024; 476:1353-1368. [PMID: 38570355 PMCID: PMC11310250 DOI: 10.1007/s00424-024-02953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.
Collapse
Affiliation(s)
- Emily DeMichele
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cormac T Taylor
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Wang H, Vant JW, Zhang A, Sanchez RG, Wu Y, Micou ML, Luczak V, Whiddon Z, Carlson NM, Yu SB, Jabbo M, Yoon S, Abushawish AA, Ghassemian M, Masubuchi T, Gan Q, Watanabe S, Griffis ER, Hammarlund M, Singharoy A, Pekkurnaz G. Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency. Nat Metab 2024; 6:1712-1735. [PMID: 39261628 DOI: 10.1038/s42255-024-01121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Glucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, and is crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT). OGT catalyses reversible O-GlcNAcylation, a post-translational modification influenced by glucose flux. Elevated OGT activity induces dynamic O-GlcNAcylation of the regulatory domain of HK1, subsequently promoting the assembly of the glycolytic metabolon on the outer mitochondrial membrane. This modification enhances the mitochondrial association with HK1, orchestrating glycolytic and mitochondrial ATP production. Mutation in HK1's O-GlcNAcylation site reduces ATP generation in multiple cell types, specifically affecting metabolic efficiency in neurons. This study reveals a previously unappreciated pathway that links neuronal metabolism and mitochondrial function through OGT and the formation of the glycolytic metabolon, providing potential strategies for tackling metabolic and neurological disorders.
Collapse
Affiliation(s)
- Haoming Wang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - John W Vant
- Biodesign Institute, The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Andrew Zhang
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Richard G Sanchez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Youjun Wu
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mary L Micou
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Vincent Luczak
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Zachary Whiddon
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natasha M Carlson
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Seungyoon B Yu
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Mirna Jabbo
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Seokjun Yoon
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA, USA
| | - Takeya Masubuchi
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Quan Gan
- Department of Cell Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Eric R Griffis
- Nikon Imaging Center, University of California San Diego, La Jolla, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Marc Hammarlund
- Department of Genetics and Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Abhishek Singharoy
- Biodesign Institute, The School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Blackburn GS, Keeling CI, Prunier J, Keena MA, Béliveau C, Hamelin R, Havill NP, Hebert FO, Levesque RC, Cusson M, Porth I. Genetics of flight in spongy moths (Lymantria dispar ssp.): functionally integrated profiling of a complex invasive trait. BMC Genomics 2024; 25:541. [PMID: 38822259 PMCID: PMC11140922 DOI: 10.1186/s12864-023-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/22/2023] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.
Collapse
Affiliation(s)
- Gwylim S Blackburn
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada.
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada.
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Christopher I Keeling
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Melody A Keena
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | - Catherine Béliveau
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
| | - Richard Hamelin
- Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, 3032V6T 1Z4, Canada
| | - Nathan P Havill
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | | | - Roger C Levesque
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Michel Cusson
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
5
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
6
|
Wang H, Vant J, Wu Y, Sanchez R, Micou ML, Zhang A, Luczak V, Yu SB, Jabbo M, Yoon S, Abushawish AA, Ghassemian M, Griffis E, Hammarlund M, Singharoy A, Pekkurnaz G. Functional Organization of Glycolytic Metabolon on Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554955. [PMID: 37662343 PMCID: PMC10473731 DOI: 10.1101/2023.08.26.554955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glucose, the primary cellular energy source, is metabolized through glycolysis initiated by the rate-limiting enzyme Hexokinase (HK). In energy-demanding tissues like the brain, HK1 is the dominant isoform, primarily localized on mitochondria, crucial for efficient glycolysis-oxidative phosphorylation coupling and optimal energy generation. This study unveils a unique mechanism regulating HK1 activity, glycolysis, and the dynamics of mitochondrial coupling, mediated by the metabolic sensor enzyme O-GlcNAc transferase (OGT). OGT catalyzes reversible O-GlcNAcylation, a post-translational modification, influenced by glucose flux. Elevated OGT activity induces dynamic O-GlcNAcylation of HK1's regulatory domain, subsequently promoting the assembly of the glycolytic metabolon on the outer mitochondrial membrane. This modification enhances HK1's mitochondrial association, orchestrating glycolytic and mitochondrial ATP production. Mutations in HK1's O-GlcNAcylation site reduce ATP generation, affecting synaptic functions in neurons. The study uncovers a novel pathway that bridges neuronal metabolism and mitochondrial function via OGT and the formation of the glycolytic metabolon, offering new prospects for tackling metabolic and neurological disorders.
Collapse
|
7
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
González Morales N, Marescal O, Szikora S, Katzemich A, Correia-Mesquita T, Bíró P, Erdelyi M, Mihály J, Schöck F. The oxoglutarate dehydrogenase complex is involved in myofibril growth and Z-disc assembly in Drosophila. J Cell Sci 2023; 136:jcs260717. [PMID: 37272588 PMCID: PMC10323237 DOI: 10.1242/jcs.260717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
Collapse
Affiliation(s)
- Nicanor González Morales
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
- Department of Biology, Dalhousie University, Nova Scotia B3H 4R2, Canada
| | - Océane Marescal
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
| | - Anja Katzemich
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| | | | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - Miklos Erdelyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Frieder Schöck
- Department of Biology, McGill University, Quebec H3A 1B1, Canada
| |
Collapse
|
9
|
Schöck F, González-Morales N. The insect perspective on Z-disc structure and biology. J Cell Sci 2022; 135:277280. [PMID: 36226637 DOI: 10.1242/jcs.260179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myofibrils are the intracellular structures formed by actin and myosin filaments. They are paracrystalline contractile cables with unusually well-defined dimensions. The sliding of actin past myosin filaments powers contractions, and the entire system is held in place by a structure called the Z-disc, which anchors the actin filaments. Myosin filaments, in turn, are anchored to another structure called the M-line. Most of the complex architecture of myofibrils can be reduced to studying the Z-disc, and recently, important advances regarding the arrangement and function of Z-discs in insects have been published. On a very small scale, we have detailed protein structure information. At the medium scale, we have cryo-electron microscopy maps, super-resolution microscopy and protein-protein interaction networks, while at the functional scale, phenotypic data are available from precise genetic manipulations. All these data aim to answer how the Z-disc works and how it is assembled. Here, we summarize recent data from insects and explore how it fits into our view of the Z-disc, myofibrils and, ultimately, muscles.
Collapse
Affiliation(s)
- Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | | |
Collapse
|
10
|
Allen DG. The spatial distribution of glycogen and glycogen consumption in muscle cells. J Gen Physiol 2022; 154:213402. [PMID: 35976153 PMCID: PMC9388224 DOI: 10.1085/jgp.202213238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
David G. Allen looks at new research from the Nielsen lab.
Collapse
Affiliation(s)
- David G. Allen
- Sydney Medical School, University of Sydney, Sydney, Australia,Correspondence to David G. Allen:
| |
Collapse
|
11
|
Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM. The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 GENES|GENOMES|GENETICS 2022; 12:6583191. [PMID: 35536221 PMCID: PMC9339270 DOI: 10.1093/g3journal/jkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
As the fruit fly, Drosophila melanogaster, progresses from one life stage to the next, many of the enzymes that compose intermediary metabolism undergo substantial changes in both expression and activity. These predictable shifts in metabolic flux allow the fly meet stage-specific requirements for energy production and biosynthesis. In this regard, the enzyme glycerol-3-phosphate dehydrogenase 1 (GPDH1) has been the focus of biochemical genetics studies for several decades and, as a result, is one of the most well-characterized Drosophila enzymes. Among the findings of these earlier studies is that GPDH1 acts throughout the fly lifecycle to promote mitochondrial energy production and triglyceride accumulation while also serving a key role in maintaining redox balance. Here, we expand upon the known roles of GPDH1 during fly development by examining how depletion of both the maternal and zygotic pools of this enzyme influences development, metabolism, and viability. Our findings not only confirm previous observations that Gpdh1 mutants exhibit defects in larval development, lifespan, and fat storage but also reveal that GPDH1 serves essential roles in oogenesis and embryogenesis. Moreover, metabolomics analysis reveals that a Gpdh1 mutant stock maintained in a homozygous state exhibits larval metabolic defects that significantly differ from those observed in the F1 mutant generation. Overall, our findings highlight unappreciated roles for GPDH1 in early development and uncover previously undescribed metabolic adaptations that could allow flies to survive the loss of this key enzyme.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Sarah M Carter
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shefali A Shefali
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | | | - Robert Pepin
- Department of Chemistry, Indiana University , Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Nielsen J, Dubillot P, Stausholm MLH, Ørtenblad N. Specific ATPases drive compartmentalized glycogen utilization in rat skeletal muscle. J Gen Physiol 2022; 154:213339. [PMID: 35796670 PMCID: PMC9270182 DOI: 10.1085/jgp.202113071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Glycogen is a key energy substrate in excitable tissue, including in skeletal muscle fibers where it also contributes to local energy production. Transmission electron microscopy imaging has revealed the existence of a heterogenic subcellular distribution of three distinct glycogen pools in skeletal muscle, which are thought to reflect the requirements for local energy stores at the subcellular level. Here, we show that the three main energy-consuming ATPases in skeletal muscles (Ca2+, Na+,K+, and myosin ATPases) utilize different local pools of glycogen. These results clearly demonstrate compartmentalized glycogen metabolism and emphasize that spatially distinct pools of glycogen particles act as energy substrate for separated energy requiring processes, suggesting a new model for understanding glycogen metabolism in working muscles, muscle fatigue, and metabolic disorders. These observations suggest that the distinct glycogen pools can regulate the functional state of mammalian muscle cells and have important implications for the understanding of how the balance between ATP utilization and ATP production is regulated at the cellular level in general and in skeletal muscle fibers in particular.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark,Correspondence to Joachim Nielsen:
| | - Peter Dubillot
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Marie-Louise H. Stausholm
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
13
|
Paradoxes of Hymenoptera flight muscles, extreme machines. Biophys Rev 2022; 14:403-412. [PMID: 35340599 PMCID: PMC8921419 DOI: 10.1007/s12551-022-00937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 10/29/2022] Open
Abstract
AbstractIn the Carboniferous, insects evolved flight. Intense selection drove for high performance and approximately 100 million years later, Hymenoptera (bees, wasps and ants) emerged. Some species had proportionately small wings, with apparently impossible aerodynamic challenges including a need for high frequency flight muscles (FMs), powered exclusively off aerobic pathways and resulting in extreme aerobic capacities. Modern insect FMs are the most refined and form large dense blocks that occupy 90% of the thorax. These can beat wings at 200 to 230 Hz, more than double that achieved by standard neuromuscular systems. To do so, rapid repolarisation was circumvented through evolution of asynchronous stimulation, stretch activation, elastic recoil and a paradoxically slow Ca2+ reuptake. While the latter conserves ATP, considerable ATP is demanded at the myofibrils. FMs have diminished sarcoplasmic volumes, and ATP is produced solely by mitochondria, which pack myocytes to maximal limits and have very dense cristae. Gaseous oxygen is supplied directly to mitochondria. While FMs appear to be optimised for function, several unusual paradoxes remain. FMs lack any significant equivalent to the creatine kinase shuttle, and myofibrils are twice as wide as those of within cardiomyocytes. The mitochondrial electron transport systems also release large amounts of reactive oxygen species (ROS) and respiratory complexes do not appear to be present at any exceptional level. Given that the loss of the creatine kinase shuttle and elevated ROS impairs heart function, we question how do FM shuttle adenylates at high rates and tolerate oxidative stress conditions that occur in diseased hearts?
Collapse
|
14
|
Abstract
Hypoxia inhibits the tricarboxylic acid (TCA) cycle and leaves glycolysis as the primary metabolic pathway responsible for converting glucose into usable energy. However, the mechanisms that compensate for this loss in energy production due to TCA cycle inactivation remain poorly understood. Glycolysis enzymes are typically diffuse and soluble in the cytoplasm under normoxic conditions. In contrast, recent studies have revealed dynamic compartmentalization of glycolysis enzymes in response to hypoxic stress in yeast, C. elegans and mammalian cells. These messenger ribonucleoprotein (mRNP) structures, termed glycolytic (G) bodies in yeast, lack membrane enclosure and display properties of phase-separated biomolecular condensates. Disruption of condensate formation correlates with defects such as impaired synaptic function in C. elegans neurons and decreased glucose flux in yeast. Concentrating glycolysis enzymes into condensates may lead to their functioning as 'metabolons' that enhance rates of glucose utilization for increased energy production. Besides condensates, glycolysis enzymes functionally associate in other organisms and specific tissues through protein-protein interactions and membrane association. However, as discussed in this Review, the functional consequences of coalescing glycolytic machinery are only just beginning to be revealed. Through ongoing studies, we anticipate the physiological importance of metabolic regulation mediated by the compartmentalization of glycolysis enzymes will continue to emerge.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
16
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
17
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
18
|
Jang S, Xuan Z, Lagoy RC, Jawerth LM, Gonzalez IJ, Singh M, Prashad S, Kim HS, Patel A, Albrecht DR, Hyman AA, Colón-Ramos DA. Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophys J 2021; 120:1170-1186. [PMID: 32853565 PMCID: PMC8059094 DOI: 10.1016/j.bpj.2020.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Zhao Xuan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Ross C Lagoy
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Louise M Jawerth
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian J Gonzalez
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Milind Singh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Shavanie Prashad
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Hee Soo Kim
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Avinash Patel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dirk R Albrecht
- Department of Biomedical Engineering and Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Instituto de Neurobiología, Universidad de Puerto Rico, San Juan, Puerto Rico.
| |
Collapse
|
19
|
Bawa S, Piccirillo R, Geisbrecht ER. TRIM32: A Multifunctional Protein Involved in Muscle Homeostasis, Glucose Metabolism, and Tumorigenesis. Biomolecules 2021; 11:biom11030408. [PMID: 33802079 PMCID: PMC7999776 DOI: 10.3390/biom11030408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human tripartite motif family of proteins 32 (TRIM32) is a ubiquitous multifunctional protein that has demonstrated roles in differentiation, muscle physiology and regeneration, and tumor suppression. Mutations in TRIM32 result in two clinically diverse diseases. A mutation in the B-box domain gives rise to Bardet–Biedl syndrome (BBS), a disease whose clinical presentation shares no muscle pathology, while mutations in the NHL (NCL-1, HT2A, LIN-41) repeats of TRIM32 causes limb-girdle muscular dystrophy type 2H (LGMD2H). TRIM32 also functions as a tumor suppressor, but paradoxically is overexpressed in certain types of cancer. Recent evidence supports a role for TRIM32 in glycolytic-mediated cell growth, thus providing a possible mechanism for TRIM32 in the accumulation of cellular biomass during regeneration and tumorigenesis, including in vitro and in vivo approaches, to understand the broad spectrum of TRIM32 functions. A special emphasis is placed on the utility of the Drosophila model, a unique system to study glycolysis and anabolic pathways that contribute to the growth and homeostasis of both normal and tumor tissues.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
| | - Rosanna Piccirillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;
- Correspondence: ; Tel.: +1-(785)-532-3105
| |
Collapse
|
20
|
Gruebele M, Pielak GJ. Dynamical spectroscopy and microscopy of proteins in cells. Curr Opin Struct Biol 2021; 70:1-7. [PMID: 33662744 DOI: 10.1016/j.sbi.2021.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
With a strong understanding of how proteins fold in hand, it is now possible to ask how in-cell environments modulate their folding, binding and function. Studies accessing fast (ns to s) in-cell dynamics have accelerated over the past few years through a combination of in-cell NMR spectroscopy and time-resolved fluorescence microscopies. Here, we discuss this recent work and the emerging picture of protein surfaces as not just hydrophilic coats interfacing the solvent to the protein's core and functional regions, but as critical components in cells controlling protein mobility, function and communication with post-translational modifications.
Collapse
Affiliation(s)
- Martin Gruebele
- Department of Chemistry, Department of Physics, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Gary J Pielak
- Departments of Chemistry, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Bretscher H, O’Connor MB. The Role of Muscle in Insect Energy Homeostasis. Front Physiol 2020; 11:580687. [PMID: 33192587 PMCID: PMC7649811 DOI: 10.3389/fphys.2020.580687] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maintaining energy homeostasis is critical for ensuring proper growth and maximizing survival potential of all organisms. Here we review the role of somatic muscle in regulating energy homeostasis in insects. The muscle is not only a large consumer of energy, it also plays a crucial role in regulating metabolic signaling pathways and energy stores of the organism. We examine the metabolic pathways required to supply the muscle with energy, as well as muscle-derived signals that regulate metabolic energy homeostasis.
Collapse
Affiliation(s)
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Cheung KCP, Fanti S, Mauro C, Wang G, Nair AS, Fu H, Angeletti S, Spoto S, Fogolari M, Romano F, Aksentijevic D, Liu W, Li B, Cheng L, Jiang L, Vuononvirta J, Poobalasingam TR, Smith DM, Ciccozzi M, Solito E, Marelli-Berg FM. Preservation of microvascular barrier function requires CD31 receptor-induced metabolic reprogramming. Nat Commun 2020; 11:3595. [PMID: 32681081 PMCID: PMC7367815 DOI: 10.1038/s41467-020-17329-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant β-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- School of Life Sciences, Centre for Cell & Developmental Biology and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelson Way, Birmingham, B152WB, UK
| | - Guosu Wang
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Anitha S Nair
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Hongmei Fu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Silvia Spoto
- Internal Medicine Department, University campus Bio-Medico of Rome, Rome, Italy
| | - Marta Fogolari
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Francesco Romano
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Weiwei Liu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, People's Republic of China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell & Developmental Biology and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juho Vuononvirta
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Thanushiyan R Poobalasingam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David M Smith
- AstraZeneca R&D, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Massimo Ciccozzi
- Unit of Medical Statistic and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli studi di Napoli "Federico II", 80131, Naples, Italy
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
24
|
In Saccharomyces cerevisiae, withdrawal of the carbon source results in detachment of glycolytic enzymes from the cytoskeleton and in actin reorganization. Fungal Biol 2020; 124:15-23. [DOI: 10.1016/j.funbio.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
|
25
|
Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in Health and Disease. Cell Metab 2019; 30:414-433. [PMID: 31484054 DOI: 10.1016/j.cmet.2019.08.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023]
Abstract
In 2009, it was postulated that endothelial cells (ECs) would only be able to execute the orders of growth factors if these cells would accordingly adapt their metabolism. Ten years later, it has become clear that ECs, often differently from other cell types, rely on distinct metabolic pathways to survive and form new blood vessels; that manipulation of EC metabolic pathways alone (even without changing angiogenic signaling) suffices to alter vessel sprouting; and that perturbations of these metabolic pathways can underlie excess formation of new blood vessels (angiogenesis) in cancer and ocular diseases. Initial proof of evidence has been provided that targeting (normalizing) these metabolic perturbations in diseased ECs and delivery of metabolites deserve increasing attention as novel therapeutic approaches for inhibiting or stimulating vessel growth in multiple disorders.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B-3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven B-3000, Belgium.
| |
Collapse
|
26
|
Enzymatic complexes across scales. Essays Biochem 2018; 62:501-514. [PMID: 30315098 PMCID: PMC6204551 DOI: 10.1042/ebc20180008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
An unprecedented opportunity to integrate ~100 years of meticulous in vitro biomolecular research is currently provided in the light of recent advances in methods to visualize closer-to-native architectures of biomolecular machines, and metabolic enzymes in particular. Traditional views of enzymes, namely biomolecular machines, only partially explain their role, organization and kinetics in the cellular milieu. Enzymes self- or hetero-associate, form fibers, may bind to membranes or cytoskeletal elements, have regulatory roles, associate into higher order assemblies (metabolons) or even actively participate in phase-separated membraneless organelles, and all the above in a transient, temporal and spatial manner in response to environmental changes or structural/functional changes of their assemblies. Here, we focus on traditional and emerging concepts in cellular biochemistry and discuss new opportunities in bridging structural, molecular and cellular analyses for metabolic pathways, accumulated over the years, highlighting functional aspects of enzymatic complexes discussed across different levels of spatial resolution.
Collapse
|
27
|
Fitzgerald G, Soro-Arnaiz I, De Bock K. The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front Cell Dev Biol 2018; 6:100. [PMID: 30255018 PMCID: PMC6141712 DOI: 10.3389/fcell.2018.00100] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Endothelial cells (ECs) make up the lining of our blood vessels and they ensure optimal nutrient and oxygen delivery to the parenchymal tissue. In response to oxygen and/or nutrient deprivation, ECs become activated and sprout into hypo-vascularized tissues forming new vascular networks in a process termed angiogenesis. New sprouts are led by migratory tip cells and extended through the proliferation of trailing stalk cells. Activated ECs rewire their metabolism to cope with the increased energetic and biosynthetic demands associated with migration and proliferation. Moreover, metabolic signaling pathways interact and integrate with angiogenic signaling events. These metabolic adaptations play essential roles in determining EC fate and function, and are perturbed during pathological angiogenesis, as occurs in cancer. The angiogenic switch, or the growth of new blood vessels into an expanding tumor, increases tumor growth and malignancy. Limiting tumor angiogenesis has therefore long been a goal for anticancer therapy but the traditional growth factor targeted anti-angiogenic treatments have met with limited success. In recent years however, it has become increasingly recognized that focusing on altered tumor EC metabolism provides an attractive alternative anti-angiogenic strategy. In this review, we will describe the EC metabolic signature and how changes in EC metabolism affect EC fate during physiological sprouting, as well as in the cancer setting. Then, we will discuss the potential of targeting EC metabolism as a promising approach to develop new anti-cancer therapies.
Collapse
Affiliation(s)
- Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Inés Soro-Arnaiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Mitterboeck TF, Liu S, Adamowicz SJ, Fu J, Zhang R, Song W, Meusemann K, Zhou X. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. Gigascience 2018; 6:1-14. [PMID: 29020740 PMCID: PMC5632299 DOI: 10.1093/gigascience/gix073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
The evolution of powered flight is a major innovation that has facilitated the success of insects. Previously, studies of birds, bats, and insects have detected molecular signatures of differing selection regimes in energy-related genes associated with flight evolution and/or loss. Here, using DNA sequences from more than 1000 nuclear and mitochondrial protein-coding genes obtained from insect transcriptomes, we conduct a broader exploration of which gene categories display positive and relaxed selection at the origin of flight as well as with multiple independent losses of flight. We detected a number of categories of nuclear genes more often under positive selection in the lineage leading to the winged insects (Pterygota), related to catabolic processes such as proteases, as well as splicing-related genes. Flight loss was associated with relaxed selection signatures in splicing genes, mirroring the results for flight evolution. Similar to previous studies of flight loss in various animal taxa, we observed consistently higher nonsynonymous-to-synonymous substitution ratios in mitochondrial genes of flightless lineages, indicative of relaxed selection in energy-related genes. While oxidative phosphorylation genes were not detected as being under selection with the origin of flight specifically, they were most often detected as being under positive selection in holometabolous (complete metamorphosis) insects as compared with other insect lineages. This study supports some convergence in gene-specific selection pressures associated with flight ability, and the exploratory analysis provided some new insights into gene categories potentially associated with the gain and loss of flight in insects.
Collapse
Affiliation(s)
- T Fatima Mitterboeck
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada.,Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Shanlin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Sarah J Adamowicz
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada.,Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1 Canada
| | - Rui Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China
| | - Wenhui Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, Guangdong Province, 518083 China
| | - Karen Meusemann
- University of Freiburg, Department for Biology I (Zoology), Evolutionary Biology and Ecology, Hauptstr. 1, D-79104 Freiburg, Germany.,Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.,Australian National Insect Collection CSIRO, Natl Collections & Marine Infrastructure, Clunies Ross Street, ACTON, 2601 ACT, Canberra, Australia
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China.,College of Plant Protection, China Agricultural University, 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China
| |
Collapse
|
29
|
Raj A, Shah P, Agrawal N. Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 2017; 7:15617. [PMID: 29142316 PMCID: PMC5688153 DOI: 10.1038/s41598-017-15645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Among several nanoparticles, silver nanoparticles (AgNPs) are extensively used in a wide variety of consumer products due to its unique antimicrobial property. However, dosage effect of AgNPs on behavior and metabolic activity in an in vivo condition is not well studied. Therefore, to elucidate the impact of AgNPs on behavior and metabolism, systematic and detailed dosages study of AgNPs was performed by rearing Drosophila melanogaster on food without and with AgNPs. We found that dietary intake of AgNPs at early larval stage leads to behavioral abnormalities such as poor crawling and climbing ability of larvae and adults respectively. Interestingly, intake of higher dosage of AgNPs at larval stage significantly altered metabolic activity that includes lipid, carbohydrate and protein levels in adult flies. Further, detailed analysis revealed that AgNPs causes remarkable reduction in the number of lipid droplets (LDs) which are lipid storage organelles in Drosophila. We also observed an increased production of reactive oxygen species (ROS) in AgNPs ingested larval tissues. These results strongly imply that higher dosage of AgNPs ingestion from early larval stage of Drosophila is inimical and thereby draws concern towards the usage of AgNPs in consumer goods.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Prasanna Shah
- Acropolis Institute of Technology and Research, Indore, 453771, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
30
|
Abstract
The organization of metabolic multienzyme complexes has been hypothesized to benefit metabolic processes and provide a coordinated way for the cell to regulate metabolism. Historically, their existence has been supported by various in vitro techniques. However, it is only recently that the existence of metabolic complexes inside living cells has come to light to corroborate this long-standing hypothesis. Indeed, subcellular compartmentalization of metabolic enzymes appears to be widespread and highly regulated. On the other hand, it is still challenging to demonstrate the functional significance of these enzyme complexes in the context of the cellular milieu. In this review, we discuss the current understanding of metabolic enzyme complexes by primarily focusing on central carbon metabolism and closely associated metabolic pathways in a variety of organisms, as well as their regulation and functional contributions to cells.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC) , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
31
|
Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM, Sweetlove LJ. Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:885-898. [PMID: 28338736 DOI: 10.1093/jxb/erx015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Kalliopi-Ioanna Kostaki
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tim J Hawkins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Patrick J Hussey
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
32
|
Jang S, Nelson JC, Bend EG, Rodríguez-Laureano L, Tueros FG, Cartagenova L, Underwood K, Jorgensen EM, Colón-Ramos DA. Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function. Neuron 2016; 90:278-91. [PMID: 27068791 DOI: 10.1016/j.neuron.2016.03.011] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/12/2016] [Accepted: 03/08/2016] [Indexed: 01/07/2023]
Abstract
Changes in neuronal activity create local and transient changes in energy demands at synapses. Here we discover a metabolic compartment that forms in vivo near synapses to meet local energy demands and support synaptic function in Caenorhabditis elegans neurons. Under conditions of energy stress, glycolytic enzymes redistribute from a diffuse localization in the cytoplasm to a punctate localization adjacent to synapses. Glycolytic enzymes colocalize, suggesting the ad hoc formation of a glycolysis compartment, or a "glycolytic metabolon," that can maintain local levels of ATP. Local formation of the glycolytic metabolon is dependent on presynaptic scaffolding proteins, and disruption of the glycolytic metabolon blocks the synaptic vesicle cycle, impairs synaptic recovery, and affects locomotion. Our studies indicate that under energy stress conditions, energy demands in C. elegans synapses are met locally through the assembly of a glycolytic metabolon to sustain synaptic function and behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- SoRi Jang
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Eric G Bend
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Lucelenie Rodríguez-Laureano
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Felipe G Tueros
- Laboratorio de Microbiología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, P.O. Box 1801, Lima 33, Perú
| | - Luis Cartagenova
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Katherine Underwood
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan 00901, Puerto Rico.
| |
Collapse
|
33
|
Polak GL, Pasqualino A, Docherty JEB, Beck SJ, DiAngelo JR. The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila. PLoS One 2015; 10:e0136504. [PMID: 26305467 PMCID: PMC4549115 DOI: 10.1371/journal.pone.0136504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
All cells require energy to perform their specialized functions. Muscle is particularly sensitive to the availability of nutrients due to the high-energy requirement for muscle contraction. Therefore the ability of muscle cells to obtain, store and utilize energy is essential for the function of these cells. Mio, the Drosophila homolog of carbohydrate response element binding protein (ChREBP), has recently been identified as a nutrient responsive transcription factor important for triglyceride storage in the fly fat body. However, the function of Mio in muscle is unknown. In this study, we characterized the role of Mio in controlling muscle function and metabolism. Decreasing Mio levels using RNAi specifically in muscle results in increased thorax glycogen storage. Adult Mio-RNAi flies also have a flight defect due to altered myofibril shape and size in the indirect flight muscles as shown by electron microscopy. Myofibril size is also decreased in flies just before emerging from their pupal cases, suggesting a role for Mio in myofibril development. Together, these data indicate a novel role for Mio in controlling muscle structure and metabolism and may provide a molecular link between nutrient availability and muscle function.
Collapse
Affiliation(s)
- Grzegorz L. Polak
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Anthony Pasqualino
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - James E. B. Docherty
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Stephen J. Beck
- Department of Biology, Nassau Community College, Garden City, NY, 11530, United States of America
| | - Justin R. DiAngelo
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
- Division of Science, Penn State Berks, Reading, PA, 19610, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wiśniewski JR, Gizak A, Rakus D. Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways. J Proteome Res 2015; 14:3263-73. [DOI: 10.1021/acs.jproteome.5b00276] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacek R. Wiśniewski
- Biochemical
Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Agnieszka Gizak
- Department
of Animal Molecular Physiology, Wroclaw University, PL-50205 Wroclaw, Poland
| | - Dariusz Rakus
- Department
of Animal Molecular Physiology, Wroclaw University, PL-50205 Wroclaw, Poland
| |
Collapse
|
35
|
Rakus D, Gizak A, Deshmukh A, Wiśniewski JR. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle. J Proteome Res 2015; 14:1400-11. [PMID: 25597705 DOI: 10.1021/pr5010357] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles. Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process such as glycolysis, free fatty acid catabolism, Krebs cycle, or oxidative phosphorylation. These differences are in a good agreement with the well-established biochemical picture of the muscle types. We show a correlation between maximal activity and the enzyme titer, suggesting that change in enzyme concentration is a good proxy for its catalytic potential in vivo. As a consequence, proteomic profiling of enzyme titers can be used to monitor metabolic changes in cells. Additionally, quantitative data of structural proteins allowed studying muscle type specific cell architecture and its remodeling. The presented proteomic approach can be applied to study metabolism in any other tissue or cell line.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , Wroclaw 50-205, Poland
| | | | | | | |
Collapse
|
36
|
Metabolic pathway compartmentalization: an underappreciated opportunity? Curr Opin Biotechnol 2014; 34:73-81. [PMID: 25499800 DOI: 10.1016/j.copbio.2014.11.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/23/2014] [Indexed: 12/12/2022]
Abstract
For eukaryotic cells to function properly, they divide their intracellular space in subcellular compartments, each harboring specific metabolic activities. In recent years, it has become increasingly clear that compartmentalization of metabolic pathways is a prerequisite for certain cellular functions. This has for instance been documented for cellular migration, which relies on subcellular localization of glycolysis or mitochondrial respiration in a cell type-dependent manner. Although exciting, this field is still in its infancy, partly due to the limited availability of methods to study the directionality of metabolic pathways and to visualize metabolic processes in distinct cellular compartments. Nonetheless, advances in this field may offer opportunities for innovative strategies to target deregulated compartmentalized metabolism in disease.
Collapse
|
37
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
38
|
Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2014; 2:19. [PMID: 25250177 PMCID: PMC4171726 DOI: 10.1186/2049-3002-2-19] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/08/2023] Open
Abstract
The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways in endothelial cells (ECs) importantly regulate angiogenesis in conjunction with genetic signals. In this review, we will highlight these emerging insights in EC metabolism and discuss them in perspective of cancer cell metabolism. While it is generally assumed that cancer cells have unique metabolic adaptations, not shared by healthy non-transformed cells, we will discuss parallels and highlight differences between endothelial and cancer cell metabolism and consider possible novel therapeutic opportunities arising from targeting both cancer and endothelial cells.
Collapse
Affiliation(s)
- Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, Department of Oncology, University of Leuven, Leuven 3000, Belgium ; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, K.U.Leuven, Campus Gasthuisberg, Herestraat 49, box 912, Leuven 3000, Belgium
| |
Collapse
|
39
|
Abstract
Although firmly grounded in metabolic biochemistry, the study of energy metabolism has gone well beyond this discipline and become integrative and comparative as well as ecological and evolutionary in scope. At the cellular level, ATP is hydrolyzed by energy-expending processes and resynthesized by pathways in bioenergetics. A significant development in the study of bioenergetics is the realization that fluxes through pathways as well as metabolic rates in cells, tissues, organs, and whole organisms are "system properties." Therefore, studies of energy metabolism have become, increasingly, experiments in systems biology. A significant challenge continues to be the integration of phenomena over multiple levels of organization. Body mass and temperature are said to account for most of the variation in metabolic rates found in nature. A mechanistic foundation for the understanding of these patterns is outlined. It is emphasized that evolution, leading to adaptation to diverse lifestyles and environments, has resulted in a tremendous amount of deviation from popularly accepted scaling "rules." This is especially so in the deep sea which constitutes most of the biosphere.
Collapse
Affiliation(s)
- Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
40
|
Abstract
Endothelial cells (ECs) are quiescent for years but can plastically switch to angiogenesis. Vascular sprouting relies on the coordinated activity of migrating tip cells at the forefront and proliferating stalk cells that elongate the sprout. Past studies have identified genetic signals that control vascular branching. Prominent are VEGF, activating tip cells, and Notch, which stimulates stalk cells. After the branch is formed and perfused, ECs become quiescent phalanx cells. Now, emerging evidence has accumulated indicating that ECs not only adapt their metabolism when switching from quiescence to sprouting but also that metabolism regulates vascular sprouting in parallel to the control by genetic signals.
Collapse
Affiliation(s)
- Katrien De Bock
- Department of Oncology, University of Leuven, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium; VIB, Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Leuven 3000, Belgium
| | | | | |
Collapse
|
41
|
Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 2013; 154:651-63. [PMID: 23911327 DOI: 10.1016/j.cell.2013.06.037] [Citation(s) in RCA: 1071] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/02/2013] [Accepted: 06/05/2013] [Indexed: 12/11/2022]
Abstract
Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.
Collapse
|
42
|
Panz M, Vitos-Faleato J, Jendretzki A, Heinisch JJ, Paululat A, Meyer H. A novel role for the non-catalytic intracellular domain of Neprilysins in muscle physiology. Biol Cell 2012; 104:553-68. [DOI: 10.1111/boc.201100069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/10/2012] [Indexed: 11/28/2022]
|
43
|
Stress and muscular dystrophy: a genetic screen for dystroglycan and dystrophin interactors in Drosophila identifies cellular stress response components. Dev Biol 2011; 352:228-42. [PMID: 21256839 DOI: 10.1016/j.ydbio.2011.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/24/2022]
Abstract
In Drosophila, like in humans, Dystrophin Glycoprotein Complex (DGC) deficiencies cause a life span shortening disease, associated with muscle dysfunction. We performed the first in vivo genetic interaction screen in ageing dystrophic muscles and identified genes that have not been shown before to have a role in the development of muscular dystrophy and interact with dystrophin and/or dystroglycan. Mutations in many of the found interacting genes cause age-dependent morphological and heat-induced physiological defects in muscles, suggesting their importance in the tissue. Majority of them is phylogenetically conserved and implicated in human disorders, mainly tumors and myopathies. Functionally they can be divided into three main categories: proteins involved in communication between muscle and neuron, and interestingly, in mechanical and cellular stress response pathways. Our data show that stress induces muscle degeneration and accelerates age-dependent muscular dystrophy. Dystrophic muscles are already compromised; and as a consequence they are less adaptive and more sensitive to energetic stress and to changes in the ambient temperature. However, only dystroglycan, but not dystrophin deficiency causes extreme myodegeneration induced by energetic stress suggesting that dystroglycan might be a component of the low-energy pathway and act as a transducer of energetic stress in normal and dystrophic muscles.
Collapse
|
44
|
Hakobyan D, Nazaryan K. Molecular dynamics study of interaction and substrate channeling between neuron-specific enolase and B-type phosphoglycerate mutase. Proteins 2010; 78:1691-704. [DOI: 10.1002/prot.22686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Carmon A, Chien J, Sullivan D, MacIntyre R. The alpha glycerophosphate cycle in Drosophila melanogaster V. molecular analysis of alpha glycerophosphate dehydrogenase and alpha glycerophosphate oxidase mutants. J Hered 2009; 101:218-24. [PMID: 19995806 DOI: 10.1093/jhered/esp110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two enzymes, alpha glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and alpha glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene.
Collapse
Affiliation(s)
- Amber Carmon
- Department of Molecular Biology and Genetics, 407 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
46
|
Carmon A, MacIntyre R. The α Glycerophosphate Cycle in Drosophila melanogaster VI. Structure and Evolution of Enzyme Paralogs in the Genus Drosophila. J Hered 2009; 101:225-34. [DOI: 10.1093/jhered/esp111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta Gen Subj 2009; 1790:1084-94. [PMID: 19563864 DOI: 10.1016/j.bbagen.2009.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 06/20/2009] [Indexed: 12/26/2022]
Abstract
Functional and structural deterioration of muscles is an inevitable consequence of ageing in a wide variety of animal species. What underlies these changes is a complex network of interactions between the muscle-intrinsic and muscle-extrinsic factors, making it very difficult to distinguish between the cause and the consequence. Many of the genes, structures, and processes implicated in mammalian skeletal muscle ageing are preserved in invertebrate species Drosophila melanogaster and Caenorhabditis elegans. The absence in these organisms of mechanisms that promote muscle regeneration, and substantially different hormonal environment, warrant caution when extrapolating experimental data from studies conducted in invertebrates to mammalian species. The simplicity and accessibility of these models, however, offer ample opportunities for studying age-related myopathologies as well as investigating drugs and therapies to alleviate them.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
48
|
Bovill E, Westaby S, Crisp A, Jacobs S, Shaw T. Reduction of four-and-a-half LIM-protein 2 expression occurs in human left ventricular failure and leads to altered localization and reduced activity of metabolic enzymes. J Thorac Cardiovasc Surg 2009; 137:853-61. [PMID: 19327508 DOI: 10.1016/j.jtcvs.2008.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/13/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We sought to identify changes in four-and-a-half LIM-protein 2 levels and location in human cardiomyocytes during the transition from compensated aortic stenosis to left ventricular failure. We also sought to characterize four-and-a-half LIM-protein 2 binding with the metabolic enzymes phosphofructokinase 2, adenylate kinase, and creatine kinase M isoform during this transition and their consequential subcellular localization in failing human ventricles. METHODS Left ventricular biopsy specimens from selected patients undergoing aortic valve replacement for aortic stenosis were allocated to one of 2 groups: (1) nondilated with preserved left ventricular function (nonfailing group, n = 16) and (2) grossly dilated with poor left ventricular function (failing group, n = 15). These were compared with a control group of unused donor hearts (n = 6). Protein levels and subcellular localization were determined by means of Western blotting and immunofluorescence. Four-and-a-half LIM-protein 2 binding to adenylate kinase, creatine kinase M isoform, or phosphofructokinase 2 was studied by means of coimmunoprecipitation. Phosphofructokinase 2, adenylate kinase, and creatine kinase M isoform activities were assayed in protein extractions. RESULTS Four-and-a-half LIM-protein 2 levels were preserved in nonfailing hypertrophied hearts but reduced by 53% in failing hearts. The pattern of four-and-a-half LIM-protein 2 staining was disrupted in failing hearts: four-and-a-half LIM-protein 2 was lost from the sarcomere but present in the perinuclear Golgi apparatus complex. Phosphofructokinase 2, adenylate kinase, and creatine kinase M isoform coimmunoprecipitated in vitro and colocalized with four-and-a-half LIM-protein 2 in both hypertrophied and failing hearts. Phosphofructokinase 2 and adenylate kinase activities were reduced to 77% and 58% of normal values in compensated aortic stenosis, with phosphofructokinase 2 activity decreased further to 56% of normal value in failing hearts, but creatine kinase activity remained unchanged. CONCLUSIONS Altered four-and-a-half LIM-protein 2 expression in heart failure is associated with disruption of the normal subcellular localization of phosphofructokinase 2, adenylate kinase, and creatine kinase M isoform and reduced activity of phosphofructokinase 2 and adenylate kinase, which might have important consequences for myocardial energy metabolism in heart failure.
Collapse
Affiliation(s)
- Esta Bovill
- Department of Medicine, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
49
|
Kuiper JWP, van Horssen R, Oerlemans F, Peters W, van Dommelen MMT, te Lindert MM, ten Hagen TLM, Janssen E, Fransen JAM, Wieringa B. Local ATP generation by brain-type creatine kinase (CK-B) facilitates cell motility. PLoS One 2009; 4:e5030. [PMID: 19333390 PMCID: PMC2659440 DOI: 10.1371/journal.pone.0005030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/03/2009] [Indexed: 01/01/2023] Open
Abstract
Background Creatine Kinases (CK) catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B) deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. Methodology/Principal Findings Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. Conclusion/Significance Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.
Collapse
Affiliation(s)
- Jan W. P. Kuiper
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Remco van Horssen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wilma Peters
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michiel M. T. van Dommelen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mariska M. te Lindert
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Edwin Janssen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Vemuganti SA, Bell TA, Scarlett CO, Parker CE, de Villena FPM, O'Brien DA. Three male germline-specific aldolase A isozymes are generated by alternative splicing and retrotransposition. Dev Biol 2007; 309:18-31. [PMID: 17659271 DOI: 10.1016/j.ydbio.2007.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/09/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Enzymes in the glycolytic pathway of mammalian sperm are modified extensively and are localized in the flagellum, where several are tightly bound to the fibrous sheath. This study provides the first evidence for three novel aldolase isozymes in mouse sperm, two encoded by Aldoart1 and Aldoart2 retrogenes on different chromosomes and another by Aldoa_v2, a splice variant of Aldoa. Phylogenetic analyses and comparative genomics indicate that the retrogenes and splice variant have remained functional and have been under positive selection for millions of years. Their expression is restricted to the male germline and is tightly regulated at both transcriptional and translational levels. All three isozymes are present only in spermatids and sperm and have distinctive features that may be important for localization in the flagellum and/or altered metabolic regulation. Both ALDOART1 and ALDOA_V2 have unusual N-terminal extensions not found in other aldolases. The N-terminal extension of ALDOA_V2 is highly conserved in mammals, suggesting a conserved function in sperm. We hypothesize that the N-terminal extensions are responsible for localizing components of the glycolytic pathway to the fibrous sheath and that this localization is required to provide sufficient ATP along the length of the flagellum to support sperm motility.
Collapse
Affiliation(s)
- Soumya A Vemuganti
- Laboratories for Reproductive Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|