1
|
Pan L, Xu J, Xie H, Zhang Y, Jiang H, Yao Y, Wu W. Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases. Eur J Med Chem 2025; 283:117114. [PMID: 39662285 DOI: 10.1016/j.ejmech.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Janus kinase (JAK), a class of non-receptor tyrosine kinases, are essential in modulating the cytokine signaling cascade of cytokines associated with immune responses. Despite their potential in the treatment of autoimmune diseases, JAK inhibitors are associated with safety concerns, regarding cytokine suppression and significant side effects. Tyrosine kinase 2 (TYK2), a prominent member of the JAK family, is central to the signaling of interleukins (ILs) and interferons (IFNs), such as IL-12, IL-23 and IFNs. Targeted TYK2 inhibitors that specifically target the Janus Homology 1 (JH1) and pseudokinase (JH2) domains show enhanced specificity. JH1 acts as an ATP-competitive inhibitor, while JH2 acts as an allosteric regulator, contributing to reduced systemic side effects and improved therapeutic outcomes in clinical settings. This review summarizes the recent advances on the synthetic strategies of TYK2 inhibitors and their applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juan Xu
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd., Dongguan, 523871, China
| | - Hongming Xie
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd., Dongguan, 523871, China
| | - Yingjun Zhang
- State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Company, Ltd., Dongguan, 523871, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yongqi Yao
- Food and Cosmetics Testing Institute, Guangzhou Customs Technology Center, 510623, Guangzhou, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Virtanen A, Kettunen V, Musta K, Räkköläinen V, Knapp S, Haikarainen T, Silvennoinen O. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Adv Biol Regul 2024:101072. [PMID: 39755448 DOI: 10.1016/j.jbior.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Vivian Kettunen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Kirsikka Musta
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Veera Räkköläinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland.
| |
Collapse
|
3
|
Bao Y, Xu R, Guo J. The multiple-action allosteric inhibition of TYK2 by deucravacitinib: Insights from computational simulations. Comput Biol Chem 2024; 113:108224. [PMID: 39353258 DOI: 10.1016/j.compbiolchem.2024.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Participating in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, TYK2 emerges as a promising therapy target in controlling various autoimmune diseases, including psoriasis and multiple sclerosis. Deucravacitinib (DEU) is a novel oral TYK2-specific inhibitor approved in 2022 that is clinically effective in moderate to severe psoriasis trials. Upon the AlphaFold2 predicted TYK2 pseudokinase domain (JH2) and kinase domain (JH1), we explored the details of the underlined allosteric inhibition mechanism on TYK2 JH2-JH1 with the aid of molecular dynamics simulation. Our results suggest that the allosteric inhibition of DEU on TYK2 is accomplished by affecting the JH2-JH1 interface and hampering the state transition and ATP binding in JH1. Particularly, DEU binding stabilized the autoinhibitory interface between JH2 and JH1 while disrupting the formation of the activation interface. As a result, the negative regulation of JH2 on JH1 was greatly enhanced. These findings offer additional details on the pseudokinase-dependent autoinhibition of the JAK kinase domain and provide theoretical support for the JH2-targeted drug discovery in JAK members.
Collapse
Affiliation(s)
- Yiqiong Bao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Ran Xu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China; Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
4
|
Daoud S, Taha MO. Advances in the design and discovery of next-generation janus kinase-2 (JAK2) inhibitors for the treatment of myeloproliferative neoplasms. Expert Opin Drug Discov 2024; 19:1403-1415. [PMID: 39410824 DOI: 10.1080/17460441.2024.2417368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/13/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPNs) are rare hematopoietic disorders driven by mutations in the JAK-STAT signaling pathway genes. While JAK2 inhibitors have transformed MPN treatment, they do not eliminate the malignant clone or prevent disease progression in most patients. This limitation underscores the need for more effective therapies. AREA COVERED This review examines the evolution of JAK2 inhibitors for treating MPNs. Current JAK2 inhibitors primarily function as type I inhibitors, targeting the active kinase conformation, but their effectiveness is limited by ongoing JAK-STAT signaling. To overcome these limitations, next-generation therapies, such as type II JAK2 inhibitors and pseudokinase domain inhibitors, are being developed to target inactive kinase conformations and alternative signaling pathways. Furthermore, combination therapies with PI3K, mTOR, CDK4/6 inhibitors, and epigenetic modulators are being investigated for their potential synergistic effects, aiming for deeper and more durable responses in MPN patients. EXPERT OPINION Next-generation JAK2 inhibitors are needed to enhance current MPNs treatments by overcoming resistance, improving selectivity, targeting specific patient groups, and exploring combination therapies. Addressing challenges in drug design, preclinical testing, and clinical trials is crucial. Developing dual or multiple inhibitors targeting JAK2 and other MPN-related pathways is urgent to address complex signaling networks and improve efficacy.
Collapse
Affiliation(s)
- Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University, Amman, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
7
|
Du SS, Fang YQ, Zhang W, Rao GW. Targeting TYK2 for Fighting Diseases: Recent Advance of TYK2 Inhibitors. Curr Med Chem 2024; 31:2900-2920. [PMID: 38904160 DOI: 10.2174/0929867330666230324163414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/03/2023] [Accepted: 02/03/2023] [Indexed: 06/22/2024]
Abstract
TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.
Collapse
Affiliation(s)
- Si-Shi Du
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yu-Qing Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
9
|
Bao H, He W, Chen J. Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis. J Biomol Struct Dyn 2023; 42:11115-11132. [PMID: 37740650 DOI: 10.1080/07391102.2023.2260486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
The pseudokinase domain (JH2) of the protein tyrosine kinase (Janus kinase 2, JAK2) regulates the activity of a tyrosine kinase domain (JH1) in JAK2, which is further affected by mutations in the JH2. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by construction of free energy landscapes (FELs) and principal component analysis (PCA) were performed to study effect of two mutations V617F and V617F/E596A on the conformations of the ATP-bound JH2. The dynamic analyses reveal that mutations affect the structural flexibility and correlated motions of the JH2, meanwhile also change the dynamics behavior of the P-loop and αC-helix of the JH2. The information from FELs unveils that mutations induce less energy states than the free JH2 and the WT one. The analyses of interaction networks uncover that mutations affect the salt bridge interactions of ATP with K581, K677 and R715 and alter hydrogen bonding interactions (HBIs) of ATP with the JH2. The changes in conformations of the JH2 and ATP-JH2 interaction networks caused by mutations in turn generate effect on the activity regulations of the JH2 on the JH1. This work is expected to provide significant theoretical helps for deeply understanding the function of the JH2 and drug design toward JAK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
10
|
Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, Shi J. Recent progress on tyrosine kinase 2 JH2 inhibitors. Int Immunopharmacol 2023; 121:110434. [PMID: 37315371 DOI: 10.1016/j.intimp.2023.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which can regulate the signaling of multiple pro-inflammatory cytokines, including IL12, IL23 and type I interferon (IFNα/β), and its inhibitors can treat autoimmune diseases caused by the abnormal expression of IL12 and IL23. Interest in TYK2 JH2 inhibitors has increased as a result of safety concerns with JAK inhibitors. This overview introduces TYK2 JH2 inhibitors that are already on the market, including Deucravactinib (BMS-986165), as well as those currently in clinical trials, such as BMS-986202, NDI-034858, and ESK-001.
Collapse
Affiliation(s)
- Lidan Deng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Li Wan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Tingting Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Aarhus TI, Eickhoff J, Klebl B, Unger A, Boros J, Choidas A, Zischinsky ML, Wolowczyk C, Bjørkøy G, Sundby E, Hoff BH. A highly selective purine-based inhibitor of CSF1R potently inhibits osteoclast differentiation. Eur J Med Chem 2023; 255:115344. [PMID: 37141705 DOI: 10.1016/j.ejmech.2023.115344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) plays an important role in the regulation of many inflammatory processes, and overexpression of the kinase is implicated in several disease states. Identifying selective, small-molecule inhibitors of CSF1R may be a crucial step toward treating these disorders. Through modelling, synthesis, and a systematic structure-activity relationship study, we have identified a number of potent and highly selective purine-based inhibitors of CSF1R. The optimized 6,8-disubstituted antagonist, compound 9, has enzymatic IC50 of 0.2 nM, and displays a strong affinity toward the autoinhibited form of CSF1R, contrasting that of other previously reported inhibitors. As a result of its binding mode, the inhibitor shows excellent selectivity (Selectivity score: 0.06), evidenced by profiling towards a panel of 468 kinases. In cell-based assays, this inhibitor shows dose-dependent blockade of CSF1-mediated downstream signalling in murine bone marrow-derived macrophages (IC50 = 106 nM) as well as disruption of osteoclast differentiation at nanomolar levels. In vivo experiments, however, indicate that improve metabolic stability is needed in order to further progress this compound class.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Joanna Boros
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
12
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
13
|
Li F, Lu ZY, Xue YT, Liu Y, Cao J, Sun ZT, Zhang Q, Xu MD, Wang XY, Xu KL, Wu QY. Molecular basis of JAK2 H608Y and H608N mutations in the pathology of acute myeloid leukemia. Int J Biol Macromol 2023; 229:247-259. [PMID: 36529225 DOI: 10.1016/j.ijbiomac.2022.12.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Risk-stratification of acute myeloid leukemia (AML) based on (cyto)genetic aberrations, including hotspot mutations, deletions and point mutations have evolved substantially in recent years. With the development of next-generation sequence technology, more and more novel mutations in the AML were identified. Thus, to unravel roles and mechanism of novel mutations would improve prognostic and predictive abilities. In this study, two novel germline JAK2 His608Tyr (H608Y) and His608Asn (H608N) mutations were identified and the molecular basis of these mutations in the leukemiagenesis of AML was elucidated. Our results indicated that JAK2 H608Y and H608N mutations disrupted the hydrogen bond between Q656 and H608 which reduced the JH2 domain's activity and abolished interactions between JH1 and JH2 domains, forced JAK2 into the active conformation, facilitated the entrance of substrates and thus caused JAK2 hyperactivation. Further studies suggested that JAK2 H608Y and H608N mutations enhanced the cell proliferation and inhibited the differentiation of Ba/F3 and MV4-11 cells via activating the JAK2-STAT5 signaling pathway. Moreover, rescue experiments demonstrated that mutations repaired the hydrogen bond between Q656 and H608 displayed opposite results. Thus, this study revealed the molecular basis of JAK2 H608Y and H608N mutations in the pathology of AML.
Collapse
Affiliation(s)
- Feng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeng-Tian Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Di Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, Shandong Agricultural University, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Identification of Novel Small Molecule Ligands for JAK2 Pseudokinase Domain. Pharmaceuticals (Basel) 2023; 16:ph16010075. [PMID: 36678572 PMCID: PMC9865020 DOI: 10.3390/ph16010075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity.
Collapse
|
15
|
Ociepa K, Danilewicz M, Wągrowska-Danilewicz M, Peterson-Jęckowska R, Wójcicka-Rubin A, Lewkowicz N, Zajdel R, Żebrowska A. Expression of the Selected Proteins of JAK/STAT Signaling Pathway in Diseases with Oral Mucosa Involvement. Int J Mol Sci 2022; 24:ijms24010323. [PMID: 36613766 PMCID: PMC9820278 DOI: 10.3390/ijms24010323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The JAK/STAT signal pathway is a system of intracellular proteins used by many cytokines and growth factors to express genes responsible for the process of cell activation, proliferation and differentiation. There has been numerous inflammatory and autoimmune diseases identified where the JAK/STAT signaling is disrupted; however, there are only a few papers concerning autoimmune bullous diseases published. The aim of this study was to evaluate the expression of proteins: JAK3, STAT2, STAT4 and STAT6 in epithelium lesions in patients with pemphigus vulgaris (PV), bullous pemphigoid (BP), oral lichen planus (LP) and chronic ulcerative stomatitis (CUS), as well as in the control group. Immunohistochemistry and immunoblotting were used to evaluate expression of selected proteins. We found significantly higher expression of selected JAK/STAT proteins in oral mucosa lesions in study groups in comparison to the control group, which indicates participation of JAK/STAT pathway in pathogenesis of these diseases. In BP and PV there were no increased STAT2 expression, whereas in CUS and LP no increased STAT4 expression occurred. The differences in expression of JAK/STAT proteins in selected disorders have been observed. These results create new potential therapeutic targets for the treatment.
Collapse
Affiliation(s)
- Kamila Ociepa
- Department of Dermatology and Venereology, Medical University of Lodz, 90-674 Lodz, Poland
| | - Marian Danilewicz
- Department of Pathomorphology, Medical University of Lodz, 92-213 Lodz, Poland
| | | | - Róża Peterson-Jęckowska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Lodz, 92-213 Lodz, Poland
| | - Angelika Wójcicka-Rubin
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Lodz, 92-213 Lodz, Poland
| | - Natalia Lewkowicz
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Lodz, 92-213 Lodz, Poland
| | - Radosław Zajdel
- Department of Computer Science in Economics, Faculty of Economics and Sociology, University of Lodz, 90-255 Lodz, Poland
| | - Agnieszka Żebrowska
- Department of Dermatology and Venereology, Medical University of Lodz, 90-674 Lodz, Poland
- Correspondence:
| |
Collapse
|
16
|
Fitzgibbon C, Meng Y, Murphy JM. Co-expression of recombinant RIPK3:MLKL complexes using the baculovirus-insect cell system. Methods Enzymol 2022; 667:183-227. [PMID: 35525542 DOI: 10.1016/bs.mie.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudokinase domains are found throughout the kingdoms of life and serve myriad roles in cell signaling. These domains, which resemble protein kinases but are catalytically-deficient, have been described principally as protein interaction domains. Broadly, pseudokinases have been reported to function as: allosteric regulators of conventional enzymes; scaffolds to nucleate assembly and/or localization of signaling complexes; molecular switches; or competitors of signaling complex assembly. From detailed structural and biochemical studies of individual pseudokinases, a picture of how they mediate protein interactions is beginning to emerge. Many such studies have relied on recombinant protein production in insect cells, where endogenous chaperones and modifying enzymes favor bona fide folding of pseudokinases. Here, we describe methods for co-expression of pseudokinases and their interactors in insect cells, as exemplified by the MLKL pseudokinase, which is the terminal effector in the necroptosis cell death pathway, and its upstream regulator kinase RIPK3. These methods are broadly applicable to co-expression of other pseudokinases with their interaction partners from bacmids using the baculovirus-insect cell expression system.
Collapse
Affiliation(s)
- Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Locke GA, Muckelbauer J, Tokarski JS, Barbieri CM, Belić S, Falk B, Tredup J, Wang YK. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling. Methods Enzymol 2022; 667:685-727. [PMID: 35525559 DOI: 10.1016/bs.mie.2022.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.
Collapse
Affiliation(s)
- Gregory A Locke
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States.
| | - Jodi Muckelbauer
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - John S Tokarski
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Christopher M Barbieri
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Stefan Belić
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Bradley Falk
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Jeffrey Tredup
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Ying-Kai Wang
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| |
Collapse
|
18
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
19
|
Hu M, Yang T, Yang L, Niu L, Zhu J, Zhao A, Shi M, Yuan X, Tang M, Yang J, Pei H, Yang Z, Chen Q, Ye H, Niu T, Chen L. Preclinical studies of Flonoltinib Maleate, a novel JAK2/FLT3 inhibitor, in treatment of JAK2 V617F-induced myeloproliferative neoplasms. Blood Cancer J 2022; 12:37. [PMID: 35256594 PMCID: PMC8901636 DOI: 10.1038/s41408-022-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.
Collapse
Affiliation(s)
- Mengshi Hu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jinbing Zhu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ailin Zhao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, China.
| |
Collapse
|
20
|
Mortimer NT, Fischer ML, Waring AL, Kr P, Kacsoh BZ, Brantley SE, Keebaugh ES, Hill J, Lark C, Martin J, Bains P, Lee J, Vrailas-Mortimer AD, Schlenke TA. Extracellular matrix protein N-glycosylation mediates immune self-tolerance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:e2017460118. [PMID: 34544850 PMCID: PMC8488588 DOI: 10.1073/pnas.2017460118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals.
Collapse
Affiliation(s)
- Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790;
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Ashley L Waring
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Balint Z Kacsoh
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Chris Lark
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Julia Martin
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pravleen Bains
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Jonathan Lee
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
21
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
22
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. A small molecule inhibitor of HER3: a proof-of-concept study. Biochem J 2020; 477:3329-3347. [PMID: 32815546 PMCID: PMC7489893 DOI: 10.1042/bcj20200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.
Collapse
Affiliation(s)
- Audrey Colomba
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park, Macclesfield, U.K
| | - Roger George
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Selene Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Laura Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Daniel J. Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - Shahid Mehmood
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Jeroen Claus
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
| | - Svend Kjaer
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Ambrosius P. Snijders
- Protein Analysis and Proteomics Science Technology Platform, The Francis Crick Institute, London, U.K
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, U.K
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Peter J. Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, U.K
- CRUK KHP Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Campus, London, U.K
| |
Collapse
|
24
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
26
|
Xu P, Shen P, Yu B, Xu X, Ge R, Cheng X, Chen Q, Bian J, Li Z, Wang J. Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur J Med Chem 2020; 192:112155. [PMID: 32120325 DOI: 10.1016/j.ejmech.2020.112155] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The Janus kinases or JAKs are a family of intracellular tyrosine kinases that play an essential role in the signaling of numerous cytokines that have been implicated in the pathogenesis of autoimmune diseases and myeloproliferative disorders. JAKs are activated upon ligand induced receptor homo- or heterodimerization, which results in the immediate phosphorylation of tyrosine residues and the phosphotyrosines then serve as docking sites for cytoplasmic signal transducer and activator of transcription (STAT) proteins which become phosphorylated by the JAKs upon recruitment to the receptor complex. The phosphorylated STAT proteins dimerize and travel to the cellular nucleus, where they act as transcription factors. Interfering in the JAK-STAT pathway has yielded the only approved small molecule kinase inhibitors for immunological indications. Numerous medicinal chemistry studies are currently aimed at the design of novel and potent inhibitors for JAKs. Additionally, whether the second-generation inhibitors which possessed selectivity for JAKs are more efficient are under research. This Perspective summarizes the progress in the discovery and development of JAKs inhibitors, including the potential binding site and approaches for identifying small-molecule inhibitors, as well as future therapeutic perspectives in autoimmune diseases and myeloproliferative disorders are also put forward in order to provide reference and rational for the drug discovery of novel and potent JAKs inhibitors.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Bin Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Raoling Ge
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, 650000, China
| | - Xinying Cheng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qiuyu Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| | - JuBo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|
27
|
Syeed N. JAK2 and Beyond: Mutational Study of JAK2V617 in Myeloproliferative Disorders and Haematological Malignancies in Kashmiri population. Asian Pac J Cancer Prev 2019; 20:3611-3615. [PMID: 31870101 PMCID: PMC7173381 DOI: 10.31557/apjcp.2019.20.12.3611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Janus Tyrosine Kinase-2 (JAK2 V617F), a novel point mutation affecting the MPD'S is a somatic gain-of-function mutation. It alters a highly conserved amino acid valine in the negative regulatory JH2 domain to phenylalanine predicted to dysregulate kinase activity. AIM To evaluate the prevalence and clinical significance of JAK2 V617F mutation in various MPD's as well as in hematological malignancies. SUBJECTS AND METHODS JAK2 mutation was assessed in 90 patients with myeloproliferative disorders and 47 leukemic patients. In addition, peripheral blood samples from 90 healthy donors were also collected as control. We used a highly sensitive Allele-Specific polymerase chain reaction (AS-PCR) for the detection and confirmed the mutation further by direct sequencing. RESULTS Our results showed significant differences between various disorders with respect to either the proportion of positivity or that of mutant alleles. JAK2-V617F was detected in 67/90 MPD patients and 02/17 for AML,01/11 for ALL-L1,02/12 for ALL-L2 and 02/07 for CML and 90 healthy controls. CONCLUSION From the above findings it is evident that the JAK2 V617F mutation is widespread not only in MPD's but also in hematological malignancies, which might as well lead to the new classification of MPD'S. Our data also suggest that different genetic events may lead to JAK-STAT pathway activation in different malignancies.
Collapse
Affiliation(s)
- Nidda Syeed
- College of Applied Medical Sciences, Taibah University, Madinah Saudi Arabia.,Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, 190011, India
| |
Collapse
|
28
|
Burke JR, Cheng L, Gillooly KM, Strnad J, Zupa-Fernandez A, Catlett IM, Zhang Y, Heimrich EM, McIntyre KW, Cunningham MD, Carman JA, Zhou X, Banas D, Chaudhry C, Li S, D’Arienzo C, Chimalakonda A, Yang X, Xie JH, Pang J, Zhao Q, Rose SM, Huang J, Moslin RM, Wrobleski ST, Weinstein DS, Salter-Cid LM. Autoimmune pathways in mice and humans are blocked by pharmacological stabilization of the TYK2 pseudokinase domain. Sci Transl Med 2019; 11:11/502/eaaw1736. [DOI: 10.1126/scitranslmed.aaw1736] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/24/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
TYK2 is a nonreceptor tyrosine kinase involved in adaptive and innate immune responses. A deactivating coding variant has previously been shown to prevent receptor-stimulated activation of this kinase and provides high protection from several common autoimmune diseases but without immunodeficiency. An agent that recapitulates the phenotype of this deactivating coding variant may therefore represent an important advancement in the treatment of autoimmunity. BMS-986165 is a potent oral agent that similarly blocks receptor-stimulated activation of TYK2 allosterically and with high selectivity and potency afforded through optimized binding to a regulatory domain of the protein. Signaling and functional responses in human TH17, TH1, B cells, and myeloid cells integral to autoimmunity were blocked by BMS-986165, both in vitro and in vivo in a phase 1 clinical trial. BMS-986165 demonstrated robust efficacy, consistent with blockade of multiple autoimmune pathways, in murine models of lupus nephritis and inflammatory bowel disease, supporting its therapeutic potential for multiple immune-mediated diseases.
Collapse
|
29
|
Roles of T875N somatic mutation in the activity, structural stability of JAK2 and the transformation of OCI-AML3 cells. Int J Biol Macromol 2019; 137:1030-1040. [PMID: 31299252 DOI: 10.1016/j.ijbiomac.2019.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023]
Abstract
Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.2% of AML patients. But the structural basis and mechanism of JAK2 T875N mutation in the pathology of AML is still unclear. Our results suggested that JAK2 T875N mutation disrupted the T875 and D873 interaction which destroyed the compact structure of JH1 domain, forced it into the active conformation, facilitated the entrance of substrate and thus led to JAK2 hyperactivation. Mutations (T875N, T875A, D873A and D873G) disrupted the T875 and D873 interaction enhanced JAK2's activity, decreased its structural stability and JH2 domain's activity which further enhanced JAK2's activity, while mutations (T875R, D873E, T875R/D873E) repaired this interaction displayed opposite results. Moreover, JAK2 T875N mutation enhanced the activity of JAK2-STAT5 pathway, promoted the proliferation and transformation of OCI-AML3 cells. This study provides clues in understanding structural basis of T875N mutation caused JAK2 hyperactivation and its roles in the pathology of AML.
Collapse
|
30
|
Wu QY, Ma MM, Zhang S, Cao J, Yan ZL, Chen C, Li ZY, Zeng LY, Wang XY, Li F, Xu KL. Disruption of R867 and Y613 interaction plays key roles in JAK2 R867Q mutation caused acute leukemia. Int J Biol Macromol 2019; 136:209-219. [PMID: 31199972 DOI: 10.1016/j.ijbiomac.2019.06.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations were important for the leukemogenesis of acute leukemia (AL). The JAK2 R867Q somatic mutation is detected in a subset of AL patients. However, roles of JAK2 R867Q mutation in the pathogenesis of AL remain unclear. In this study, homology modeling analysis showed that loss of interaction between R867 and Y613 disrupted the JAK2 JH1/JH2 domain's interactions was responsible for its activation. JAK2 R867Q and mutations (R867A and R867G) abolished this interaction caused JAK2 constitutive activation. While, mutations (R867K, Y613E, R867K/Y613E) repairing this interaction reduced JAK2 R867Q mutation's activity. Furthermore, our studies showed that abolished R867 and Y613 interaction disrupted JH1/JH2 domains' interactions and led to JAK2 constitutive activation. More importantly, mutations (R867Q, R867A and R867G) disrupted this interaction enhanced the activity of JAK2-STAT5 pathway and the proliferation of Ba/F3 and MV4-11 cells. Further study showed that JAK2 R867Q mutation promoted the expression of proliferation marker and inhibited the differentiation marker of Ba/F3 and MV4-11 cells. Thus our studies provide clues in understanding the pathogenesis of JAK2 R867Q mutation in AL.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Ling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
31
|
McNally R, Li Q, Li K, Dekker C, Vangrevelinghe E, Jones M, Chène P, Machauer R, Radimerski T, Eck MJ. Discovery and Structural Characterization of ATP-Site Ligands for the Wild-Type and V617F Mutant JAK2 Pseudokinase Domain. ACS Chem Biol 2019; 14:587-593. [PMID: 30763067 DOI: 10.1021/acschembio.8b00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding. Exploration of analogs of screening hit BI-D1870 led to the identification of compound 2, a 123 nM ligand for the pseudokinase domain. Interestingly, crystal structures of the V617F domain in complex with two unrelated compounds reveal a conformation that is characteristic of the wild-type domain, rather than that previously observed for the V617F mutant. These structures suggest that certain ATP-site ligands can modulate the V617F allosteric site, thereby providing a mechanistic rationale for targeting the pseudokinase domain and a structural foundation for development of more potent and pseudokinase-selective compounds.
Collapse
Affiliation(s)
- Randall McNally
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Qing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Kunhua Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Carien Dekker
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Eric Vangrevelinghe
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Matthew Jones
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Patrick Chène
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Rainer Machauer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Radimerski
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Michael J. Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Benton CB, Boddu PC, DiNardo CD, Bose P, Wang F, Assi R, Pemmaraju N, KC D, Pierce S, Patel K, Konopleva M, Ravandi F, Garcia‐Manero G, Kadia TM, Cortes J, Kantarjian HM, Andreeff M, Verstovsek S. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 2019; 125:1855-1866. [DOI: 10.1002/cncr.31986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Christopher B. Benton
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prajwal C. Boddu
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Prithviraj Bose
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Feng Wang
- Department of Genomic Medicine The University of Texas MD Anderson Cancer Center Houston Texas
| | - Rita Assi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Devendra KC
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Sherry Pierce
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Keyur Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | | | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Jorge Cortes
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Hagop M. Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Andreeff
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| | - Srdan Verstovsek
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
33
|
Ibrahim IK, Hassan R, Ali EW, Omer A. Polycythaemia Vera among Sudanese Patients with Special Emphasis on JAK2 Mutations. Asian Pac J Cancer Prev 2019; 20:41-44. [PMID: 30677867 PMCID: PMC6485582 DOI: 10.31557/apjcp.2019.20.1.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: In recent years, a somatic point mutation in the Janus Kinase 2 (JAK2) gene (1849 G→T, V617F)
has been reported to occur in over 90% of patients with polycythemia vera (PV). Another JAK2 mutation in exon 12
had been described and shown capable of activating erythropoietin signaling pathways. Objective: In this study, we
aimed to determine the frequency of Jak2 mutations (JAK2V617F and JAK2 exon 12) as well as their relationships
with hematological parameters in Sudanese patients with myeloproliferative disorders (MPD). A comparison with
findings of published studies from other geographic regions was included. Materials and Methods: From each of
a total of 83 polycythaemia patients, six milliliters (ml) of venous blood were collected and processed for molecular
analysis and measurement of serum erythropoietin level by enzyme-linked immunoassay (ELISA). The JAK2 V617F
mutation was determined using an allele-specific competitive blocker (ACB) -PCR assay and High Resolution Melting
(HRM) analysis was applied for the JAK2 exon 12 mutation. Results: According to patients’ history and the results
for EPO levels, nine (10.7 %) out of 83 patients were found to have secondary polycythaemia and 74 (89.3%) PV. The
overall frequency of the 2 JAK2 mutations was 94.6% in our Sudanese PV patients, JAK2V617F being found in 91%
and JAK2 exon 12 mutations in 8.1%.Conclusion: In summary JAK2 V617F and JAK2 exon 12 mutations are very
common in Sudanese PC cases.
Collapse
Affiliation(s)
- Ibrahim Khidir Ibrahim
- Department of Haematology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan.,Department of Haematology, School of Medical Sciences, University Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | |
Collapse
|
34
|
The regulatory role of the kinase-homology domain in receptor guanylyl cyclases: nothing 'pseudo' about it! Biochem Soc Trans 2018; 46:1729-1742. [PMID: 30420416 DOI: 10.1042/bst20180472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
The availability of genome sequence information and a large number of protein structures has allowed the cataloging of genes into various families, based on their function and predicted biochemical activity. Intriguingly, a number of proteins harbor changes in the amino acid sequence at residues, that from structural elucidation, are critical for catalytic activity. Such proteins have been categorized as 'pseudoenzymes'. Here, we review the role of the pseudokinase (or kinase-homology) domain in receptor guanylyl cyclases. These are multidomain single-pass, transmembrane proteins harboring an extracellular ligand-binding domain, and an intracellular domain composed of a kinase-homology domain that regulates the activity of the associated guanylyl cyclase domain. Mutations that lie in the kinase-homology domain of these receptors are associated with human disease, and either abolish or enhance cGMP production by these receptors to alter downstream signaling events. This raises the interesting possibility that one could identify molecules that bind to the pseudokinase domain and regulate the activities of these receptors, in order to alleviate symptoms in patients harboring these mutations.
Collapse
|
35
|
Hammarén HM, Virtanen AT, Abraham BG, Peussa H, Hubbard SR, Silvennoinen O. Janus kinase 2 activation mechanisms revealed by analysis of suppressing mutations. J Allergy Clin Immunol 2018; 143:1549-1559.e6. [PMID: 30092288 DOI: 10.1016/j.jaci.2018.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/30/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Janus kinases (JAKs; JAK1 to JAK3 and tyrosine kinase 2) mediate cytokine signals in the regulation of hematopoiesis and immunity. JAK2 clinical mutations cause myeloproliferative neoplasms and leukemia, and the mutations strongly concentrate in the regulatory pseudokinase domain Janus kinase homology (JH) 2. Current clinical JAK inhibitors target the tyrosine kinase domain and lack mutation and pathway selectivity. OBJECTIVE We sought to characterize mechanisms and differences for pathogenic and cytokine-induced JAK2 activation to enable design of novel selective JAK inhibitors. METHODS We performed a systematic analysis of JAK2 activation requirements using structure-guided mutagenesis, cell-signaling assays, microscopy, and biochemical analysis. RESULTS Distinct structural requirements were identified for activation of different pathogenic mutations. Specifically, the predominant JAK2 mutation, V617F, is the most sensitive to structural perturbations in multiple JH2 elements (C helix [αC], Src homology 2-JH2 linker, and ATP binding site). In contrast, activation of K539L is resistant to most perturbations. Normal cytokine signaling shows distinct differences in activation requirements: JH2 ATP binding site mutations have only a minor effect on signaling, whereas JH2 αC mutations reduce homomeric (JAK2-JAK2) erythropoietin signaling and almost completely abrogate heteromeric (JAK2-JAK1) IFN-γ signaling, potentially by disrupting a dimerization interface on JH2. CONCLUSIONS These results suggest that therapeutic approaches targeting the JH2 ATP binding site and αC could be effective in inhibiting most pathogenic mutations. JH2 ATP site targeting has the potential for reduced side effects by retaining erythropoietin and IFN-γ functions. Simultaneously, however, we identified the JH2 αC interface as a potential target for pathway-selective JAK inhibitors in patients with diseases with unmutated JAK2, thus providing new insights into the development of novel pharmacologic interventions.
Collapse
Affiliation(s)
- Henrik M Hammarén
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anniina T Virtanen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Heidi Peussa
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stevan R Hubbard
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York, NY; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | - Olli Silvennoinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Fimlab Laboratories, Tampere, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
37
|
Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne) 2018; 9:35. [PMID: 29487568 PMCID: PMC5816795 DOI: 10.3389/fendo.2018.00035] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
The growth hormone receptor (GHR), although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK-STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.
Collapse
Affiliation(s)
- Farhad Dehkhoda
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine M. M. Lee
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Johan Medina
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J. Brooks
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
38
|
|
39
|
Newton AS, Deiana L, Puleo DE, Cisneros JA, Cutrona KJ, Schlessinger J, Jorgensen WL. JAK2 JH2 Fluorescence Polarization Assay and Crystal Structures for Complexes with Three Small Molecules. ACS Med Chem Lett 2017. [PMID: 28626520 DOI: 10.1021/acsmedchemlett.7b00154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A competitive fluorescence polarization (FP) assay is reported for determining binding affinities of probe molecules with the pseudokinase JAK2 JH2 allosteric site. The syntheses of the fluorescent 5 and 6 used in the assay are reported as well as Kd results for 10 compounds, including JNJ7706621, NVP-BSK805, and filgotinib (GLPG0634). X-ray crystal structures of JAK2 JH2 in complex with NVP-BSK805, filgotinib, and diaminopyrimidine 8 elucidate the binding poses.
Collapse
Affiliation(s)
- Ana S. Newton
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Luca Deiana
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - David E. Puleo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - José A. Cisneros
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kara J. Cutrona
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
40
|
Puleo DE, Kucera K, Hammarén HM, Ungureanu D, Newton AS, Silvennoinen O, Jorgensen WL, Schlessinger J. Identification and Characterization of JAK2 Pseudokinase Domain Small Molecule Binders. ACS Med Chem Lett 2017. [PMID: 28626521 DOI: 10.1021/acsmedchemlett.7b00153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Janus kinases (JAKs) regulate hematopoiesis via the cytokine-mediated JAK-STAT signaling pathway. JAKs contain tandem C-terminal pseudokinase (JH2) and tyrosine kinase (JH1) domains. The JAK2 pseudokinase domain adopts a protein kinase fold and, despite its pseudokinase designation, binds ATP with micromolar affinity. Recent evidence shows that displacing ATP from the JAK2 JH2 domain alters the hyperactivation state of the oncogenic JAK2 V617F protein while sparing the wild type JAK2 protein. In this study, small molecule binders of JAK2 JH2 were identified via an in vitro screen. Top hits were characterized using biophysical and structural approaches. Development of pseudokinase-selective compounds may offer novel pharmacological opportunities for treating cancers driven by JAK2 V617F and other oncogenic JAK mutants.
Collapse
Affiliation(s)
| | | | - Henrik M. Hammarén
- Faculty
of Medicine and Biosciences, University of Tampere, Tampere 33014, Finland
| | - Daniela Ungureanu
- Faculty
of Medicine and Biosciences, University of Tampere, Tampere 33014, Finland
| | | | - Olli Silvennoinen
- Faculty
of Medicine and Biosciences, University of Tampere, Tampere 33014, Finland
| | | | | |
Collapse
|
41
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
42
|
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm that presents either as a primary disease or evolves secondarily from polycythemia vera or essential thrombocythemia to post-polycythemia vera MF or post-essential thrombocythemia MF, respectively. Myelofibrosis is characterized by stem cell-derived clonal myeloproliferation, abnormal cytokine expression, bone marrow fibrosis, anemia, splenomegaly, extramedullary hematopoiesis, constitutional symptoms, cachexia, leukemic progression, and shortened survival. Therapeutic options for patients with MF have been limited to the use of cytoreductive agents, predominantly hydroxyurea; splenectomy and splenic irradiation for treatment of splenomegaly; and management of anemia with transfusions, erythropoiesis-stimulating agents, androgens, and immunomodulatory agents along with steroids. The only curative option is allogeneic stem cell transplantation (ASCT), which is associated with high morbidity and mortality risks. Recently, JAK (Janus kinase) inhibitor therapies have become available and proven to be palliative in primary MF patients with hydroxyurea-refractory splenomegaly and severe constitutional symptoms. The purpose of this article is to review the clinical features of MF; discuss different treatment strategies, including ASCT; and discuss the potential danger and benefit of using JAK inhibitors prior to ASCT.
Collapse
|
43
|
Li JJ, Cheng P, Tu J, Zhai HL, Zhang XY. Enhancing specificity in the Janus kinases: a study on the thienopyridine JAK2 selective mechanism combined molecular dynamics simulation. MOLECULAR BIOSYSTEMS 2016; 12:575-87. [DOI: 10.1039/c5mb00747j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The superposition of the binding affinities between 19 and four JAK kinases.
Collapse
Affiliation(s)
- Jiao Jiao Li
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Peng Cheng
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Jing Tu
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Xiao Yun Zhang
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| |
Collapse
|
44
|
Hammarén HM, Virtanen AT, Silvennoinen O. Nucleotide-binding mechanisms in pseudokinases. Biosci Rep 2015; 36:e00282. [PMID: 26589967 PMCID: PMC4718504 DOI: 10.1042/bsr20150226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are important components in several signalling cascades. Furthermore, several pseudokinases have been linked to human diseases, particularly cancer, which is raising interest for therapeutic approaches towards these proteins. The ATP-binding pocket is a well-established drug target and elucidation of the mechanism and properties of nt binding in pseudokinases is of significant interest and importance. Recent studies have demonstrated that members of the pseudokinase family are very diverse in structure as well as in their ability and mechanism to bind nts or perform phosphoryl transfer reactions. This diversity also precludes prediction of pseudokinase function, or the importance of nt binding for said function, based on primary sequence alone. Currently available data indicate that ∼40% of pseudokinases are able to bind nts, whereas only few are able to catalyse occasional phosphoryl transfer. Pseudokinases employ diverse mechanisms to bind nts, which usually occurs at low, but physiological, affinity. ATP binding serves often a structural role but in most cases the functional roles are not precisely known. In the present review, we discuss the various mechanisms that pseudokinases employ for nt binding and how this often low-affinity binding can be accurately analysed.
Collapse
Affiliation(s)
- Henrik M Hammarén
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Anniina T Virtanen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Olli Silvennoinen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland Clinical Hematology, Department of Internal Medicine, Tampere University Hospital, Medisiinarinkatu 3, FI-33520 Tampere, Finland
| |
Collapse
|
45
|
Min X, Ungureanu D, Maxwell S, Hammarén H, Thibault S, Hillert EK, Ayres M, Greenfield B, Eksterowicz J, Gabel C, Walker N, Silvennoinen O, Wang Z. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2). J Biol Chem 2015; 290:27261-27270. [PMID: 26359499 DOI: 10.1074/jbc.m115.672048] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.
Collapse
Affiliation(s)
- Xiaoshan Min
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080
| | - Daniela Ungureanu
- the Institute of Biomedical Technology, University of Tampere, 33014 Tampere, Finland
| | - Sarah Maxwell
- Departments of Inflammation, Amgen Inc., South San Francisco, California 94080
| | - Henrik Hammarén
- the School of Medicine, University of Tampere, 33014 Tampere, Finland
| | - Steve Thibault
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080
| | | | - Merrill Ayres
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080
| | - Brad Greenfield
- Departments of Inflammation, Amgen Inc., South San Francisco, California 94080
| | - John Eksterowicz
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080
| | - Chris Gabel
- Departments of Inflammation, Amgen Inc., South San Francisco, California 94080
| | - Nigel Walker
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080
| | - Olli Silvennoinen
- the School of Medicine, University of Tampere, 33014 Tampere, Finland; Department of Clinical Hematology, Tampere University Hospital, 33520 Tampere, Finland.
| | - Zhulun Wang
- Departments of Therapeutic Discovery, Amgen Inc., South San Francisco, California 94080.
| |
Collapse
|
46
|
van der Weyden L, Giotopoulos G, Wong K, Rust AG, Robles-Espinoza CD, Osaki H, Huntly BJ, Adams DJ. Somatic drivers of B-ALL in a model of ETV6-RUNX1; Pax5(+/-) leukemia. BMC Cancer 2015; 15:585. [PMID: 26269126 PMCID: PMC4542115 DOI: 10.1186/s12885-015-1586-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND B-cell precursor acute lymphoblastic leukemia (B-ALL) is amongst the leading causes of childhood cancer-related mortality. Its most common chromosomal aberration is the ETV6-RUNX1 fusion gene, with ~25% of ETV6-RUNX1 patients also carrying PAX5 alterations. METHODS We have recreated this mutation background by inter-crossing Etv6-RUNX1 (Etv6 (RUNX1-SB)) and Pax5(+/-) mice and performed an in vivo analysis to find driver genes using Sleeping Beauty transposon-mediated mutagenesis and also exome sequencing. RESULTS Combination of Etv6-RUNX1 and Pax5(+/-) alleles generated a transplantable B220 + CD19+ B-ALL with a significant disease incidence. RNA-seq analysis showed a gene expression pattern consistent with arrest at the pre-B stage. Analysis of the transposon common insertion sites identified genes involved in B-cell development (Zfp423) and the JAK/STAT signaling pathway (Jak1, Stat5 and Il2rb), while exome sequencing revealed somatic hotspot mutations in Jak1 and Jak3 at residues analogous to those mutated in human leukemias, and also mutation of Trp53. CONCLUSIONS Powerful synergies exists in our model suggesting STAT pathway activation and mutation of Trp53 are potent drivers of B-ALL in the context of Etv6-RUNX1;Pax5(+/-).
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
| | - George Giotopoulos
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Cambridge Stem Cell Institute, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.
| | - Kim Wong
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
| | - Alistair G Rust
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
| | | | - Hikari Osaki
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Cambridge Stem Cell Institute, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.
| | - Brian J Huntly
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Cambridge Stem Cell Institute, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK.
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK.
| |
Collapse
|
47
|
ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proc Natl Acad Sci U S A 2015; 112:4642-7. [PMID: 25825724 DOI: 10.1073/pnas.1423201112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase-kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches.
Collapse
|
48
|
Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125:3388-92. [PMID: 25824690 DOI: 10.1182/blood-2015-01-621110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/17/2015] [Indexed: 01/01/2023] Open
Abstract
The critical role of Janus kinase-2 (JAK2) in regulation of myelopoiesis was established 2 decades ago, but identification of mutations in the pseudokinase domain of JAK2 in myeloproliferative neoplasms (MPNs) and in other hematologic malignancies highlighted the role of JAK2 in human disease. These findings have revolutionized the diagnostics of MPNs and led to development of novel JAK2 therapeutics. However, the molecular mechanisms by which mutations in the pseudokinase domain lead to hyperactivation of JAK2 and clinical disease have been unclear. Here, we describe recent advances in the molecular characterization of the JAK2 pseudokinase domain and how pathogenic mutations lead to constitutive activation of JAK2.
Collapse
|
49
|
Transformation of an Unclassified Myeloproliferative Neoplasm with a Rare BCR-JAK2 Fusion Transcript Resulting from the Translocation (9;22)(p24;q11). Case Rep Hematol 2015; 2015:252537. [PMID: 25789185 PMCID: PMC4348613 DOI: 10.1155/2015/252537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/06/2015] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
BCR-ABL1 negative myeloproliferative neoplasms (MPNs) are known to contain alterations of the tyrosine kinase JAK2 (located on 9p24) that result in constitutive activation of the encoded protein. JAK2 fusions are reported in acute and chronic leukemias of myeloid and lymphoid phenotypes. Here, we report an unclassified case of MPN (MPN-U) showing a t(9;22)(p24;q11), which generates a BCR-JAK2 fusion gene by fusing the BCR at intron 13 to JAK2 at intron 17 on the derivative chromosome 22. Most reported JAK2 fusions cases reveal an aggressive clinical course and long-term remissions have only been achieved after allogeneic stem cell transplantation (ASCT). To the best of our knowledge, this is the thirteenth case reported worldwide to describe a BCR-JAK2 fusion transcript in MPN-U. The present report revealed a sustained complete clinical, hematologic, and cytogenetic remission 35 months after diagnosis and ~24 months after ASCT. Regarding BCR-ABL1 negative MPN patients this case report provides strong support for a role of JAK2 activation in the oncogenesis and suggests a possible diagnostic and therapeutic target that should be investigated.
Collapse
|
50
|
Tokarski JS, Zupa-Fernandez A, Tredup JA, Pike K, Chang C, Xie D, Cheng L, Pedicord D, Muckelbauer J, Johnson SR, Wu S, Edavettal SC, Hong Y, Witmer MR, Elkin LL, Blat Y, Pitts WJ, Weinstein DS, Burke JR. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain. J Biol Chem 2015; 290:11061-74. [PMID: 25762719 DOI: 10.1074/jbc.m114.619502] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 01/04/2023] Open
Abstract
Inhibition of signal transduction downstream of the IL-23 receptor represents an intriguing approach to the treatment of autoimmunity. Using a chemogenomics approach marrying kinome-wide inhibitory profiles of a compound library with the cellular activity against an IL-23-stimulated transcriptional response in T lymphocytes, a class of inhibitors was identified that bind to and stabilize the pseudokinase domain of the Janus kinase tyrosine kinase 2 (Tyk2), resulting in blockade of receptor-mediated activation of the adjacent catalytic domain. These Tyk2 pseudokinase domain stabilizers were also shown to inhibit Tyk2-dependent signaling through the Type I interferon receptor but not Tyk2-independent signaling and transcriptional cellular assays, including stimulation through the receptors for IL-2 (JAK1- and JAK3-dependent) and thrombopoietin (JAK2-dependent), demonstrating the high functional selectivity of this approach. A crystal structure of the pseudokinase domain liganded with a representative example showed the compound bound to a site analogous to the ATP-binding site in catalytic kinases with features consistent with high ligand selectivity. The results support a model where the pseudokinase domain regulates activation of the catalytic domain by forming receptor-regulated inhibitory interactions. Tyk2 pseudokinase stabilizers, therefore, represent a novel approach to the design of potent and selective agents for the treatment of autoimmunity.
Collapse
Affiliation(s)
| | | | | | - Kristen Pike
- the Department of Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492
| | | | | | | | | | | | | | | | | | - Yang Hong
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | | | - Lisa L Elkin
- the Department of Leads Discovery and Optimization, Bristol-Myers Squibb Research and Development, Wallingford, Connecticut 06492
| | | | - William J Pitts
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | - David S Weinstein
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543 and
| | | |
Collapse
|