1
|
Leite AC, Costa V, Pereira C. Mitochondria and the cell cycle in budding yeast. Int J Biochem Cell Biol 2023; 161:106444. [PMID: 37419443 DOI: 10.1016/j.biocel.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
As centers for energy production and essential biosynthetic activities, mitochondria are vital for cell growth and proliferation. Accumulating evidence suggests an integrated regulation of these organelles and the nuclear cell cycle in distinct organisms. In budding yeast, a well-established example of this coregulation is the coordinated movement and positional control of mitochondria during the different phases of the cell cycle. The molecular determinants involved in the inheritance of the fittest mitochondria by the bud also seem to be cell cycle-regulated. In turn, loss of mtDNA or defects in mitochondrial structure or inheritance often lead to a cell cycle delay or arrest, indicating that mitochondrial function can also regulate cell cycle progression, possibly through the activation of cell cycle checkpoints. The up-regulation of mitochondrial respiration at G2/M, presumably to fulfil energetic requirements for progression at this phase, also supports a mitochondria-cell cycle interplay. Cell cycle-linked mitochondrial regulation is accomplished at the transcription level and through post-translational modifications, predominantly protein phosphorylation. Here, we address mitochondria-cell cycle interactions in the yeast Saccharomyces cerevisiae and discuss future challenges in the field.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
2
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Waite KA, Burris A, Roelofs J. Tagging the proteasome active site β5 causes tag specific phenotypes in yeast. Sci Rep 2020; 10:18133. [PMID: 33093623 PMCID: PMC7582879 DOI: 10.1038/s41598-020-75126-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
The efficient and timely degradation of proteins is crucial for many cellular processes and to maintain general proteostasis. The proteasome, a complex multisubunit protease, plays a critical role in protein degradation. Therefore, it is important to understand the assembly, regulation, and localization of proteasome complexes in the cell under different conditions. Fluorescent tags are often utilized to study proteasomes. A GFP-tag on the β5 subunit, one of the core particle (CP) subunits with catalytic activity, has been shown to be incorporated into proteasomes and commonly used by the field. We report here that a tag on this subunit results in aberrant phenotypes that are not observed when several other CP subunits are tagged. These phenotypes appear in combination with other proteasome mutations and include poor growth, and, more significantly, altered 26S proteasome localization. In strains defective for autophagy, β5-GFP tagged proteasomes, unlike other CP tags, localize to granules upon nitrogen starvation. These granules are reflective of previously described proteasome storage granules but display unique properties. This suggests proteasomes with a β5-GFP tag are specifically recognized and sequestered depending on physiological conditions. In all, our data indicate the intricacy of tagging proteasomes, and possibly, large complexes in general.
Collapse
Affiliation(s)
- Kenrick A Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA
| | - Alicia Burris
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.,Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS, 66506, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, HLSIC 1077, Kansas City, KS, USA.
| |
Collapse
|
4
|
The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Biomolecules 2019; 9:biom9090449. [PMID: 31487956 PMCID: PMC6770237 DOI: 10.3390/biom9090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
The class of Cullin-RING E3 ligases (CRLs) selectively ubiquitinate a large portion of proteins targeted for proteolysis by the 26S proteasome. Before degradation, ubiquitin molecules are removed from their conjugated proteins by deubiquitinating enzymes, a handful of which are associated with the proteasome. The CRL activity is triggered by modification of the Cullin subunit with the ubiquitin-like protein, NEDD8 (also known as Rub1 in Saccharomyces cerevisiae). Cullin modification is then reversed by hydrolytic action of the COP9 signalosome (CSN). As the NEDD8-Rub1 catalytic cycle is not essential for the viability of S. cerevisiae, this organism is a useful model system to study the alteration of Rub1-CRL conjugation patterns. In this study, we describe two distinct mutants of Rpn11, a proteasome-associated deubiquitinating enzyme, both of which exhibit a biochemical phenotype characterized by high accumulation of Rub1-modified Cdc53-Cullin1 (yCul1) upon entry into quiescence in S. cerevisiae. Further characterization revealed proteasome 19S-lid-associated deubiquitination activity that authorizes the hydrolysis of Rub1 from yCul1 by the CSN complex. Thus, our results suggest a negative feedback mechanism via proteasome capacity on upstream ubiquitinating enzymes.
Collapse
|
5
|
Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 2019; 20:533-543. [PMID: 30508698 PMCID: PMC6279957 DOI: 10.1016/j.redox.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
Collapse
Affiliation(s)
- L Bramasole
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - A Sinha
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - S Gurevich
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - M Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Y Klein
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - N Panat
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - E Gefen
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - T Rinaldi
- Department of Biology and Biotechnology, University of Rome ''La Sapienza'', Rome 00185, Italy
| | - D Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - J Johnson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N Reis
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - D Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - M H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - E Pick
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel.
| |
Collapse
|
6
|
Chen L, Bian S, Li H, Madura K. A role for Saccharomyces cerevisiae Centrin (Cdc31) in mitochondrial function and biogenesis. Mol Microbiol 2018; 110:831-846. [PMID: 30251372 DOI: 10.1111/mmi.14128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
Centrins belong to a family of proteins containing calcium-binding EF-hand motifs that perform well-established roles in centrosome and spindle pole body (SPB) duplication. Yeast encodes a single Centrin protein (Cdc31) that binds components in the SPB. However, further studies revealed a role for Centrins in mRNA export, and interactions with contractile filaments and photoreceptors. In addition, human Centrin-2 can bind the DNA-lesion recognition factor XPC, and improve the efficiency of nucleotide excision repair. Similarly, we reported that yeast Cdc31 binds Rad4, a functional counterpart of the XPC DNA repair protein. We also found that Cdc31 is involved in the ubiquitin/proteasome system, and mutations interfere with intracellular protein turnover. In this report, we describe new findings that indicate a role for Cdc31 in the energy metabolism pathway. Cdc31 and cdc31 mutant proteins showed distinct interactions with proteins in energy metabolism, and mutants showed sensitivity to oxidative stress and poor growth on non-fermentable carbon. Significant alteration in mitochondrial morphology was also detected. Although it is unclear how Cdc31 contributes to so many unrelated mechanisms, we propose that by controlling SPB duplication Centrin proteins might link the cellular responses to DNA damage, oxidative load and proteotoxic stresses to growth control.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane, SPH-383, Piscataway, NJ, 08854, USA
| | - Shengjie Bian
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers University, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers University, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Kiran Madura
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane, SPH-383, Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Leo M, Fanelli G, Di Vito S, Traversetti B, La Greca M, Palladino RA, Montanari A, Francisci S, Filetici P. Ubiquitin protease Ubp8 is necessary for S. cerevisiae respiration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:S0167-4889(18)30235-0. [PMID: 30077637 DOI: 10.1016/j.bbamcr.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
Healthy mitochondria are required in cell metabolism and deregulation of underlying mechanisms is often involved in human diseases and neurological disorders. Post-translational modifications of mitochondrial proteins regulate their function and activity, accordingly, impairment of ubiquitin proteasome system affects mitochondria homeostasis and organelle dynamics. In the present study we have investigated the role of the ubiquitin protease Ubp8 in S. cerevisiae respiration. We show that Ubp8 is necessary for respiration and its expression is upregulated in glycerol respiratory medium. In addition, we show that the respiratory defects in absence of Ubp8 are efficiently rescued by disruption of the E3 Ub-ligase Psh1, suggesting their epistatic link. Interestingly, we found also that Ubp8 is localized into mitochondria as single protein independently of SAGA complex assembly, thus suggesting an independent function from the nuclear one. We also show evidences on the importance of HAT Gcn5 in sustaining Ubp8 expression and affecting the amount of protein in mitochondria. Collectively, our results have investigated the role of Ubp8 in respiratory metabolism and highlight the role of ubiquitin related pathways in the mitochondrial functions of S. cerevisiae.
Collapse
Affiliation(s)
- Manuela Leo
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Giulia Fanelli
- Institute of Molecular Biology and Pathology-CNR, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Serena Di Vito
- Institute of Molecular Biology and Pathology-CNR, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Barbara Traversetti
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Mariafrancesca La Greca
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Raffaele A Palladino
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Arianna Montanari
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, Italy
| | - Silvia Francisci
- Dept. of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| | - Patrizia Filetici
- Institute of Molecular Biology and Pathology-CNR, Sapienza University of Rome, P.le A. Moro 5, Rome, Italy.
| |
Collapse
|
8
|
Chen X, Yang Q, Xiao L, Tang D, Dou QP, Liu J. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev 2018; 36:655-668. [PMID: 29039082 PMCID: PMC5721122 DOI: 10.1007/s10555-017-9701-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deubiquitinases (DUBs) play an important role in protein quality control in eukaryotic cells due to their ability to specifically remove ubiquitin from substrate proteins. Therefore, recent findings have focused on the relevance of DUBs to cancer development, and pharmacological intervention on these enzymes has become a promising strategy for cancer therapy. In particular, several DUBs are physically and/or functionally associated with the proteasome and are attractive targets for the development of novel anticancer drugs. The successful clinical application of cisplatin in cancer treatment has prompted researchers to develop various metal-based anticancer agents with new properties. Recently, we have reported that several metal-based drugs, such as the antirheumatic gold agent auranofin (AF), the antifouling paint biocides copper pyrithione (CuPT) and zinc pyrithione (ZnPT), and also our two synthesized complexes platinum pyrithione (PtPT) and nickel pyrithione (NiPT), can target the proteasomal DUBs UCHL5 and USP14. In this review, we summarize the recently reported small molecule inhibitors of proteasomal DUBs, with a focus on discussion of the unique nature of metal-based proteasomal DUB inhibitors and their anticancer activity.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Xiao
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Q Ping Dou
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, USA.,Department of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 2017; 36:5631-5638. [PMID: 28581522 DOI: 10.1038/onc.2017.172] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
Proteasome inhibition is an effective therapy for multiple myeloma (MM) patients; however, the emergence of drug resistance is common. Novel therapeutic strategies to overcome proteasome inhibitor resistance are needed. In this study, we examined whether targeting deubiquitylating (DUB) enzymes upstream of 20S proteasome overcomes proteasome inhibitor resistance. Gene expression analysis, immunohistochemical studies of MM patient bone marrow, reverse transcription-PCR and protein analysis show that Rpn11/POH1, a DUB enzyme upstream of 20S proteasome, is more highly expressed in patient MM cells than in normal plasma cells. Importantly, Rpn11 expression directly correlates with poor patient survival. Loss-of-function studies show that Rpn11-siRNA knockdown decreases MM cell viability. Pharmacological inhibition of Rpn11 with O-phenanthroline (OPA) blocks cellular proteasome function, induces apoptosis in MM cells and overcomes resistance to proteasome inhibitor bortezomib. Mechanistically, Rpn11 inhibition in MM cells activates caspase cascade and endoplasmic stress response signaling. Human MM xenograft model studies demonstrate that OPA treatment reduces progression of tumor growth and prolongs survival in mice. Finally, blockade of Rpn11 increases the cytotoxic activity of anti-MM agents lenalidomide, pomalidomide or dexamethasone. Overall, our preclinical data provide the rationale for targeting DUB enzyme Rpn11 upstream of 20S proteasome to enhance cytotoxicity and overcome proteasome inhibitor resistance in MM.
Collapse
|
10
|
Moonlighting and pleiotropy within two regulators of the degradation machinery: the proteasome lid and the CSN. Biochem Soc Trans 2015; 42:1786-91. [PMID: 25399607 DOI: 10.1042/bst20140227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distinction between pleiotrotic and moonlighting roles of proteins is challenging; however, this distinction may be clearer when it comes to multiprotein complexes. Two examples are the proteasome lid and the COP9 signalosome (CSN), which are twin enzymes with 1:1 paralogy between subunits. In each complex, one out of eight subunits harbours a JAMM/MPN⁺ metalloprotease motif. This motif contributes the canonical activity of each complex: hydrolysis of covalently attached ubiquitin by Rpn11 in the proteasome lid and hydrolysis of ubiquitin-related 1 (Rub1/Nedd8) from Cullins by Csn5 in the CSN. In both complexes, executing this activity suggests pleiotropic effects and requires an assembled full complex. However, beyond canonical functions, both Rpn11 and Csn5 are involved in additional unique, complex-independent functions, herein referred to as moonlighting activities.
Collapse
|
11
|
Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 2015; 21-22:20-9. [DOI: 10.1016/j.drup.2015.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022]
|
12
|
Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 2015; 5:1265-1280. [PMID: 26101696 PMCID: PMC4473309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/06/2015] [Indexed: 06/04/2023] Open
Abstract
Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A "plumbing model" is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Chuanwei Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zhenduo Yang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, The University of Texas Medical SchoolHouston, TX 77030, USA
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zesheng Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| |
Collapse
|
13
|
Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015; 147:32-54. [DOI: 10.1016/j.pharmthera.2014.11.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
|
14
|
Zhang S, Yang C, Yang Z, Zhang D, Ma X, Mills G, Liu Z. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect. Am J Cancer Res 2015; 5:928-944. [PMID: 26045978 PMCID: PMC4449427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 06/04/2023] Open
Abstract
Glucose metabolism in mitochondria through oxidative phosphorylation (OXPHOS) for generation of adenosine triphosphate (ATP) is vital for cell function. However, reactive oxygen species (ROS), a by-product from OXPHOS, is a major source of endogenously produced toxic stressors on the genome. In fact, ATP could be efficiently produced in a high throughput manner without ROS generation in cytosol through glycolysis, which could be a unique and critical metabolic pathway to prevent spontaneous mutation during DNA replication. Therefore glycolysis is dominant in robust proliferating cells. Indeed, aerobic glycolysis, or the Warburg effect, in normal proliferating cells is an example of homeostasis of redox status by transiently shifting metabolic flux from OXPHOS to glycolysis to avoid ROS generation during DNA synthesis and protect genome integrity. The process of maintaining redox homeostasis is driven by genome wide transcriptional clustering with mitochondrial retrograde signaling and coupled with the glucose metabolic pathway and cell division cycle. On the contrary, the Warburg effect in cancer cells is the results of the alteration of redox status from a reprogramed glucose metabolic pathway caused by the dysfunctional OXPHOS. Mutations in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) disrupt mitochondrial structural integrity, leading to reduced OXPHOS capacity, sustained glycolysis and excessive ROS leak, all of which are responsible for tumor initiation, progression and metastasis. A "plumbing model" is used to illustrate how redox status could be regulated through glucose metabolic pathway and provide a new insight into the understanding of the Warburg effect in both normal and cancer cells.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Chuanwei Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zhenduo Yang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical CenterTianjin, People’s Republic of China
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, The University of Texas Medical SchoolHouston, TX 77030, USA
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| | - Zesheng Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX, 77030, USA
| |
Collapse
|
15
|
Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep 2015; 35:BSR20140173. [PMID: 26182356 PMCID: PMC4438304 DOI: 10.1042/bsr20140173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes. Defective proteasome 19S regulatory particles (RPs) were identified in rpn11f–m1, a proteasomal mutant with mitochondrial phenotypes. The Rpn11 subunit initiates assembly of a five-subunit lid module competent to integrate into pre-assembled base-20S core particle (CP), with subsequent recruitment of remaining lid subunits.
Collapse
|
16
|
Saunier R, Esposito M, Dassa EP, Delahodde A. Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLoS One 2013; 8:e70357. [PMID: 23936414 PMCID: PMC3735599 DOI: 10.1371/journal.pone.0070357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Decline of proteasome activity has been reported in mammals, flies and yeasts during aging. In the yeast Saccharomyces cerevisiae, the reduction of proteolysis in stationary phase is correlated with disassembly of the 26S proteasomes into their 20S and 19S subcomplexes. However a recent report showed that upon entry into the stationary phase, proteasome subunits massively re-localize from the nucleus into mobile cytoplasmic structures called proteasome storage granules (PSGs). Whether proteasome subunits in PSG are assembled into active complexes remains an open question that we addressed in the present study. We showed that a particular mutant of the RPN11 gene (rpn11-m1), encoding a proteasome lid subunit already known to exhibit proteasome assembly/stability defect in vitro, is unable to form PSGs and displays a reduced viability in stationary phase. Full restoration of long-term survival and PSG formation in rpn11-m1 cells can be achieved by the expression in trans of the last 45 amino acids of the C-terminal domain of Rpn11, which was moreover found to co-localize with PSGs. In addition, another rpn11 mutant leading to seven amino acids change in the Rpn11 C-terminal domain, which exhibits assembled-26S proteasomes, is able to form PSGs but with a delay compared to the wild type situation. Altogether, our findings indicate that PSGs are formed of fully assembled 26S proteasomes and suggest a critical role for the Rpn11 protein in this process.
Collapse
Affiliation(s)
- Rémy Saunier
- Univ Paris-Sud, CNRS UMR 8621, Institut de Génétique et Microbiologie, Orsay, France
| | | | | | | |
Collapse
|
17
|
Eletr ZM, Wilkinson KD. Regulation of proteolysis by human deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:114-28. [PMID: 23845989 DOI: 10.1016/j.bbamcr.2013.06.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/25/2013] [Indexed: 01/26/2023]
Abstract
The post-translational attachment of one or several ubiquitin molecules to a protein generates a variety of targeting signals that are used in many different ways in the cell. Ubiquitination can alter the activity, localization, protein-protein interactions or stability of the targeted protein. Further, a very large number of proteins are subject to regulation by ubiquitin-dependent processes, meaning that virtually all cellular functions are impacted by these pathways. Nearly a hundred enzymes from five different gene families (the deubiquitinating enzymes or DUBs), reverse this modification by hydrolyzing the (iso)peptide bond tethering ubiquitin to itself or the target protein. Four of these families are thiol proteases and one is a metalloprotease. DUBs of the Ubiquitin C-terminal Hydrolase (UCH) family act on small molecule adducts of ubiquitin, process the ubiquitin proprotein, and trim ubiquitin from the distal end of a polyubiquitin chain. Ubiquitin Specific Proteases (USPs) tend to recognize and encounter their substrates by interaction of the variable regions of their sequence with the substrate protein directly, or with scaffolds or substrate adapters in multiprotein complexes. Ovarian Tumor (OTU) domain DUBs show remarkable specificity for different Ub chain linkages and may have evolved to recognize substrates on the basis of those linkages. The Josephin family of DUBs may specialize in distinguishing between polyubiquitin chains of different lengths. Finally, the JAB1/MPN+/MOV34 (JAMM) domain metalloproteases cleave the isopeptide bond near the attachment point of polyubiquitin and substrate, as well as being highly specific for the K63 poly-Ub linkage. These DUBs regulate proteolysis by: directly interacting with and co-regulating E3 ligases; altering the level of substrate ubiquitination; hydrolyzing or remodeling ubiquitinated and poly-ubiquitinated substrates; acting in specific locations in the cell and altering the localization of the target protein; and acting on proteasome bound substrates to facilitate or inhibit proteolysis. Thus, the scope and regulation of the ubiquitin pathway is very similar to that of phosphorylation, with the DUBs serving the same functions as the phosphatase. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Ziad M Eletr
- Department of Biochemistry, Emory University, Atlanta GA 30322, USA
| | | |
Collapse
|
18
|
D'Arcy P, Linder S. Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 2012; 44:1729-38. [PMID: 22819849 DOI: 10.1016/j.biocel.2012.07.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a conserved pathway regulating numerous biological processes including protein turnover, DNA repair, and intracellular trafficking. Tumor cells are dependent on a functioning UPS, making it an ideal target for the development of novel anti-cancer therapies. The development of bortezomib (Velcade(®)) as a treatment for multiple myeloma and mantle cell lymphoma has verified this and suggests that targeting other components of the UPS may be a viable strategy for the treatment for cancer. We recently described a novel class of proteasome inhibitors that function by an alternative mechanism of action (D'Arcy et al., 2011). The small molecule b-AP15 blocks the deubiquitinase (DUB) activity of the 19S regulatory particle (19S RP) without inhibiting the proteolytic activities of the 20S core particle (20S CP). b-AP15 inhibits two proteasome-associated DUBs, USP14 and UCHL5, resulting in a rapid accumulation of high molecular weight ubiquitin conjugates and a functional proteasome shutdown. Interestingly, b-AP15 displays several differences to bortezomib including insensitivity to over-expression of the anti-apoptotic mediator Bcl-2 and anti-tumor activity in solid tumor models. In this review we will discuss the potential of proteasome deubiquitinase inhibitors as additions to the therapeutic arsenal against cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, 17176 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. MEMBRANES 2011; 1:354-93. [PMID: 24957874 PMCID: PMC4021871 DOI: 10.3390/membranes1040354] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
20
|
A proteasome assembly defect in rpn3 mutants is associated with Rpn11 instability and increased sensitivity to stress. J Mol Biol 2011; 410:383-99. [PMID: 21619884 DOI: 10.1016/j.jmb.2011.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/29/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
Abstract
Rpn11 is a proteasome-associated deubiquitinating enzyme that is essential for viability. Recent genetic studies showed that Rpn11 is functionally linked to Rpn10, a major multiubiquitin chain binding receptor in the proteasome. Mutations in Rpn11 and Rpn10 can reduce the level and/or stability of proteasomes, indicating that both proteins influence its structural integrity. To characterize the properties of Rpn11, we examined its interactions with other subunits in the 19S regulatory particle and detected strong binding to Rpn3. Two previously described rpn3 mutants are sensitive to protein translation inhibitors and an amino acid analog. These mutants also display a mitochondrial defect. The abundance of intact proteasomes was significantly reduced in rpn3 mutants, as revealed by strongly reduced binding between 20S catalytic with 19S regulatory particles. Proteasome interaction with the shuttle factor Rad23 was similarly reduced. Consequently, higher levels of multiUb proteins were associated with Rad23, and proteolytic substrates were stabilized. The availability of Rpn11 is important for maintaining adequate levels of intact proteasomes, as its depletion caused growth and proteolytic defects in rpn3. These studies suggest that Rpn11 is stabilized following its incorporation into proteasomes. The instability of Rpn11 and the defects of rpn3 mutants are apparently caused by a failure to recruit Rpn11 into mature proteasomes.
Collapse
|
21
|
Esposito M, Piatti S, Hofmann L, Frontali L, Delahodde A, Rinaldi T. Analysis of the rpn11-m1 proteasomal mutant reveals connection between cell cycle and mitochondrial biogenesis. FEMS Yeast Res 2010; 11:60-71. [PMID: 21059189 DOI: 10.1111/j.1567-1364.2010.00690.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The proteasomal lid subunit Rpn11 is essential for maintaining a correct cell cycle and mitochondrial morphology in Saccharomyces cerevisiae. In this paper, we show that the rpn11-m1 mutant has a peculiar cell cycle defect reminiscent of mutants defective in the FEAR pathway that delay the release of the Cdc14 protein phosphatase from the nucleolus. We analyzed the rpn11-m1 phenotypes and found that overexpression of Cdc14 suppresses all the rpn11-m1 defects, including the mitochondrial ones. Suppression by Cdc14 of the rpn11-m1 mitochondrial morphology defect reveals an uncharacterized connection between mitochondrial and cell cycle events. Interestingly, the overexpression of Cdc14 also partially restores the tubular network in an Δmmm2 strain, which lacks a mitochondrial protein belonging to the complex necessary to anchor the mitochondrion to the actin cytoskeleton. Altogether our findings indicate, for the first time, a cross-talk between the cell cycle and mitochondrial morphology.
Collapse
Affiliation(s)
- Michela Esposito
- Department of Cell and Developmental Biology, Pasteur Institute-Cenci Bolognetti Foundation, University of Rome, Rome, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Chandra A, Chen L, Madura K. Synthetic lethality of rpn11-1 rpn10Δ is linked to altered proteasome assembly and activity. Curr Genet 2010; 56:543-57. [PMID: 20941496 DOI: 10.1007/s00294-010-0321-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
An rpn11-1 temperature-sensitive mutant shows defect in proteolysis, mitochondrial function and proteasome assembly. The Rpn11 protein is a proteasome subunit that deubiquitinates proteolytic substrates. Multiubiquitinated proteins interact with proteasome receptors, such as Rpn10, which intriguingly is also required for promoting proteasome stability. We report here that Rpn10 binds Rpn11, and genetic studies revealed synthetic lethality of an rpn11-1 rpn10Δ double mutant. The carboxy-terminus of Rpn11 is critical for function, as deletion of 7 C-terminal residues prevented suppression of rpn11-1 rpn10Δ. Native gel electrophoresis showed increased levels of the proteasome 20S catalytic particle in rpn11-1 rpn10Δ, and altered assembly. The inviability of rpn11-1 rpn10Δ was suppressed by rpn10(uim), a mutant that can bind the proteasome, but not multiubiquitin chains. rpn10(uim) reduced the levels of free 20S, and increased formation of intact proteasomes. In contrast, rpn10(vwa), which binds multiubiquitin chains but not the proteasome, failed to suppress rpn11-1 rpn10Δ. Moreover, high levels of multiubiquitinated proteins were bound to rpn10(vwa), but were not delivered to the proteasome. Based on these findings, we propose that the lethality of rpn11-1 rpn10Δ results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
23
|
Chandra A, Chen L, Liang H, Madura K. Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors. J Biol Chem 2010; 285:8330-9. [PMID: 20061387 DOI: 10.1074/jbc.m109.076786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11(AXA)) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
24
|
Hofmann L, Saunier R, Cossard R, Esposito M, Rinaldi T, Delahodde A. A nonproteolytic proteasome activity controls organelle fission in yeast. J Cell Sci 2009; 122:3673-83. [PMID: 19773362 DOI: 10.1242/jcs.050229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To understand the processes underlying organelle function, dynamics and inheritance, it is necessary to identify and characterize the regulatory components involved. Recently in yeast and mammals, proteins of the membrane fission machinery (Dnm1-Mdv1-Caf4-Fis1 in yeast and DLP1-FIS1 in human) have been shown to have a dual localization on mitochondria and peroxisomes, where they control mitochondrial fission and peroxisome division. Here, we show that whereas vacuole fusion is regulated by the proteasome degradation function, mitochondrial fission and peroxisomal division are not controlled by the proteasome activity but rather depend on a new function of the proteasomal lid subunit Rpn11. Rpn11 was found to regulate the Fis1-dependent fission machinery of both organelles. These findings indicate a unique role of the Rpn11 protein in mitochondrial fission and peroxisomal proliferation that is independent of its role in proteasome-associated deubiquitylation.
Collapse
Affiliation(s)
- Line Hofmann
- University of Paris-Sud, CNRS, UMR 8621, Institute of Genetics and Microbiology, Orsay 91405, France
| | | | | | | | | | | |
Collapse
|
25
|
Hoppins S, Nunnari J. The molecular mechanism of mitochondrial fusion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:20-6. [PMID: 18691613 DOI: 10.1016/j.bbamcr.2008.07.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/28/2022]
Abstract
This review is focused on mitochondrial membrane fusion, which is a highly conserved process from yeast to human cells. We present observations from both yeast and mammalian cells that have provided insights into the mechanism of mitochondrial fusion and speculate on how the key players, which are dynamin-related GTPases do the work of membrane tethering and fusion.
Collapse
Affiliation(s)
- Suzanne Hoppins
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
26
|
Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 2008; 19:1903-11. [PMID: 18287522 DOI: 10.1091/mbc.e07-11-1103] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have suggested that ubiquitination of mitochondrial proteins participates in regulating mitochondrial dynamics in mammalian cells, but it is unclear whether deubiquitination is involved in this process. Here, we identify human ubiquitin-specific protease 30 (USP30) as a deubiquitinating enzyme that is embedded in the mitochondrial outer membrane. Depletion of USP30 expression by RNA interference induced elongated and interconnected mitochondria, depending on the activities of the mitochondrial fusion factors mitofusins, without changing the expression levels of the key regulators for mitochondrial dynamics. Mitochondria were rescued from this abnormal phenotype by ectopic expression of USP30 in a manner dependent on its enzymatic activity. Our findings reveal that USP30 participates in the maintenance of mitochondrial morphology, a finding that provides new insight into the cellular function of deubiquitination.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| | | |
Collapse
|
27
|
Rinaldi T, Hofmann L, Gambadoro A, Cossard R, Livnat-Levanon N, Glickman MH, Frontali L, Delahodde A. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol Biol Cell 2008; 19:1022-31. [PMID: 18172023 DOI: 10.1091/mbc.e07-07-0717] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously demonstrated that the C-terminal part of Rpn11, a deubiquitinating enzyme in the lid of the proteasome, is essential for maintaining a correct cell cycle and normal mitochondrial morphology and function. The two roles are apparently unlinked as the mitochondrial role is mapped to the Carboxy-terminus, whereas the catalytic deubiquitinating activity is found within the N-terminal region. The mitochondrial defects are observed in rpn11-m1 (originally termed mpr1-1), a mutation that generates Rpn11 lacking the last 31 amino acids. No mitochondrial phenotypes are recorded for mutations in the MPN+/JAMM motif. In the present study, we investigated the participation of the last 31 amino acids of the Rpn11 protein by analysis of intragenic revertants and site-specific mutants. We identified a putative alpha-helix necessary for the maintenance of a correct cell cycle and determined that a very short region at the C-terminus of Rpn11 is essential for the maintenance of tubular mitochondrial morphology. Furthermore, we show that expression of the C-terminal part of Rpn11 is able to complement in trans all of the rpn11-m1 mitochondrial phenotypes. Finally, we investigate the mechanisms by which Rpn11 controls the mitochondrial shape and show that Rpn11 may regulate the mitochondrial fission and tubulation processes.
Collapse
Affiliation(s)
- Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gallery M, Blank JL, Lin Y, Gutierrez JA, Pulido JC, Rappoli D, Badola S, Rolfe M, Macbeth KJ. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol Cancer Ther 2007; 6:262-8. [PMID: 17237285 DOI: 10.1158/1535-7163.mct-06-0542] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poh1 deubiquitinase activity is required for proteolytic processing of polyubiquitinated substrates by the 26S proteasome, linking deubiquitination to complete substrate degradation. Poh1 RNA interference (RNAi) in HeLa cells resulted in a reduction in cell viability and an increase in polyubiquitinated protein levels, supporting the link between Poh1 and the ubiquitin proteasome pathway. To more specifically test for any requirement of the zinc metalloproteinase motif of Poh1 to support cell viability and proteasome function, we developed a RNAi complementation strategy. Effects on cell viability and proteasome activity were assessed in cells with RNAi of endogenous Poh1 and induced expression of wild-type Poh1 or a mutant form of Poh1, in which two conserved histidines of the proposed catalytic site were replaced with alanines. We show that an intact zinc metalloproteinase motif is essential for cell viability and 26S proteasome function. As a required enzymatic component of the proteasome, Poh1 is an intriguing therapeutic drug target for cancer.
Collapse
Affiliation(s)
- Melissa Gallery
- Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Mitochondria are dynamic organelles, essential for cell life and death. The morphology of this organelle is determined by fusion and fission, controlled by a growing set of "mitochondria-shaping" proteins, which influence crucial signalling cascades, including apoptosis.
Collapse
Affiliation(s)
- Kai S Dimmer
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, I-35129 Padova, Italy
| | | |
Collapse
|
30
|
Dürr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, Westermann B. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol Biol Cell 2006; 17:3745-55. [PMID: 16790496 PMCID: PMC1593156 DOI: 10.1091/mbc.e06-01-0053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/24/2023] Open
Abstract
Mitochondria constantly fuse and divide to adapt organellar morphology to the cell's ever-changing physiological conditions. Little is known about the molecular mechanisms regulating mitochondrial dynamics. F-box proteins are subunits of both Skp1-Cullin-F-box (SCF) ubiquitin ligases and non-SCF complexes that regulate a large number of cellular processes. Here, we analyzed the roles of two yeast F-box proteins, Mfb1 and Mdm30, in mitochondrial dynamics. Mfb1 is a novel mitochondria-associated F-box protein. Mitochondria in mutants lacking Mfb1 are fusion competent, but they form aberrant aggregates of interconnected tubules. In contrast, mitochondria in mutants lacking Mdm30 are highly fragmented due to a defect in mitochondrial fusion. Fragmented mitochondria are docked but nonfused in Deltamdm30 cells. Mitochondrial fusion is also blocked during sporulation of homozygous diploid mutants lacking Mdm30, leading to a mitochondrial inheritance defect in ascospores. Mfb1 and Mdm30 exert nonredundant functions and likely have different target proteins. Because defects in F-box protein mutants could not be mimicked by depletion of SCF complex and proteasome core subunits, additional yet unknown factors are likely involved in regulating mitochondrial dynamics. We propose that mitochondria-associated F-box proteins Mfb1 and Mdm30 are key components of a complex machinery that regulates mitochondrial dynamics throughout yeast's entire life cycle.
Collapse
Affiliation(s)
| | | | | | - Stefan Geimer
- *Institut für Zellbiologie
- Abteilung für Elektronenmikroskopie, and
| | - Thomas Langer
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany
| | - Benedikt Westermann
- *Institut für Zellbiologie
- Abteilung für Elektronenmikroskopie, and
- Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95440 Bayreuth, Germany; and
| |
Collapse
|
31
|
Nabhan JF, Ribeiro P. The 19 S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability, and subcellular localization. J Biol Chem 2006; 281:16099-107. [PMID: 16569633 DOI: 10.1074/jbc.m512086200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AP1 (activator protein 1) transcription factor, c-Jun, is an important regulator of cell proliferation, differentiation, survival, and death. Its activity is regulated both at the level of transcription and post-translationally through phosphorylation, sumoylation, and targeted degradation. The degradation of c-Jun by the ubiquitin proteasome pathway has been well established. Here, we report that POH1, a subunit of the 19 S proteasome lid with a recently described deubiquitinase activity, is a regulator of c-Jun. Ectopic expression of POH1 in HEK293 cells decreased the level of c-Jun ubiquitination, leading to significant accumulation of the protein and a corresponding increase in AP1-mediated gene expression. The stabilization also correlated with a redistribution of c-Jun in the nucleus. These effects were reduced by mutation of a cysteine residue in the Mpr1 pad1 N-terminal plus motif of POH1 (Cys-120) and appeared to be selective for c-Jun, because POH1 had no effect on other proteasomal substrates. Our results identify a novel mechanism of c-Jun regulation in mammalian cells.
Collapse
Affiliation(s)
- Joseph F Nabhan
- Institute of Parasitology, Macdonald Campus, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | | |
Collapse
|
32
|
Altmann K, Westermann B. Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:5410-7. [PMID: 16135527 PMCID: PMC1266436 DOI: 10.1091/mbc.e05-07-0678] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitochondria are essential organelles of eukaryotic cells. Inheritance and maintenance of mitochondrial structure depend on cytoskeleton-mediated organelle transport and continuous membrane fusion and fission events. However, in Saccharomyces cerevisiae most of the known components involved in these processes are encoded by genes that are not essential for viability. Here we asked which essential genes are required for mitochondrial distribution and morphology. To address this question, we performed a systematic screen of a yeast strain collection harboring essential genes under control of a regulatable promoter. This library contains 768 yeast mutants and covers approximately two thirds of all essential yeast genes. A total of 119 essential genes were found to be required for maintenance of mitochondrial morphology. Among these, genes were highly enriched that encode proteins involved in ergosterol biosynthesis, mitochondrial protein import, actin-dependent transport processes, vesicular trafficking, and ubiquitin/26S proteasome-dependent protein degradation. We conclude that these cellular pathways play an important role in mitochondrial morphogenesis and inheritance.
Collapse
Affiliation(s)
- Katrin Altmann
- Institut für Zellbiologie, Universität Bayreuth, Germany
| | | |
Collapse
|
33
|
Scorrano L. Proteins That Fuse and Fragment Mitochondria in Apoptosis: Con-Fissing a Deadly Con-Fusion? J Bioenerg Biomembr 2005; 37:165-70. [PMID: 16167173 DOI: 10.1007/s10863-005-6572-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of "mitochondria-shaping" proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.
Collapse
Affiliation(s)
- Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, I-35129 Padua, Italy.
| |
Collapse
|
34
|
Miller J, Gordon C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Lett 2005; 579:3224-30. [PMID: 15943965 DOI: 10.1016/j.febslet.2005.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2005] [Indexed: 02/09/2023]
Abstract
The 26S proteasome is a large multi-protein complex that functions to degrade proteins tagged with multi-ubiquitin chains. There are several mechanisms employed by the cell to ensure the efficient delivery of multi-ubiquitinated substrate proteins to the 26S proteasome. This is not only important to ensure the degradation of damaged and misfolded proteins, but also the regulated turnover of critical cell regulators. This discussion will concentrate on what is known about the recognition and delivery of ubiquitinated substrate proteins to the 26S proteasome.
Collapse
Affiliation(s)
- Jayne Miller
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | |
Collapse
|
35
|
Rinaldi T, Pick E, Gambadoro A, Zilli S, Maytal-Kivity V, Frontali L, Glickman M. Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem J 2004; 381:275-85. [PMID: 15018611 PMCID: PMC1133786 DOI: 10.1042/bj20040008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 03/09/2004] [Accepted: 03/12/2004] [Indexed: 11/17/2022]
Abstract
Substrates destined for degradation by the 26 S proteasome are labelled with polyubiquitin chains. Rpn11/Mpr1, situated in the lid subcomplex, partakes in the processing of these chains or in their removal from substrates bound to the proteasome. Rpn11 also plays a role in maintaining mitochondrial integrity, tubular structure and proper function. The recent finding that Rpn11 participates in proteasome-associated deubiquitination focuses interest on the MPN+ (Mpr1, Pad1, N-terminal)/JAMM (JAB1/MPN/Mov34) metalloprotease site in its N-terminal domain. However, Rpn11 damaged at its C-terminus (the mpr1-1 mutant) causes pleiotropic effects, including proteasome instability and mitochondrial morphology defects, resulting in both proteolysis and respiratory malfunctions. We find that overexpression of WT (wild-type) RPN8, encoding a paralogous subunit that does not contain the catalytic MPN+ motif, corrects proteasome conformations and rescues cell cycle phenotypes, but is unable to correct defects in the mitochondrial tubular system or respiratory malfunctions associated with the mpr1-1 mutation. Transforming mpr1-1 with various RPN8-RPN11 chimaeras or with other rpn11 mutants reveals that a WT C-terminal region of Rpn11 is necessary, and more surprisingly sufficient, to rescue the mpr1-1 mitochondrial phenotype. Interestingly, single-site mutants in the catalytic MPN+ motif at the N-terminus of Rpn11 lead to reduced proteasome-dependent deubiquitination connected with proteolysis defects. Nevertheless, these rpn11 mutants suppress the mitochondrial phenotypes associated with mpr1-1 by intragene complementation. Together, these results point to a unique role for the C-terminal region of Rpn11 in mitochondrial maintenance that may be independent of its role in proteasome-associated deubiquitination.
Collapse
Affiliation(s)
- Teresa Rinaldi
- *Pasteur Institute Cenci Bolognetti Foundation and the Department of Cell and Developmental Biology, University of Rome I, 00185 Rome, Italy
| | - Elah Pick
- †Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
| | - Alessia Gambadoro
- *Pasteur Institute Cenci Bolognetti Foundation and the Department of Cell and Developmental Biology, University of Rome I, 00185 Rome, Italy
| | - Stefania Zilli
- *Pasteur Institute Cenci Bolognetti Foundation and the Department of Cell and Developmental Biology, University of Rome I, 00185 Rome, Italy
| | - Vered Maytal-Kivity
- †Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
| | - Laura Frontali
- *Pasteur Institute Cenci Bolognetti Foundation and the Department of Cell and Developmental Biology, University of Rome I, 00185 Rome, Italy
- To whom correspondence can be addressed (e-mail . or )
| | - Michael H. Glickman
- †Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
- To whom correspondence can be addressed (e-mail . or )
| |
Collapse
|
36
|
Sone T, Saeki Y, Toh-e A, Yokosawa H. Sem1p Is a Novel Subunit of the 26 S Proteasome from Saccharomyces cerevisiae. J Biol Chem 2004; 279:28807-16. [PMID: 15117943 DOI: 10.1074/jbc.m403165200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome, which catalyzes degradation of polyubiquitinated proteins, is composed of the 20 S proteasome and the 19 S regulatory particle (RP). The RP is composed of the lid and base subcomplexes and regulates the catalytic activity of the 20 S proteasome. In this study, we carried out affinity purification of the lid and base subcomplexes from the tagged strains of Saccharomyces cerevisiae, and we found that the lid contains a small molecular mass protein, Sem1. The Sem1 protein binds with the 26 S proteasome isolated from a mutant with deletion of SEM1 but not with the 26 S proteasome from the wild type. The lid lacking Sem1 is unstable at a high salt concentration. The 19 S RP was immunoprecipitated together with Sem1 by immunoprecipitation using hemagglutinin epitope-tagged Sem1 as bait. Degradation of polyubiquitinated proteins in vivo or in vitro is impaired in the Sem1-deficient 26 S proteasome. In addition, genetic interaction between SEM1 and RPN10 was detected. The human Sem1 homologue hDSS1 was found to be a functional homologue of Sem1 and capable of interacting with the human 26 S proteasome. The results suggest that Sem1, possibly hDSS1, is a novel subunit of the 26 S proteasome and plays a role in ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Takayuki Sone
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
37
|
Guterman A, Glickman MH. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 2003; 279:1729-38. [PMID: 14581483 DOI: 10.1074/jbc.m307050200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates destined for degradation by the 26 S proteasome are labeled with polyubiquitin chains. These chains can be dismantled by deubiquitinating enzymes (DUBs). A number of reports have identified different DUBs that can hydrolyze ubiquitin from substrates bound to the proteasome. We measured deubiquitination by both isolated lid and base-core particle subcomplexes, suggesting that at least two different DUBs are intrinsic components of 26 S proteasome holoenzymes. In agreement, we find that highly purified proteasomes contain both Rpn11 and Ubp6, situated within the lid and base subcomplexes, respectively. To study their relative contributions, we purified proteasomes from a mutant in the putative metalloprotease domain of Rpn11 and from a ubp6 null. Interestingly, in both preparations we observed slower deubiquitination rates, suggesting that Rpn11 and Ubp6 serve complementary roles. In accord, the double mutant is synthetically lethal. In contrast to WT proteasomes, proteasomes lacking the lid subcomplex or those purified from the rpn11 mutant are less sensitive to metal chelators, supporting the prediction that Rpn11 may be a metalloprotein. Treatment of proteasomes with ubiquitin-aldehyde or with cysteine modifiers also inhibited deubiquitination but simultaneously promoted degradation of a monoubiquitinated substrate along with the ubiquitin tag. Degradation is unique to 26 S proteasome holoenzymes; we could not detect degradation of a ubiquitinated protein by "lidless" proteasomes, although they were competent for deubiquitination. The fascinating observation that a single ubiquitin moiety is sufficient for targeting an otherwise stable substrate to proteasomes exposes how rapid deubiquitination of poorly ubiquitinated substrates may counteract degradation.
Collapse
Affiliation(s)
- Adi Guterman
- Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
| | | |
Collapse
|
38
|
Bafunno V, Giancaspero TA, Brizio C, Bufano D, Passarella S, Boles E, Barile M. Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export. J Biol Chem 2003; 279:95-102. [PMID: 14555654 DOI: 10.1074/jbc.m308230200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the functional steps by which Saccharomyces cerevisiae mitochondria can synthesize FAD from cytosolic riboflavin (Rf). Riboflavin uptake into mitochondria took place via a mechanism that is consistent with the existence of (at least two) carrier systems. FAD was synthesized inside mitochondria by a mitochondrial FAD synthetase (EC 2.7.7.2), and it was exported into the cytosol via an export system that was inhibited by lumiflavin, and which was different from the riboflavin uptake system. To understand the role of the putative mitochondrial FAD carrier, Flx1p, in this pathway, an flx1Delta mutant strain was constructed. Coupled mitochondria isolated from flx1Delta mutant cells were compared with wild-type mitochondria with respect to the capability to take up Rf, to synthesize FAD from it, and to export FAD into the extramitochondrial phase. Mitochondria isolated from flx1Delta mutant cells specifically lost the ability to export FAD, but did not lose the ability to take up Rf, FAD, or FMN and to synthesize FAD from Rf. Hence, Flx1p is proposed to be the mitochondrial FAD export carrier. Moreover, deletion of the FLX1 gene resulted in a specific reduction of the activities of mitochondrial lipoamide dehydrogenase and succinate dehydrogenase, which are FAD-binding enzymes. For the flavoprotein subunit of succinate dehydrogenase we could demonstrate that this was not due to a changed level of mitochondrial FAD or to a change in the degree of flavinylation of the protein. Instead, the amount of the flavoprotein subunit of succinate dehydrogenase was strongly reduced, indicating an additional regulatory role for Flx1p in protein synthesis or degradation.
Collapse
Affiliation(s)
- Valeria Bafunno
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Via Orabona 4, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Lundgren J, Masson P, Realini CA, Young P. Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Mol Cell Biol 2003; 23:5320-30. [PMID: 12861018 PMCID: PMC165711 DOI: 10.1128/mcb.23.15.5320-5330.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S13 subunit (also called Pad1, Rpn11, and MPR1) is a component of the 19S complex, a regulatory complex essential for the ubiquitin-dependent proteolytic activity of the 26S proteasome. To address the functional role of S13, we combined double-stranded RNA interference (RNAi) against the Drosophila proteasome subunit DmS13 with expression of wild-type and mutant forms of the homologous human gene, HS13. These studies show that DmS13 is essential for 26S function. Loss of the S13 subunit in metazoan cells leads to increased levels of ubiquitin conjugates, cell cycle defects, DNA overreplication, and apoptosis. In vivo assays using short-lived proteasome substrates confirmed that the 26S ubiquitin-dependent degradation pathway is compromised in S13-depleted cells. In complementation experiments using Drosophila cell lines expressing HS13, wild-type HS13 was found to fully rescue the knockdown phenotype after DmS13 RNAi treatment, while an HS13 containing mutations (H113A-H115A) in the proposed isopeptidase active site was unable to rescue. A mutation within the conserved MPN/JAMM domain (C120A) abolished the ability of HS13 to rescue the Drosophila cells from apoptosis or DNA overreplication. However, the C120A mutant was found to partially restore normal levels of ubiquitin conjugates. The S13 subunit may possess multiple functions, including a deubiquitinylating activity and distinct activities essential for cell cycle progression that require the conserved C120 residue.
Collapse
Affiliation(s)
- Josefin Lundgren
- Department of Molecular Biology and Functional Genetics, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Fritz S, Weinbach N, Westermann B. Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol Biol Cell 2003; 14:2303-13. [PMID: 12808031 PMCID: PMC194880 DOI: 10.1091/mbc.e02-12-0831] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial fusion and fission play important roles for mitochondrial morphology and function. We identified Mdm30 as a novel component required for maintenance of fusion-competent mitochondria in yeast. The Mdm30 sequence contains an F-box motif that is commonly found in subunits of Skp1-Cdc53-F-box protein ubiquitin ligases. A fraction of Mdm30 is associated with mitochondria. Cells lacking Mdm30 contain highly aggregated or fragmented mitochondria instead of the branched tubular network seen in wild-type cells. Deltamdm30 cells lose mitochondrial DNA at elevated temperature and fail to fuse mitochondria in zygotes at all temperatures. These defects are rescued by deletion of DNM1, a gene encoding a component of the mitochondrial division machinery. The protein level of Fzo1, a key component of the mitochondrial fusion machinery, is regulated by Mdm30. Elevated Fzo1 levels in cells lacking Mdm30 or in cells overexpressing Fzo1 from a heterologous promoter induce mitochondrial aggregation in a similar manner. Our results suggest that Mdm30 controls mitochondrial shape by regulating the steady-state level of Fzo1 and point to a connection of the ubiquitin/26S proteasome system and mitochondria.
Collapse
Affiliation(s)
- Stefan Fritz
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | |
Collapse
|
41
|
Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, Almeida PC, Hyslop S, Eberlin MN, Ferro ES. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003; 278:8547-55. [PMID: 12500972 DOI: 10.1074/jbc.m212030200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.
Collapse
Affiliation(s)
- Vanessa Rioli
- Department of Histology and Embryology, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Santamaria PG, Finley D, Ballesta JPG, Remacha M. Rpn6p, a proteasome subunit from Saccharomyces cerevisiae, is essential for the assembly and activity of the 26 S proteasome. J Biol Chem 2003; 278:6687-95. [PMID: 12486135 DOI: 10.1074/jbc.m209420200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the functional characterization of RPN6, an essential gene from Saccharomyces cerevisiae encoding the proteasomal subunit Rpn6p. For this purpose, conditional mutants that are able to grow on galactose but not on glucose were obtained. When these mutants are shifted to glucose, Rpn6p depletion induces several specific phenotypes. First, multiubiquitinated proteins accumulate, indicating a defect in proteasome-mediated proteolysis. Second, mutant yeasts are arrested as large budded cells with a single nucleus and a 2C DNA content; in addition, the spindle pole body is duplicated, indicating a general cell cycle defect related to the turnover of G(2)-cyclins after DNA synthesis. Clb2p and Pds1p, but not Sic1p, accumulate in the arrested cells. Depletion of Rpn6p affects both the structure and the peptidase activity of proteasomes in the cell. These results implicate Rpn6p function in the specific recognition of a subset of substrates and point to a role in maintaining the correct quaternary structure of the 26 S proteasome.
Collapse
Affiliation(s)
- Patricia G Santamaria
- Centro de Biologia Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Li Z, Wang CC. Functional characterization of the 11 non-ATPase subunit proteins in the trypanosome 19 S proteasomal regulatory complex. J Biol Chem 2002; 277:42686-93. [PMID: 12213827 DOI: 10.1074/jbc.m207183200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome pathway is responsible for selective degradation of short-lived and dysfunctional proteins in eukaryotes. The recently demonstrated presence of a functional 26 S proteasome in Trypanosoma brucei led to the identification and isolation of genes encoding all 11 non-ATPase (Rpn) subunit proteins in the trypanosome 19 S regulatory complex. Using the technique of RNA interference, expression of individual RPN genes was disrupted in the procyclic form of T. brucei, resulting, in each case, in intracellular accumulation of polyubiquitinated protein, cell arrest at the G2/M phase, and eventual cell death. With the exception of Rpn10, depletion of individual Rpn proteins disrupted also trypanosome 19 S complex formation, with the complex virtually depleted in the cell lysate. This functional and structural essentiality of 10 of the 11 Rpn proteins in T. brucei differs significantly from that observed in other organisms. When Rpn10 was deficient in trypanosomes, a 19 S complex without Rpn10 was still formed, whereas cell growth was arrested. This structural dispensability but functional indispensability of Rpn10 may constitute another unique aspect of the proteasomes in T. brucei.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
44
|
Sánchez R, Alagón A, Stock RP. Entamoeba histolytica: intracellular distribution of the proteasome. Exp Parasitol 2002; 102:187-90. [PMID: 12856315 DOI: 10.1016/s0014-4894(03)00055-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the intracellular distribution of proteasome subunits, corresponding to the catalytic (20S) core and the regulatory (19S) cap, in the extracellular protozoan parasite Entamoeba histolytica. Contrary to all cell types described to date, notably mammalian and yeast, in which the proteasome is found in the nucleus and actively imported into it, microscopic analysis and subcellular fractionation of E. histolytica trophozoites show that the proteasome is absent from the nucleus of these cells. We speculate that, given the relative abundance of mono- and multinucleated trophozoites in culture, a relationship may exist between this unusual distribution of the proteasome and the frequent lack of synchrony between karyo- and cytokinesis in this primitive eukaryote.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Instituto de Biotechnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | | |
Collapse
|
45
|
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, Koonin EV, Deshaies RJ. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-5. [PMID: 12183636 DOI: 10.1126/science.1075898] [Citation(s) in RCA: 778] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 26S proteasome mediates degradation of ubiquitin-conjugated proteins. Although ubiquitin is recycled from proteasome substrates, the molecular basis of deubiquitination at the proteasome and its relation to substrate degradation remain unknown. The Rpn11 subunit of the proteasome lid subcomplex contains a highly conserved Jab1/MPN domain-associated metalloisopeptidase (JAMM) motif-EX(n)HXHX(10)D. Mutation of the predicted active-site histidines to alanine (rpn11AXA) was lethal and stabilized ubiquitin pathway substrates in yeast. Rpn11(AXA) mutant proteasomes assembled normally but failed to either deubiquitinate or degrade ubiquitinated Sic1 in vitro. Our findings reveal an unexpected coupling between substrate deubiquitination and degradation and suggest a unifying rationale for the presence of the lid in eukaryotic proteasomes.
Collapse
Affiliation(s)
- Rati Verma
- Department of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC BIOCHEMISTRY 2002; 3:28. [PMID: 12370088 PMCID: PMC129983 DOI: 10.1186/1471-2091-3-28] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Accepted: 09/20/2002] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN) and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function. RESULTS We have identified a sequence motif, termed the MPN+ motif, which is highly conserved in a subset of MPN domain proteins such as Rpn11 and Csn5/Jab1, but is not present outside of this subfamily. The MPN+ motif consists of five polar residues that resemble the active site residues of hydrolytic enzyme classes, particularly that of metalloproteases. By using site-directed mutagenesis, we show that the MPN+ residues are important for the function of Rpn11, while a highly conserved Cys residue outside of the MPN+ motif is not essential. Single amino acid substitutions in MPN+ residues all show similar phenotypes, including slow growth, sensitivity to temperature and amino acid analogs, and general proteasome-dependent proteolysis defects. CONCLUSIONS The MPN+ motif is abundant in certain MPN-domain proteins, including newly identified proteins of eukaryotes, bacteria and archaea thought to act outside of the traditional large PCI/MPN complexes. The putative catalytic nature of the MPN+ motif makes it a good candidate for a pivotal enzymatic function, possibly a proteasome-associated deubiquitinating activity and a CSN-associated Nedd8/Rub1-removing activity.
Collapse
Affiliation(s)
- Vered Maytal-Kivity
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| | - Noa Reis
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| | - Kay Hofmann
- Bioinformatics Group, MEMOREC Stoffel GmbH, Germany
| | - Michael H Glickman
- Dept. of Biology and Institute for Catalysis Science and Technology (ICST) Technion – Israel Institute of Technology, Israel
| |
Collapse
|
47
|
Rinaldi T, Ricordy R, Bolotin-Fukuhara M, Frontali L. Mitochondrial effects of the pleiotropic proteasomal mutation mpr1/rpn11: uncoupling from cell cycle defects in extragenic revertants. Gene 2002; 286:43-51. [PMID: 11943459 DOI: 10.1016/s0378-1119(01)00799-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously characterized a Saccharomyces cerevisiae mutant which contains a mutation in the essential rpn11/mpr1 gene coding for the proteasomal regulatory subunit Rpn11. The mpr1-1 mutation shows the phenotypic characteristics generally associated with proteasomal mutations, such as cell cycle defects and accumulation of polyubiquitinated proteins. However, for the first time, mitochondrial defects have also been found to be a consequence of a mutation in a proteasomal gene (Mol. Biol. Cell 9 (1998) 2917-2931). Since the mutant strain is thermosensitive both on glucose and on glycerol, we searched for revertants in order to shed light on the Rpn11/Mpr1 functions. Spontaneous revertants able to grow on glucose but not on glycerol at 36 degrees C were isolated, and, only from them, revertants able to grow at 36 degrees C on glycerol were selected. Revertants of the two classes were found to be extragenic. The detailed characterization of these extragenic suppressors demonstrates that the phenotypes related to cell cycle defects can be dissociated from those concerned with mitochondrial organization.
Collapse
Affiliation(s)
- T Rinaldi
- Department of Cell and Developmental Biology, Pasteur Institute Cenci Bolognetti Foundation, University of Rome I, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
48
|
Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M, Anaissie E, Morris C, Muwalla F, van Rhee F, Fassas A, Crowley J, Tricot G, Barlogie B, Shaughnessy J. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99:1745-57. [PMID: 11861292 DOI: 10.1182/blood.v99.5.1745] [Citation(s) in RCA: 486] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bone marrow plasma cells (PCs) from 74 patients with newly diagnosed multiple myeloma (MM), 5 with monoclonal gammopathy of undetermined significance (MGUS), and 31 healthy volunteers (normal PCs) were purified by CD138(+) selection. Gene expression of purified PCs and 7 MM cell lines were profiled using high-density oligonucleotide microarrays interrogating about 6800 genes. On hierarchical clustering analysis, normal and MM PCs were differentiated and 4 distinct subgroups of MM (MM1, MM2, MM3, and MM4) were identified. The expression pattern of MM1 was similar to normal PCs and MGUS, whereas MM4 was similar to MM cell lines. Clinical parameters linked to poor prognosis, abnormal karyotype (P =.002) and high serum beta(2)-microglobulin levels (P =.0005), were most prevalent in MM4. Also, genes involved in DNA metabolism and cell cycle control were overexpressed in a comparison of MM1 and MM4. In addition, using chi(2) and Wilcoxon rank sum tests, 120 novel candidate disease genes were identified that discriminate normal and malignant PCs (P <.0001); many are involved in adhesion, apoptosis, cell cycle, drug resistance, growth arrest, oncogenesis, signaling, and transcription. A total of 156 genes, including FGFR3 and CCND1, exhibited highly elevated ("spiked") expression in at least 4 of the 74 MM cases (range, 4-25 spikes). Elevated expression of these 2 genes was caused by the translocation t(4;14)(p16;q32) or t(11;14)(q13;q32). Thus, novel candidate MM disease genes have been identified using gene expression profiling and this profiling has led to the development of a gene-based classification system for MM.
Collapse
Affiliation(s)
- Fenghuang Zhan
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fleming JA, Lightcap ES, Sadis S, Thoroddsen V, Bulawa CE, Blackman RK. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc Natl Acad Sci U S A 2002; 99:1461-6. [PMID: 11830665 PMCID: PMC122213 DOI: 10.1073/pnas.032516399] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Indexed: 11/18/2022] Open
Abstract
Although the biochemical targets of most drugs are known, the biological consequences of their actions are typically less well understood. In this study, we have used two whole-genome technologies in Saccharomyces cerevisiae to determine the cellular impact of the proteasome inhibitor PS-341. By combining population genomics, the screening of a comprehensive panel of bar-coded mutant strains, and transcript profiling, we have identified the genes and pathways most affected by proteasome inhibition. Many of these function in regulated protein degradation or a subset of mitotic activities. In addition, we identified Rpn4p as the transcription factor most responsible for the cell's ability to compensate for proteasome inhibition. Used together, these complementary technologies provide a general and powerful means to elucidate the cellular ramifications of drug treatment.
Collapse
Affiliation(s)
- James A Fleming
- Millennium Pharmaceuticals, Incorporated, 75 Sidney Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
In yeast, inactivation of certain TBP-associated factors (TAF(II)s) results in arrest at specific stages of the cell cycle. In some cases, cell cycle arrest is not observed because overlapping defects in other cellular processes precludes the manifestation of an arrest phenotype. In the latter situation, genetic analysis has the potential to reveal the involvement of TAF(II)s in cell cycle regulation. In this report, a temperature-sensitive mutant of TAF68/61 was used to screen for high-copy dosage suppressors of its growth defect. Ten genes were isolated: TAF suppressor genes, TSGs 1-10. Remarkably, most TSGs have either a genetic or a direct link to control of the G(2)/M transition. Moreover, eight of the 10 TSGs can suppress a CDC28 mutant specifically defective for mitosis (cdc28-1N) but not an allele defective for passage through start. The identification of these genes as suppressors of cdc28-1N has identified four unreported suppressors of this allele. Moreover, synthetic lethality is observed between taf68-9 and cdc28-1N. The isolation of multiple genes involved in the control of a specific phase of the cell cycle argue that the arrest phenotypes of certain TAF(II) mutants reflect their role in specifically regulating cell cycle functions.
Collapse
Affiliation(s)
- J C Reese
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|