1
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
2
|
Arricau-Bouvery N, Dubrana MP, Canuto F, Duret S, Brocard L, Claverol S, Malembic-Maher S, Foissac X. Flavescence dorée phytoplasma enters insect cells by a clathrin-mediated endocytosis allowing infection of its insect vector. Sci Rep 2023; 13:2211. [PMID: 36750707 PMCID: PMC9905606 DOI: 10.1038/s41598-023-29341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
To perform its propagative and circulative cycle into its insect vector, the flavescence dorée phytoplasma invades different cell types. Clathrin-mediated endocytosis is used by a wide range of bacteria to infect eukaryote cells. Among the insect proteins interacting with the phytoplasma adhesin VmpA, we identified the adaptor protein complex AP-1 and AP-2 suggesting that phytoplasmas could enter the insect cells via clathrin-mediated endocytosis. By infection assays of insect cells in culture, we showed that phytoplasmas entry into Drosophila S2 cells was more efficient than infection of the Euva cell line developed from the insect vector Euscelidius variegatus. Chlorpromazine, cytochalasin D and knockdown of clathrin heavy chain (chc) gene expression using RNA interference inhibited entry of phytoplasmas into S2 cells. During invasion of S2 cells, phytoplasmas were observed very closed to recombinant GFP-labelled clathrin light chain. To verify the role of clathrin in the insect colonization by phytoplasmas, RNAi was performed via artificial feeding of chc dsRNA by the vector E. variegatus. This decreased the expression of chc gene in the midgut and heads of E. variegatus. The chc lower expression correlated to a decreased of midgut and salivary gland cells colonization after the insects had ingested phytoplasmas from infected plants. In conclusion, results indicate that clathrin is important for the FD phytoplasma to enter insect cells and colonize its insect vector.
Collapse
Affiliation(s)
- Nathalie Arricau-Bouvery
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France.
| | - Marie-Pierre Dubrana
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Francesca Canuto
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Sybille Duret
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, 33140, Villenave d'Ornon, France
| | | | - Sylvie Malembic-Maher
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| | - Xavier Foissac
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, 33140, Villenave d'Ornon, France
| |
Collapse
|
3
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
4
|
Moreno MR, Boswell K, Casbolt HL, Bulgakova NA. Multifaceted control of E-cadherin dynamics by Adaptor Protein Complex 1 during epithelial morphogenesis. Mol Biol Cell 2022; 33:ar80. [PMID: 35609212 DOI: 10.1091/mbc.e21-12-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.
Collapse
Affiliation(s)
- Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Katy Boswell
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Helen L Casbolt
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How Might They Be Implicated in the Development of Invasive Salmonella Typhimurium? Front Immunol 2018; 9:531. [PMID: 29628924 PMCID: PMC5876300 DOI: 10.3389/fimmu.2018.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects and kills T cells, profoundly damaging the host-specific immune response. The virus also integrates into memory T cells and long-lived macrophages, establishing chronic infections. HIV-1 infection impairs the functions of macrophages both in vivo and in vitro, which contributes to the development of opportunistic diseases. Non-typhoidal Salmonella enterica serovar Typhimurium has been identified as the most common cause of bacterial bloodstream infections in HIV-infected adults. In this review, we report how the functions of macrophages are impaired post HIV infection; introduce what makes invasive Salmonella Typhimurium specific for its pathogenesis; and finally, we discuss why these bacteria may be particularly adapted to the HIV-infected host.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Niedergang
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
6
|
Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, King JS. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci U S A 2016; 113:E5906-E5915. [PMID: 27647881 PMCID: PMC5056073 DOI: 10.1073/pnas.1524532113] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macropinocytosis is an ancient mechanism that allows cells to harvest nutrients from extracellular media, which also allows immune cells to sample antigens from their surroundings. During macropinosome formation, bulk plasma membrane is internalized with all its integral proteins. It is vital for cells to salvage these proteins before degradation, but the mechanisms for sorting them are not known. Here we describe the evolutionarily conserved recruitment of the WASH (WASP and SCAR homolog) complex to both macropinosomes and phagosomes within a minute of internalization. Using Dictyostelium, we demonstrate that WASH drives protein sorting and recycling from macropinosomes and is thus essential to maintain surface receptor levels and sustain phagocytosis. WASH functionally interacts with the retromer complex at both early and late phases of macropinosome maturation, but mediates recycling via retromer-dependent and -independent pathways. WASH mutants consequently have decreased membrane levels of integrins and other surface proteins. This study reveals an important pathway enabling cells to sustain macropinocytosis without bulk degradation of plasma membrane components.
Collapse
Affiliation(s)
- Catherine M Buckley
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Navin Gopaldass
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Simon A Johnston
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; Department of Infection, Immunity and Cardiovascular Sciences, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robert H Insall
- Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
7
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
8
|
Stapleton NM, Einarsdóttir HK, Stemerding AM, Vidarsson G. The multiple facets of FcRn in immunity. Immunol Rev 2016; 268:253-68. [PMID: 26497526 DOI: 10.1111/imr.12331] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neonatal Fc receptor, FcRn, is best known for its role in transporting IgG in various tissues, providing newborns with humoral immunity, and for prolonging the half-life of IgG. Recent findings implicate the involvement of FcRn in a far wider range of biological and immunological processes, as FcRn has been found to bind and extend the half-life of albumin; to be involved in IgG transport and antigen sampling at mucosal surfaces; and to be crucial for efficient IgG-mediated phagocytosis. Herein, the function of FcRn will be reviewed, with emphasis on its recently documented significance for IgG polymorphisms affecting the half-life and biodistribution of IgG3, on its role in phagocyte biology, and the subsequent role for the presentation of antigens to lymphocytes.
Collapse
Affiliation(s)
- Nigel M Stapleton
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Helga K Einarsdóttir
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | | | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:927619. [PMID: 24803988 PMCID: PMC3997986 DOI: 10.1155/2014/927619] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 01/01/2023]
Abstract
Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.
Collapse
|
10
|
Müller R, Herr C, Sukumaran SK, Omosigho NN, Plomann M, Riyahi TY, Stumpf M, Swaminathan K, Tsangarides M, Yiannakou K, Blau-Wasser R, Gallinger C, Schleicher M, Kolanus W, Noegel AA. The cytohesin paralog Sec7 of Dictyostelium discoideum is required for phagocytosis and cell motility. Cell Commun Signal 2013; 11:54. [PMID: 23915312 PMCID: PMC3737031 DOI: 10.1186/1478-811x-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022] Open
Abstract
Background Dictyostelium harbors several paralogous Sec7 genes that encode members of three subfamilies of the Sec7 superfamily of guanine nucleotide exchange factors. One of them is the cytohesin family represented by three members in D. discoideum, SecG, Sec7 and a further protein distinguished by several transmembrane domains. Cytohesins are characterized by a Sec7-PH tandem domain and have roles in cell adhesion and migration. Results We study here Sec7. In vitro its PH domain bound preferentially to phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). When following the distribution of GFP-Sec7 in vivo we observed the protein in the cytosol and at the plasma membrane. Strikingly, when cells formed pseudopods, macropinosomes or phagosomes, GFP-Sec7 was conspicuously absent from areas of the plasma membrane which were involved in these processes. Mutant cells lacking Sec7 exhibited an impaired phagocytosis and showed significantly reduced speed and less persistence during migration. Cellular properties associated with mammalian cytohesins like cell-cell and cell-substratum adhesion were not altered. Proteins with roles in membrane trafficking and signal transduction have been identified as putative interaction partners consistent with the data obtained from mutant analysis. Conclusions Sec7 is a cytosolic component and is associated with the plasma membrane in a pattern distinctly different from the accumulation of PI(3,4,5)P3. Mutant analysis reveals that loss of the protein affects cellular processes that involve membrane flow and the actin cytoskeleton.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Structural disorder provides increased adaptability for vesicle trafficking pathways. PLoS Comput Biol 2013; 9:e1003144. [PMID: 23874186 PMCID: PMC3715437 DOI: 10.1371/journal.pcbi.1003144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes. Vesicle trafficking systems are fundamental among cellular transport mechanisms; various cargo molecules are transported via different coated vesicles to their specific destinations in every eukaryotic cell. Clathrin-coated vesicles mediate endocytosis and the late secretory route, while the COat Protein I and II (COPI and COPII) vesicle trafficking routes are responsible for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar basic principles, regulatory mechanisms and structural features of the three systems, their molecular machinery, functions, and evolutionary characteristics vastly differ. We investigated and compared these three routes and their basic functional protein groups from the structural disorder point of view, since disordered protein regions could provide a broad variety of functional and evolutionary advantages for them. We found that structurally disordered protein segments are most abundant in the clathrin system, which might explain the observed inherent plasticity, increased adaptability and exceptional robustness of this route. We support our hypothesis by two analyses on protein multi-functionality and tissue specificity, both being indicative of evolutionary adaptability. Clathrin pathway proteins stand out in both measures, with their disordered regions being largely responsible for their outstanding capabilities.
Collapse
|
12
|
Bhattacharyya S, Mulherkar N, Chandran K. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses 2013; 4:3647-64. [PMID: 23342373 PMCID: PMC3528284 DOI: 10.3390/v4123647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Atomic Energy-Centre for Excellence in Basic Sciences, University of Mumbai, Health Centre Building, Vidyanagari, Kalina, Santacruz East, Mumbai 400098, India; E-Mail:
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-8851
| |
Collapse
|
13
|
Bonazzi M, Kühbacher A, Toledo-Arana A, Mallet A, Vasudevan L, Pizarro-Cerdá J, Brodsky FM, Cossart P. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 2012; 13:1653-66. [PMID: 22984946 DOI: 10.1111/tra.12009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction (AJ) machinery and invade non-phagocytic cells by a clathrin-dependent mechanism. Here, we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E-cadherin. We demonstrate that non-adherent cells expressing the InlA chimera, as bacteria, can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hirst J, Borner GHH, Antrobus R, Peden AA, Hodson NA, Sahlender DA, Robinson MS. Distinct and overlapping roles for AP-1 and GGAs revealed by the "knocksideways" system. Curr Biol 2012; 22:1711-6. [PMID: 22902756 PMCID: PMC3485558 DOI: 10.1016/j.cub.2012.07.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 11/01/2022]
Abstract
Although adaptor protein complex 1 (AP-1) and Golgi-localized, γ ear-containing, ADP-ribosylation factor-binding proteins (GGAs) are both adaptors for clathrin-mediated intracellular trafficking, the pathways they mediate and their relationship to each other remain open questions. To tease apart the functions of AP-1 and GGAs, we rapidly inactivated each adaptor using the "knocksideways" system and then compared the protein composition of clathrin-coated vesicle (CCV) fractions from control and knocksideways cells. The AP-1 knocksideways resulted in a dramatic and unexpected loss of GGA2 from CCVs. Over 30 other peripheral membrane proteins and over 30 transmembrane proteins were also depleted, including several mutated in genetic disorders, indicating that AP-1 acts as a linchpin for intracellular CCV formation. In contrast, the GGA2 knocksideways affected only lysosomal hydrolases and their receptors. We propose that there are at least two populations of intracellular CCVs: one containing both GGAs and AP-1 for anterograde trafficking and another containing AP-1 for retrograde trafficking. Our study shows that knocksideways and proteomics are a powerful combination for investigating protein function, which can potentially be used on many different types of proteins.
Collapse
Affiliation(s)
- Jennifer Hirst
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Phospholipase A2 mediates apolipoprotein-independent uptake of chylomicron remnant-like particles by human macrophages. Int J Vasc Med 2011; 2012:501954. [PMID: 21876814 PMCID: PMC3160105 DOI: 10.1155/2012/501954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein E-receptor-mediated pathways are the main routes by which macrophages take up chylomicron remnants, but uptake may also be mediated by receptor-independent routes. To investigate these mechanisms, triacylglycerol (TG) accumulation induced by apolipoprotein-free chylomicron remnant-like particles (CRLPw/o) in human monocyte-derived macrophages was evaluated. Macrophage TG content increased about 5-fold after incubation with
CRLPw/o, and this effect was not reduced by the inhibition of phagocytosis, macropinocytosis, apolipoprotein E function, or proteoglycan bridging.
The role of lipases, including lipoprotein lipase, cholesteryl ester hydrolase, and secretory (sPLA2) and cytosolic phospholipase A2, was studied using [3H]TG-labelled CRLPw/o. Total cell radioactivity after incubation with [3H]TG CRLPw/o was reduced by 15–30% by inhibitors of lipoprotein lipase and cholesteryl ester hydrolase and by about 45% by inhibitors of sPLA2 and cytosolic PLA2 . These results suggest that macrophage lipolytic enzymes mediate the internalization of postprandial TG-rich lipoproteins and that sPLA2 and cytosolic PLA2, play a more important role than extracellular lipoprotein lipase-mediated TG hydrolysis.
Collapse
|
16
|
Laulagnier K, Schieber NL, Maritzen T, Haucke V, Parton RG, Gruenberg J. Role of AP1 and Gadkin in the traffic of secretory endo-lysosomes. Mol Biol Cell 2011; 22:2068-82. [PMID: 21525240 PMCID: PMC3113771 DOI: 10.1091/mbc.e11-03-0193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022] Open
Abstract
Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.
Collapse
Affiliation(s)
- Karine Laulagnier
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| | - Nicole L. Schieber
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Tanja Maritzen
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Laboratory of Membrane Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Robert G. Parton
- Institute for Molecular Bioscience and Center for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211-Geneva-4, Switzerland
| |
Collapse
|
17
|
Maniak M. Dictyostelium as a model for human lysosomal and trafficking diseases. Semin Cell Dev Biol 2010; 22:114-9. [PMID: 21056680 DOI: 10.1016/j.semcdb.2010.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Abstract
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.
Collapse
Affiliation(s)
- Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, Kassel, Germany.
| |
Collapse
|
18
|
Inhibition of phagocytosis in HIV-1–infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments. Blood 2010; 115:4226-36. [DOI: 10.1182/blood-2009-12-259473] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phagocytosis in macrophages is receptor mediated and relies on actin polymerization coordinated with the focal delivery of intracellular membranes that is necessary for optimal phagocytosis of large particles. Here we show that phagocytosis by various receptors was inhibited in primary human macrophages infected with wild-type HIV-1 but not with a nef-deleted virus. We observed no major perturbation of F-actin accumulation, but adaptor protein 1 (AP1)–positive endosome recruitment was inhibited in HIV-1–infected cells. Expression of negative factor (Nef) was sufficient to inhibit phagocytosis, and myristoylation as well as the LL and DD motifs involved in association of Nef with AP complexes were important for this inhibition. We observed that Nef interferes with AP1 in association with membranes and/or with a cleaved regulatory form of AP1. Finally, an alteration of the recruitment of vesicle-associated membrane protein (VAMP3)– and tumor necrosis factor-α (TNFα)–positive recycling endosomes regulated by AP1, but not of VAMP7-positive late endosomes, was observed in phagocytic cups of HIV-1–infected macrophages. We conclude that HIV-1 impairs optimal phagosome formation through Nef-dependent perturbation of the endosomal remodeling relying on AP1. We therefore identified a mechanism of macrophage function down-regulation in infected cells.
Collapse
|
19
|
Phillips R, Svensson M, Aziz N, Maroof A, Brown N, Beattie L, Signoret N, Kaye PM. Innate killing of Leishmania donovani by macrophages of the splenic marginal zone requires IRF-7. PLoS Pathog 2010; 6:e1000813. [PMID: 20300600 PMCID: PMC2837405 DOI: 10.1371/journal.ppat.1000813] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 02/08/2010] [Indexed: 01/09/2023] Open
Abstract
Highly phagocytic macrophages line the marginal zone (MZ) of the spleen and the lymph node subcapsular sinus. Although these macrophages have been attributed with a variety of functions, including the uptake and clearance of blood and lymph-borne pathogens, little is known about the effector mechanisms they employ after pathogen uptake. Here, we have combined gene expression profiling and RNAi using a stromal macrophage cell line with in situ analysis of the leishmanicidal activity of marginal zone macrophages (MZM) and marginal metallophilic macrophages (MMM) in wild type and gene targeted mice. Our data demonstrate a critical role for interferon regulatory factor-7 (IRF-7) in regulating the killing of intracellular Leishmania donovani by these specialised splenic macrophage sub-populations. This study, therefore, identifies a new role for IRF-7 as a regulator of innate microbicidal activity against this, and perhaps other, non-viral intracellular pathogens. This study also highlights the importance of selecting appropriate macrophage populations when studying pathogen interactions with this functionally diverse lineage of cells.
Collapse
Affiliation(s)
- Rebecca Phillips
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine, F59, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Naveed Aziz
- The Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Asher Maroof
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Nathalie Signoret
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Yutin N, Wolf MY, Wolf YI, Koonin EV. The origins of phagocytosis and eukaryogenesis. Biol Direct 2009; 4:9. [PMID: 19245710 PMCID: PMC2651865 DOI: 10.1186/1745-6150-4-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
Background Phagocytosis, that is, engulfment of large particles by eukaryotic cells, is found in diverse organisms and is often thought to be central to the very origin of the eukaryotic cell, in particular, for the acquisition of bacterial endosymbionts including the ancestor of the mitochondrion. Results Comparisons of the sets of proteins implicated in phagocytosis in different eukaryotes reveal extreme diversity, with very few highly conserved components that typically do not possess readily identifiable prokaryotic homologs. Nevertheless, phylogenetic analysis of those proteins for which such homologs do exist yields clues to the possible origin of phagocytosis. The central finding is that a subset of archaea encode actins that are not only monophyletic with eukaryotic actins but also share unique structural features with actin-related proteins (Arp) 2 and 3. All phagocytic processes are strictly dependent on remodeling of the actin cytoskeleton and the formation of branched filaments for which Arp2/3 are responsible. The presence of common structural features in Arp2/3 and the archaeal actins suggests that the common ancestors of the archaeal and eukaryotic actins were capable of forming branched filaments, like modern Arp2/3. The Rho family GTPases that are ubiquitous regulators of phagocytosis in eukaryotes appear to be of bacterial origin, so assuming that the host of the mitochondrial endosymbiont was an archaeon, the genes for these GTPases come via horizontal gene transfer from the endosymbiont or in an earlier event. Conclusion The present findings suggest a hypothetical scenario of eukaryogenesis under which the archaeal ancestor of eukaryotes had no cell wall (like modern Thermoplasma) but had an actin-based cytoskeleton including branched actin filaments that allowed this organism to produce actin-supported membrane protrusions. These protrusions would facilitate accidental, occasional engulfment of bacteria, one of which eventually became the mitochondrion. The acquisition of the endosymbiont triggered eukaryogenesis, in particular, the emergence of the endomembrane system that eventually led to the evolution of modern-type phagocytosis, independently in several eukaryotic lineages. Reviewers This article was reviewed by Simonetta Gribaldo, Gaspar Jekely, and Pierre Pontarotti. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
22
|
Eto DS, Gordon HB, Dhakal BK, Jones TA, Mulvey MA. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell Microbiol 2008; 10:2553-67. [PMID: 18754852 DOI: 10.1111/j.1462-5822.2008.01229.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.
Collapse
Affiliation(s)
- Danelle S Eto
- Division of Cell Biology and Immunology, Pathology Department, University of Utah, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | |
Collapse
|
23
|
Cosson P, Soldati T. Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 2008; 11:271-6. [DOI: 10.1016/j.mib.2008.05.005] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/23/2008] [Accepted: 05/07/2008] [Indexed: 01/11/2023]
|
24
|
Dieckmann R, Gopaldass N, Escalera C, Soldati T. Monitoring time-dependent maturation changes in purified phagosomes from Dictyostelium discoideum. Methods Mol Biol 2008; 445:327-337. [PMID: 18425460 DOI: 10.1007/978-1-59745-157-4_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The amoeba Dictyostelium discoideum is an established model to study phagocytosis. The sequence of events leading to the internalization and degradation of a particle is conserved in D. discoideum compared to metazoan cells. As its small haploid genome has been sequenced, it is now amenable to genome-wide analysis including organelle proteomics. Therefore, we adapted to Dictyostelium the classical protocol to purify phagosomes formed by ingestion of latex beads particles. The pulse-chase protocol detailed here gives easy access to pure, intact, and synchronized phagosomes from representative stages of the entire process of phagosome maturation. Recently, this protocol was used to generate individual temporal profiles of proteins and lipids during phagosome maturation generating a proteomic fingerprint of six maturation stages (1). In addition, immunolabeling of phagosomes on a coverslip was developed to visualize and quantitate antigen distribution at the level of individual phagosomes.
Collapse
Affiliation(s)
- Régis Dieckmann
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
25
|
Braun V, Deschamps C, Raposo G, Benaroch P, Benmerah A, Chavrier P, Niedergang F. AP-1 and ARF1 control endosomal dynamics at sites of FcR mediated phagocytosis. Mol Biol Cell 2007; 18:4921-31. [PMID: 17914058 PMCID: PMC2096587 DOI: 10.1091/mbc.e07-04-0392] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phagocytosis, the mechanism of ingestion of large material and microorganisms, relies on actin polymerization and on the focal delivery of intracellular endocytic compartments. The molecular mechanisms involved in the formation and delivery of the endocytic vesicles that are recruited at sites of phagocytosis are not well characterized. Here we show that adaptor protein (AP)-1 but not AP-2 clathrin adaptor complexes are recruited early below the sites of particle attachment and are required for efficient receptor-mediated phagocytosis in murine macrophages. Clathrin, however, is not recruited with the AP complexes. We further show that the recruitment of AP-1-positive structures at sites of phagocytosis is regulated by the GTP-binding protein ARF1 but is not sensitive to brefeldin A. Furthermore, AP-1 depletion leads to increased surface levels of TNF-alpha, a cargo known to traffic through the endosomes to the plasma membrane upon stimulation of the macrophages. Together, our results support a clathrin-independent role for AP complexes in endosomal dynamics in macrophages by retaining some cargo proteins, a process important for membrane remodeling during phagocytosis.
Collapse
Affiliation(s)
- Virginie Braun
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Chantal Deschamps
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Graça Raposo
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Philippe Benaroch
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Institut National de la Santé et de la Recherche Médicale U653, F-75248 Paris, France
| | - Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Philippe Chavrier
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Florence Niedergang
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| |
Collapse
|
26
|
Pizarro-Cerdá J, Payrastre B, Wang YJ, Veiga E, Yin HL, Cossart P. Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell Microbiol 2007; 9:2381-90. [PMID: 17555516 DOI: 10.1111/j.1462-5822.2007.00967.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interaction of the Listeria surface protein InlB with the hepatocyte growth factor receptor Met activates signalling events that trigger bacterial internalization into mammalian epithelial cells. We show here that purified phagosomes containing InlB-coated beads display type II phosphatidylinositol 4-kinase (PI4K) activity. In human epithelial HeLa cells, both PI4KIIalpha and PI4KIIbeta isoforms are corecruited with Met around InlB-coated beads or wild-type Listeria during the early steps of internalization, and phosphatidylinositol 4-phosphate [PI(4)P] is detected at the entry site. We demonstrate that PI4KIIalpha or PI4KIIbeta knockdown, but not type III PI4Kbeta knockdown, inhibits Listeria internalization. Production of PI(4)P derivatives such as phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] upon InlB stimulation is not affected by PI4KIIalpha or beta knockdown, suggesting that these phosphoinositides are generated by a type III PI4K. Strikingly, knockdown of the PI(4)P ligand and clathrin adaptor AP-1 strongly inhibits bacterial entry. Together, our results reveal a yet non-described role for type II PI4Ks in phagocytosis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France.
| | | | | | | | | | | |
Collapse
|
27
|
Chan MWC, Arora PD, McCulloch CA. Cyclosporin inhibition of collagen remodeling is mediated by gelsolin. Am J Physiol Cell Physiol 2007; 293:C1049-58. [PMID: 17615162 DOI: 10.1152/ajpcell.00027.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclosporin A (CsA) inhibits collagen remodeling by interfering with the collagen-binding step of phagocytosis. In rapidly remodeling connective tissues such as human periodontium this interference manifests as marked tissue overgrowth and loss of function. Previous data have shown that CsA inhibits integrin-induced release of Ca(2+) from internal stores, which is required for the binding step of collagen phagocytosis. Because gelsolin is a Ca(2+)-dependent actin-severing protein that mediates collagen phagocytosis, we determined whether gelsolin is a CsA target. Compared with vehicle controls, CsA treatment of wild-type mice increased collagen accumulation by 60% in periodontal tissues; equivalent increases were seen in vehicle-treated gelsolin-null mice. Collagen degradation by phagocytosis in cultured gelsolin wild-type fibroblasts was blocked by CsA, comparable to levels of vehicle-treated gelsolin-null fibroblasts. In wild-type cells treated with CsA, collagen binding was similar to that of gelsolin-null fibroblasts transfected with a gelsolin-severing mutant and treated with vehicle. CsA blocked collagen-induced Ca(2+) fluxes subjacent to bound collagen beads, gelsolin recruitment, and actin assembly at bead sites. CsA reduced gelsolin-dependent severing of actin in wild-type cells to levels similar to those in gelsolin-null fibroblasts. We conclude that CsA-induced accumulation of collagen in the extracellular matrix involves disruption of the actin-severing properties of gelsolin, thereby inhibiting the binding step of collagen phagocytosis.
Collapse
|
28
|
Mercanti V, Charette SJ, Bennett N, Ryckewaert JJ, Letourneur F, Cosson P. Selective membrane exclusion in phagocytic and macropinocytic cups. J Cell Sci 2006; 119:4079-87. [PMID: 16968738 DOI: 10.1242/jcs.03190] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Specialized eukaryotic cells can ingest large particles and sequester them within membrane-delimited phagosomes. Many studies have described the delivery of lysosomal proteins to the phagosome, but little is known about membrane sorting during the early stages of phagosome formation. Here we used Dictyostelium discoideum amoebae to analyze the membrane composition of newly formed phagosomes. The membrane delimiting the closing phagocytic cup was essentially derived from the plasma membrane, but a subgroup of proteins was specifically excluded. Interestingly the same phenomenon was observed during the formation of macropinosomes, suggesting that the same sorting mechanisms are at play during phagocytosis and macropinocytosis. Analysis of mutant strains revealed that clathrin-associated adaptor complexes AP-1, -2 and -3 were not necessary for this selective exclusion and, accordingly, ultrastructural analysis revealed no evidence for vesicular transport around phagocytic cups. Our results suggest the existence of a new, as yet uncharacterized, sorting mechanism in phagocytic and macropinocytic cups.
Collapse
Affiliation(s)
- Valentina Mercanti
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Charette SJ, Mercanti V, Letourneur F, Bennett N, Cosson P. A role for adaptor protein-3 complex in the organization of the endocytic pathway in Dictyostelium. Traffic 2006; 7:1528-38. [PMID: 17010123 DOI: 10.1111/j.1600-0854.2006.00478.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dictyostelium discoideum cells continuously internalize extracellular material, which accumulates in well-characterized endocytic vacuoles. In this study, we describe a new endocytic compartment identified by the presence of a specific marker, the p25 protein. This compartment presents features reminiscent of mammalian recycling endosomes: it is localized in the pericentrosomal region but distinct from the Golgi apparatus. It specifically contains surface proteins that are continuously endocytosed but rapidly recycled to the cell surface and thus absent from maturing endocytic compartments. We evaluated the importance of each clathrin-associated adaptor complex in establishing a compartmentalized endocytic system by studying the phenotype of the corresponding mutants. In knockout cells for mu3, a subunit of the AP-3 clathrin-associated complex, membrane proteins normally restricted to p25-positive endosomes were mislocalized to late endocytic compartments. Our results suggest that AP-3 plays an essential role in the compartmentalization of the endocytic pathway in Dictyostelium.
Collapse
Affiliation(s)
- Steve J Charette
- Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1 rue Michel Servet, CH-1211 Genève 4, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Koch KV, Reinders Y, Ho TH, Sickmann A, Gräf R. Identification and isolation of Dictyostelium microtubule-associated protein interactors by tandem affinity purification. Eur J Cell Biol 2006; 85:1079-90. [PMID: 16782229 DOI: 10.1016/j.ejcb.2006.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tandem affinity purification (TAP) is a method originally established in yeast to isolate highly purified protein complexes in a very gentle and efficient way. In this work, we have modified TAP for Dictyostelium applications and have proved it as a useful method to specifically isolate and identify microtubule-associated protein (MAP) complexes. MAPs are known to interact with other proteins to fulfill their complex functions in balancing the dynamic instability of microtubules as well as anchoring microtubules at the cell cortex, controlling mitosis at the centrosome and guiding transport along them. DdEB1 and the Dictyostelium member of the XMAP215 protein family, DdCP224, are known to be part of complexes at the microtubule tips as well as at the centrosome. Employing TAP and mass spectrometry we were able to prove an interaction between EB1 and the DdCP224. Additionally, among other interactions that remain to be confirmed by other methods, an interaction between DdCP224 and a TACC-family protein could be shown for the first time in Dictyostelium and was confirmed by colocalization and co-immunoprecipitation analyses.
Collapse
Affiliation(s)
- Katrin V Koch
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 42, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
31
|
Gotthardt D, Blancheteau V, Bosserhoff A, Ruppert T, Delorenzi M, Soldati T. Proteomics fingerprinting of phagosome maturation and evidence for the role of a Galpha during uptake. Mol Cell Proteomics 2006; 5:2228-43. [PMID: 16926386 DOI: 10.1074/mcp.m600113-mcp200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Collapse
Affiliation(s)
- Daniel Gotthardt
- Department of Molecular Cell Research, Max Planck Institute for Medical Research, University Hospital of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Niedergang F, Chavrier P. Signaling and membrane dynamics during phagocytosis: many roads lead to the phagos(R)ome. Curr Opin Cell Biol 2005; 16:422-8. [PMID: 15261675 DOI: 10.1016/j.ceb.2004.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phagocytosis is the mechanism used by specialized cells such as macrophages, dendritic cells and neutrophils to internalize, degrade and eventually present peptides derived from particulate antigens. This process relies on profound rearrangements of the actin cytoskeleton and the plasma membrane to engulf particles. Recent work has highlighted the early recruitment of internal membranes derived from endocytic compartments and from the endoplasmic reticulum to allow plasma membrane extension at the onset of phagocytosis. This ensures that the phagosome is rapidly provided with the machinery appropriate for later phagocytic functions, including particle degradation and antigen presentation.
Collapse
Affiliation(s)
- Florence Niedergang
- Membrane and Cytoskeleton Dynamics group, Institut Curie, CNRS UMR144, 75248 Paris, France.
| | | |
Collapse
|
33
|
Abstract
Cells such as macrophages take up pathogens into specialized membrane organelles (phagosomes) that fuse with other organelles, including lysosomes, in a process termed maturation. The fully matured phagolysosome is a low-pH, hydrolase-rich killing device that some pathogens can bypass. One might expect that phagosomes containing a given type of particle that entered cells simultaneously via the same receptor would behave the same, at least in a single cell. Surprisingly, however, recent data show that phagosomes formed via the same receptors can find themselves in different chemical states even within the same macrophage. Here, I argue that each phagosome is an individual entity whose behaviour depends on a finite number of stable equilibrium states in its membrane signalling networks.
Collapse
Affiliation(s)
- Gareth Griffiths
- EMBL, Meyerhofstrasse 1, Postfach 102209, 69117 Heidelberg, Germany.
| |
Collapse
|
34
|
Abstract
Adaptors select cargo for inclusion into coated vesicles in the late secretory and endocytic pathways. Although originally there were thought to be just two adaptors, AP-1 and AP-2, it is now clear that there are many more: two additional adaptor complexes, AP-3 and AP-4, which might function independently of clathrin; a family of monomeric adaptors, the GGAs; and an ever-growing number of cargo-specific adaptors. The adaptors are targeted to the appropriate membrane at least in part by interacting with phosphoinositides, and, once on the membrane, they form interconnected networks to get different types of cargo into the same vesicle. Adaptors participate in trafficking pathways shared by all cells, and they are also used to generate specialized organelles and to influence cell fate during development.
Collapse
Affiliation(s)
- Margaret S Robinson
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK CB2 2XY.
| |
Collapse
|