1
|
Heo TH, Gu BK, Ohk K, Yoon JK, Son YH, Chun HJ, Yang DH, Jeong GJ. Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing. Tissue Eng Regen Med 2025:10.1007/s13770-025-00712-1. [PMID: 40009152 DOI: 10.1007/s13770-025-00712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair. METHODS PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days. RESULTS The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses. CONCLUSION The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.
Collapse
Affiliation(s)
- Tae-Hyun Heo
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, 17546, Republic of Korea
| | - Bon Kang Gu
- R&D Center, Humedix Co. Ltd., Seongnam, 13021, Republic of Korea
| | - Kyungeun Ohk
- R&D Center, Humedix Co. Ltd., Seongnam, 13021, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, 17546, Republic of Korea
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dae-Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
2
|
Moses RL, Woods EL, Dally J, Johns JP, Knäuper V, Boyle GM, Gordon V, Reddell P, Steadman R, Moseley R. Epoxytiglianes induce keratinocyte wound healing responses via classical protein kinase C activation to promote skin re-epithelialization. Biochem Pharmacol 2024; 230:116607. [PMID: 39489221 DOI: 10.1016/j.bcp.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms. We have previously shown that epoxytiglianes stimulate proliferative and wound repopulation responses in immortalized human skin keratinocytes (HaCaTs) in vitro, abrogated by pan-PKC inhibitor, bisindolylmaleimide-1. In this study, we further investigate the specific PKC isoforms responsible for inducing such wound healing responses, following HaCaT treatment with 1.51 nM-15.1 µM EBC-46 or analogue, EBC-211. Classical PKC inhibition by GӦ6976 (1 μM), significantly attenuated epoxytigliane induced, HaCaT proliferation and wound repopulation at all epoxytigliane concentrations. PKC-βI/-βII isoform inhibition by enzastaurin (1 μM), significantly inhibited HaCaT proliferation and wound repopulation responses induced by both epoxytiglianes, especially at 1.51-151 nM. PKC-α inhibitor, Ro 31-8220 mesylate (10 nM), exerted lesser inhibitory effects on HaCaT responses. Epoxytigliane changes in key keratin (KRT17) and cell cycle (cyclin B1, CDKN1A) protein levels were partly attenuated by GӦ6976 and enzastaurin. GӦ6976 also inhibited increases in matrix metalloproteinase (MMP-1, MMP-7, MMP-10) activities. Phospho-PKC (p-PKC) studies confirmed that epoxytiglianes transiently activated classical PKC isoforms (p-PKCα, p-PKC-βI/-βII, p-PKCγ) in a dose- and time-dependent manner. By identifying how epoxytiglianes stimulate classical PKCs to facilitate keratinocyte healing responses and re-epithelialization, these findings support further epoxytigliane development as topical therapeutics for clinical situations involving impaired re-epithelialization, such as non-healing wounds in skin.
Collapse
Affiliation(s)
- Rachael L Moses
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK; Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Emma L Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vera Knäuper
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
3
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
4
|
White EK, Uberoi A, Pan JTC, Ort JT, Campbell AE, Murga-Garrido SM, Harris JC, Bhanap P, Wei M, Robles NY, Gardner SE, Grice EA. Alcaligenes faecalis corrects aberrant matrix metalloproteinase expression to promote reepithelialization of diabetic wounds. SCIENCE ADVANCES 2024; 10:eadj2020. [PMID: 38924411 PMCID: PMC11204295 DOI: 10.1126/sciadv.adj2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.
Collapse
Affiliation(s)
- Ellen K. White
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T. Ort
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofia M. Murga-Garrido
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan C. Harris
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nelida Y. Robles
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sue E. Gardner
- College of Nursing, The University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Oryan A, Alemzadeh E, Mohammadi S. Healing potential of curcumin nanomicelles in cutaneous burn wounds: an in vitro and in vivo study. Connect Tissue Res 2023; 64:555-568. [PMID: 37458277 DOI: 10.1080/03008207.2023.2235007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE/AIM OF THE STUDY Curcumin is the active substance of turmeric and has been shown to enhance the healing potential of burn wounds. However, its high hydrophobicity and rapid degradability are great challenges for its clinical applications. The development of new curcumin formulations may provide a potential solution to these issues. METHODS AND RESULTS In this study, we investigated the use of curcumin nanomicelles for wound dressing and evaluated their effects on fibroblast migration and proliferation in vitro. We found that the application of curcumin nanomicelles to the wounds significantly improved wound contraction and increased the expression of transforming growth factor-1 and basic fibroblast growth factor at day 14 of the healing process. Furthermore, curcumin nanomicelles reduced the expression of interleukin-1 at days 7 and 14 post-wounding. Histopathological analysis revealed that the curcumin nanomicelles-treated burn wounds exhibited more organized granulation tissue, improved angiogenesis, and enhanced re-epithelialization. Additionally, the curcumin treatment led to increased hydroxyproline content and enhanced TGF-β1 expression level in the wounds. The in vitro studies also demonstrated that the curcumin nanomicelles induced proliferation and migration of fibroblasts. CONCLUSION Overall, our findings suggest that curcumin nanomicelles can be a promising candidate for the treatment of burn wounds.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Soroush Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Ishimura T, Ishii A, Yamada H, Osaki K, Toda N, Mori KP, Ohno S, Kato Y, Handa T, Sugioka S, Ikushima A, Nishio H, Yanagita M, Yokoi H. Matrix metalloproteinase-10 deficiency has protective effects against peritoneal inflammation and fibrosis via transcription factor NFκΒ pathway inhibition. Kidney Int 2023; 104:929-942. [PMID: 37652204 DOI: 10.1016/j.kint.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.
Collapse
Affiliation(s)
- Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruomi Nishio
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Nagarajan MB, Ainscough AJ, Reynolds DS, Uzel SGM, Bjork JW, Baker BA, McNulty AK, Woulfe SL, Lewis JA. Biomimetic human skin model patterned with rete ridges. Biofabrication 2023; 16:015006. [PMID: 37734324 DOI: 10.1088/1758-5090/acfc29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Rete ridges consist of undulations between the epidermis and dermis that enhance the mechanical properties and biological function of human skin. However, most human skin models are fabricated with a flat interface between the epidermal and dermal layers. Here, we report a micro-stamping method for producing human skin models patterned with rete ridges of controlled geometry. To mitigate keratinocyte-induced matrix degradation, telocollagen-fibrin matrices with and without crosslinks enable these micropatterned features to persist during longitudinal culture. Our human skin model exhibits an epidermis that includes the following markers: cytokeratin 14, p63, and Ki67 in the basal layer, cytokeratin 10 in the suprabasal layer, and laminin and collagen IV in the basement membrane. We demonstrated that two keratinocyte cell lines, one from a neonatal donor and another from an adult diabetic donor, are compatible with this model. We tested this model using an irritation test and showed that the epidermis prevents rapid penetration of sodium dodecyl sulfate. Gene expression analysis revealed differences in keratinocytes obtained from the two donors as well as between 2D (control) and 3D culture conditions. Our human skin model may find potential application for drug and cosmetic testing, disease and wound healing modeling, and aging studies.
Collapse
Affiliation(s)
- Maxwell B Nagarajan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Alexander J Ainscough
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Sebastien G M Uzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| | - Jason W Bjork
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Bryan A Baker
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Amy K McNulty
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Susan L Woulfe
- 3M, 3M Center, St. Paul, MN 55144, United States of America
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States of America
| |
Collapse
|
8
|
Li Y, Long Y, Chen X, Wang T, Guo J, Jin L, Wang L, Hou Z. Cytokine patterns in the blister fluid and plasma of patients with fracture blisters. Int Immunopharmacol 2023; 123:110738. [PMID: 37536187 DOI: 10.1016/j.intimp.2023.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Fracture blister (FB) is a complication of fracture, which damages to the skin integrity and increases the risk of infection. Inflammation plays an important role in the formation and development of FBs, but its specific mechanism is still unclear. The aim of this study was to investigate the patterns and dynamic changes of inflammatory cytokines in fracture blister fluid (FBF) and plasma. MATERIALS AND METHODS FBF and plasma were collected simultaneously from patients with lower extremity fractures with FBs on the first and fifth day after blisters formation. 92 inflammation-related protein biomarkers were measured in plasma and FBF using Proximity Extension Assay (PEA). We analyzed the cytokine patterns and their dynamic changes in FBF and plasma. Cytokine patterns in plasma from FB patients, fracture without blister patients, and healthy subjects were also analyzed. RESULT The cytokine pattern in FBF and plasma of patients with FBs was different but 11 cytokines were significantly correlated in the two sample types. 23 cytokines were different in plasma across FB patients, fracture without blister patients and healthy subjects. In the analysis of plasma from FB patients and fracture without blister patients, 15 cytokines were significantly different and they may be potential risk factors for the occurrence of FBs. The FBF and plasma showed different cytokine patterns in the early and late stages, with 50 cytokines significantly changed in FBF and 20 cytokines in plasma. CONCLUSION The different cytokine patterns in plasma between FB patients and fracture without blisters patients may be the potential factors for the occurrence of blisters. The cytokine patterns in FBF and plasma showed a dynamic change from the inflammatory stage to the proliferative and repair stage, which indicates that FBs may have new clinical importance in addition to being a soft tissue injury.
Collapse
Affiliation(s)
- Yiran Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yubin Long
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Country Department of Orthopaedic Surgery, Baoding No. 1 Central Hospital, Baoding, China
| | - Xiaojun Chen
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialiang Guo
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China; The School of Medicine, Nankai University, Tianjin, China
| | - Lin Jin
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
9
|
White EK, Uberoi A, Pan JTC, Ort JT, Campbell AE, Murga-Garrido SM, Harris JC, Bhanap P, Wei M, Robles NY, Gardner SE, Grice EA. Wound microbiota-mediated correction of matrix metalloproteinase expression promotes re-epithelialization of diabetic wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547263. [PMID: 37425836 PMCID: PMC10327199 DOI: 10.1101/2023.06.30.547263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here we focused on Alcaligenes faecalis , a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes re-epithelialization of diabetic keratinocytes, a process which is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.
Collapse
|
10
|
Walsh C, Rajora MA, Ding L, Nakamura S, Endisha H, Rockel J, Chen J, Kapoor M, Zheng G. Protease-Activatable Porphyrin Molecular Beacon for Osteoarthritis Management. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:66-80. [PMID: 37122828 PMCID: PMC10131263 DOI: 10.1021/cbmi.3c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Despite the substantial burden posed by osteoarthritis (OA) globally, difficult challenges remain in achieving early OA diagnosis and adopting effective disease-modifying treatments. In this study, we use a biomolecular approach to address these limitations by creating an inherently theranostic molecular beacon whose imaging and therapeutic capabilities are activated by early pathological changes in OA. This platform comprised (1) a peptide linker substrate for metalloproteinase-13 (MMP-13), a pathological protease upregulated in OA, which was conjugated to (2) a porphyrin moiety with inherent multimodal imaging, photodynamic therapy, and drug delivery capabilities, and (3) a quencher that silences the porphyrin's endogenous fluorescence and photoreactivity when the beacon is intact. In diseased OA tissue with upregulated MMP-13 expression, this porphyrin molecular beacon (PPMMP13B) was expected to undergo sequence-specific cleavage, yielding porphyrin fragments with restored fluorescence and photoreactivity that could, respectively, be used as a readout of MMP-13 activity within the joint for early OA imaging and disease-targeted photodynamic therapy. This study focused on the synthesis and characterization of PPMMP13B, followed by a proof-of-concept evaluation of its OA imaging and drug delivery potential. In solution, PPMMP13B demonstrated 90% photoactivity quenching in its intact form and robust MMP-13 activation, yielding a 13-fold increase in fluorescence post-cleavage. In vitro, PPMMP13B was readily uptaken and activated in an MMP-13 cell expression-dependent manner in primary OA synoviocytes without exuding significant cytotoxicity. This translated into effective intra-articular cartilage (to a 50 μm depth) and synovial uptake and activation of PPMMP13B in a destabilization of the medial meniscus OA mouse model, yielding strong fluorescence contrast (7-fold higher signal than background) at the diseased joint site. These results provide the foundation for further exploration of porphyrin molecular beacons for image-guided OA disease stratification, effective articular delivery of disease-modify agents, and OA photodynamic therapy.
Collapse
Affiliation(s)
- Connor Walsh
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
| | - Maneesha A. Rajora
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
| | - Lili Ding
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sayaka Nakamura
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Helal Endisha
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jason Rockel
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Juan Chen
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohit Kapoor
- Schroeder
Arthritis Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Krembil
Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Gang Zheng
- Princess
Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, ON M5S 3G9, Canada
- Department
of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
11
|
Bian Y, Kwon JJ, Liu C, Margiotta E, Shekhar M, Gould AE. Target-driven machine learning-enabled virtual screening (TAME-VS) platform for early-stage hit identification. Front Mol Biosci 2023; 10:1163536. [PMID: 36994428 PMCID: PMC10040869 DOI: 10.3389/fmolb.2023.1163536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
High-throughput screening (HTS) methods enable the empirical evaluation of a large scale of compounds and can be augmented by virtual screening (VS) techniques to save time and money by using potential active compounds for experimental testing. Structure-based and ligand-based virtual screening approaches have been extensively studied and applied in drug discovery practice with proven outcomes in advancing candidate molecules. However, the experimental data required for VS are expensive, and hit identification in an effective and efficient manner is particularly challenging during early-stage drug discovery for novel protein targets. Herein, we present our TArget-driven Machine learning-Enabled VS (TAME-VS) platform, which leverages existing chemical databases of bioactive molecules to modularly facilitate hit finding. Our methodology enables bespoke hit identification campaigns through a user-defined protein target. The input target ID is used to perform a homology-based target expansion, followed by compound retrieval from a large compilation of molecules with experimentally validated activity. Compounds are subsequently vectorized and adopted for machine learning (ML) model training. These machine learning models are deployed to perform model-based inferential virtual screening, and compounds are nominated based on predicted activity. Our platform was retrospectively validated across ten diverse protein targets and demonstrated clear predictive power. The implemented methodology provides a flexible and efficient approach that is accessible to a wide range of users. The TAME-VS platform is publicly available at https://github.com/bymgood/Target-driven-ML-enabled-VS to facilitate early-stage hit identification.
Collapse
Affiliation(s)
- Yuemin Bian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jason J. Kwon
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Cong Liu
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Enrico Margiotta
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Mrinal Shekhar
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexandra E. Gould
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
12
|
KCNQ1OT1 mediates keratinocyte migration to promote skin wound healing through the miR-200b-3p/SERP1 axis. Burns 2023; 49:415-424. [PMID: 35523657 DOI: 10.1016/j.burns.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The basic functions of keratinocyte are crucial steps during skin wound healing. KCNQ1OT1 long noncoding RNA was found to accelerate the migration and proliferation of keratinocyte in psoriasis. Here, we elucidated the action and mechanism of KCNQ1OT1 in skin wound healing. METHODS Expression levels of genes and proteins were evaluated by quantitative real-time PCR (qRT-PCR) and western blotting. Cell migration was assessed by using scratch and transwell assays. The interaction between miR-200b-3p and KCNQ1OT1 or SERP1 (Stress Associated Endoplasmic Reticulum Protein 1) was confirmed by bioinformatics analysis, dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and pull-down assay. RESULTS KCNQ1OT1 had increased significantly in wound edge 1 day and 7 day after injury. Functionally, overexpression of KCNQ1OT1 promoted keratinocyte migration. Mechanistically, KCNQ1OT1/miR-200b-3p/SERP1 constituted a competing endogenous RNA (ceRNA) network in keratinocytes. A series of rescue experiments showed that miR-200b-3p up-regulation in keratinocytes attenuated the pro-migration action of KCNQ1OT1 in cells. Moreover, knockdown of miR-200b-3p could promote keratinocyte migration, which was abolished by SERP1 silencing. KCNQ1OT1 competitively sponged for miR-200b-3p to elevate the expression of its target SERP1. CONCLUSION KCNQ1OT1 could promote keratinocyte migration by miR-200b-3p/SERP1 axis, suggesting that KCNQ1OT1 might play a crucial role in skin wound healing.
Collapse
|
13
|
Fu K, Zheng X, Chen Y, Wu L, Yang Z, Chen X, Song W. Role of matrix metalloproteinases in diabetic foot ulcers: Potential therapeutic targets. Front Pharmacol 2022; 13:1050630. [PMID: 36339630 PMCID: PMC9631429 DOI: 10.3389/fphar.2022.1050630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.
Collapse
Affiliation(s)
- Kang Fu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Xueyao Zheng
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yuhan Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Liuying Wu
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zhiming Yang
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Xu Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Wei Song
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
- *Correspondence: Wei Song,
| |
Collapse
|
14
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
15
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
16
|
Altoé LS, Alves RS, Miranda LL, Sarandy MM, Bastos DSS, Gonçalves-Santos E, Novaes RD, Gonçalves RV. Doxycycline Hyclate Modulates Antioxidant Defenses, Matrix Metalloproteinases, and COX-2 Activity Accelerating Skin Wound Healing by Secondary Intention in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4681041. [PMID: 33959214 PMCID: PMC8075706 DOI: 10.1155/2021/4681041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
The main objective of this study was to investigate the action of doxycycline hyclate (Dx) in the skin wound healing process in Wistar rats. We investigated the effect of Dx on inflammatory cell recruitment and production of inflammatory mediators via in vitro and in vivo analysis. In addition, we analyzed neovascularization, extracellular matrix deposition, and antioxidant potential of Dx on cutaneous repair in Wistar rats. Male animals (n = 15) were divided into three groups with five animals each (protocol: 72/2017), and three skin wounds (12 mm diameter) were created on the back of the animals. The groups were as follows: C, received distilled water (control); Dx1, doxycycline hyclate (10 mg/kg/day); and Dx2, doxycycline hyclate (30 mg/kg/day). The applications were carried out daily for up to 21 days, and tissues from different wounds were removed every 7 days. Our in vitro analysis demonstrated that Dx led to macrophage proliferation and increased N-acetyl-β-D-glucosaminidase (NAG) production, besides decreased cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and metalloproteinases (MMP), which indicates that macrophage activation and COX-2 inhibition are possibly regulated by independent mechanisms. In vivo, our findings presented increased cellularity, blood vessels, and the number of mast cells. However, downregulation was observed in the COX-2 and PGE2 expression, which was limited to epidermal cells. Our results also showed that the downregulation of this pathway benefits the oxidative balance by reducing protein carbonyls, malondialdehyde, nitric oxide, and hydrogen peroxide (H2O2). In addition, there was an increase in the antioxidant enzymes (catalase and superoxide dismutase) after Dx exposure, which demonstrates its antioxidant potential. Finally, Dx increased the number of types I collagen and elastic fibers and reduced the levels of MMP, thus accelerating the closure of skin wounds. Our findings indicated that both doses of Dx can modulate the skin repair process, but the best effects were observed after exposure to the highest dose.
Collapse
Affiliation(s)
- Luciana S. Altoé
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Raul S. Alves
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Lyvia L. Miranda
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Mariáurea M. Sarandy
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Daniel S. S. Bastos
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Elda Gonçalves-Santos
- Departament of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Rômulo D. Novaes
- Departament of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Reggiani V. Gonçalves
- Departament of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
17
|
Novel nanopolymer RNA therapeutics normalize human diabetic corneal wound healing and epithelial stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102332. [PMID: 33181273 PMCID: PMC8107190 DOI: 10.1016/j.nano.2020.102332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.
Collapse
|
18
|
Feng X, Zhou S, Cai W, Guo J. The miR-93-3p/ZFP36L1/ZFX axis regulates keratinocyte proliferation and migration during skin wound healing. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:450-463. [PMID: 33473330 PMCID: PMC7803633 DOI: 10.1016/j.omtn.2020.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023]
Abstract
Keratinocyte proliferation and migration are crucial steps during skin wound healing. The functional role of microRNAs (miRs) remains relatively unknown during this process. miR-93 levels have been reported to increase within 24 h of skin wound healing; however, whether miR-93-3p or miR-93-5p plays a specific role in wound healing is yet to be studied. In this study, with the use of an in vivo mouse skin wound-healing model, we demonstrate that miR-93-3p is significantly upregulated, whereas there is no change in the expression of miR-93-5p during skin wound healing. In HaCaT cells, miR-93-3p overexpression increased proliferation and migration of the cells, whereas miR-93-3p inhibition had the reverse effect. Additionally, it was evident that ZFP36L1 was a direct target of miR-93-3p in keratinocytes. Further, ZFP36L1 silencing mirrored the consequences observed during miR-93-3p overexpression on both proliferation and migration of keratinocytes. In addition, we demonstrate that zinc-finger X-linked (ZFX), as a target for ZFP36L1, is involved in the promotion of the miR-93-3p/ZFP36L1 axis in keratinocyte proliferation and migration. Ultimately, we found that mouse skin wound model treatment with anti-miR-93-3p delayed wound healing. Overall, our results show that miR-93-3p is a crucial regulator of skin wound healing that facilitates keratinocyte proliferation and migration through ZFP36L1/ZFX axis.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weilin Cai
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jincai Guo
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
19
|
Lee JSJ, Kim SJ, Choi JS, Eom MR, Shin H, Kwon SK. Adipose-derived mesenchymal stem cell spheroid sheet accelerates regeneration of ulcerated oral mucosa by enhancing inherent therapeutic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Piskór BM, Przylipiak A, Dąbrowska E, Niczyporuk M, Ławicki S. Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Manag Res 2020; 12:10949-10964. [PMID: 33154674 PMCID: PMC7608139 DOI: 10.2147/cmar.s235776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases which are widely studied in terms of their role in the physiological and pathological processes in the organism. In this article, we consider usefulness of matrilysins and stromelysins in pathogenesis and diagnostic of the most common malignancies in the world, e.g., lung, breast, prostate, and colorectal cancers. In all of the mentioned cancers, matrilysins and stromelysins have a pivotal role in their development and also may have diagnostic utility. Influence to the cancerous process is connected with specific dependencies between these enzymes and components of the extracellular matrix (ECM), non-matrix components like cell surface components. All the information provided below allows to take a closer look at matrilysins and stromelysins and their functions in the cancer development.
Collapse
Affiliation(s)
- Barbara Maria Piskór
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Przylipiak
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Dąbrowska
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
22
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
23
|
Ågren MS, auf dem Keller U. Matrix Metalloproteinases: How Much Can They Do? Int J Mol Sci 2020; 21:ijms21082678. [PMID: 32290531 PMCID: PMC7215854 DOI: 10.3390/ijms21082678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc-dependent matrix metalloproteinases (MMPs) belong to metzincins that comprise not only 23 human MMPs but also other metalloproteinases, such as 21 human ADAMs (a disintegrin and metalloproteinase domain) and 19 secreted ADAMTSs (a disintegrin and metalloproteinase thrombospondin domain). The many setbacks from the clinical trials of broad-spectrum MMP inhibitors for cancer indications in the late 1990s emphasized the extreme complexity of the participation of these proteolytic enzymes in biology. This editorial mini-review summarizes the Special Issue, which includes four review articles and 10 original articles that highlight the versatile roles of MMPs, ADAMs, and ADAMTSs, in normal physiology as well as in neoplastic and destructive processes in tissue. In addition, we briefly discuss the unambiguous involvement of MMPs in wound healing.
Collapse
Affiliation(s)
- Magnus S. Ågren
- Digestive Disease Center and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-3863-5954
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
24
|
Tan ST, Dosan R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874372201913010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing consists of multiple structured mechanism and is influenced by various factors. Epithelialization is one of the major aspect in wound healing and inhibition of this mechanism will greatly impair wound healing. Epithelialization is a process where epithelial cells migrate upwards and repair the wounded area. This process is the most essential part in wound healing and occurs in proliferative phase of wound healing. Skin stem cells which reside in several locations of epidermis contribute in the re-epithelialization when the skin is damaged. Epithelialization process is activated by inflammatory signal and then keratinocyte migrate, differentiate and stratify to close the defect in the skin. Several theories of epithelialization model in wound healing have been proposed for decades and have shown the mechanism of epidermal cell migration during epithelialization even though the exact mechanism is still controversial. This process is known to be influenced by the wound environment where moist wound environment is preferred rather than dry wound environment. In dry wound environment, epithelialization is known to be inhibited because of scab or crust which is formed from dehydrated and dead cells. Moist wound environment enhances the epithelialization process by easier migration of epidermal cells, faster epithelialization, and prolonged presence of proteinases and growth factors. This article focuses on the epithelialization process in wound healing, epithelialization models, effects of wound environment on epithelialization and epithelialization as the basis for products that enhance wound healing.
Collapse
|
25
|
Kletenkov K, Martynova E, Davidyuk Y, Kabwe E, Shamsutdinov A, Garanina E, Shakirova V, Khaertynova I, Anokhin V, Tarlinton R, Rizvanov A, Khaiboullina S, Morzunov S. Δ ccr5 Genotype Is Associated with Mild Form of Nephropathia Epidemica. Viruses 2019; 11:v11070675. [PMID: 31340562 PMCID: PMC6669606 DOI: 10.3390/v11070675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/22/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023] Open
Abstract
Nephropathia Epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS) and linked to hantavirus infection, is endemic in the Republic of Tatarstan. Several genetic markers of HFRS severity have been identified previously, including human leukocyte antigen (HLA) complexes and nucleotide polymorphism in the tumor necrosis factor alpha (TNFα) gene. Still, our understanding of the genetic markers of NE severity remains incomplete. The frequency of the C-C chemokine receptor type 5 (CCR5) gene wild type and gene with 32-base-pair deletion (Δ32CCR5) genotypes in 98 NE samples and 592 controls was analyzed using PCR. Along with the serum levels of 94 analytes, a lack of differences in the CCR5 genotype distribution between NE cases and the general population suggests that the CCR5 genotype does not affect susceptibility to hantavirus infection. However, in NE cases, significant variation in the serum levels of the host matrix metalloproteases between functional CCR5 homozygous and Δ32CCR5 heterozygous patients was detected. Also, the oliguric phase was longer, while thrombocyte counts were lower in functional CCR5 homozygous as compared to heterozygous NE cases. Our data, for the first time, presents the potential role of the CCR5 receptor genotype in NE pathogenesis. Our data suggests that NE pathogenesis in functional CCR5 homozygous and heterozygous NE patients differs, where homozygous cases may have more disintegration of the extracellular matrix and potentially more severe disease.
Collapse
Affiliation(s)
- Konstantin Kletenkov
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Ekaterina Martynova
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Yuriy Davidyuk
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Emmanuel Kabwe
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Anton Shamsutdinov
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Ekaterina Garanina
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, Kazan 420012, the Republic of Tatarstan, Russian
| | - Ilsiyar Khaertynova
- Department of Infectious Diseases, Kazan State Medical Academy, Kazan 420012, the Republic of Tatarstan, Russian
| | - Vladimir Anokhin
- Department of Pediatric Infectious Diseases, Kazan State Medical University, Kazan 420012, Republic of Tatarstan, Russian
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK
| | - Albert Rizvanov
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
| | - Svetlana Khaiboullina
- Openlab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russian
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
| | - Sergey Morzunov
- Department of Pathology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
26
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1451] [Impact Index Per Article: 241.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
27
|
Rohani MG, Dimitrova E, Beppu A, Wang Y, Jefferies CA, Parks WC. Macrophage MMP10 Regulates TLR7-Mediated Tolerance. Front Immunol 2018; 9:2817. [PMID: 30564235 PMCID: PMC6288447 DOI: 10.3389/fimmu.2018.02817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Using an in vivo model of tolerance to TLR7-induced skin inflammation, we found a critical role for macrophage-derived MMP10 in mediating immune hypo-responsiveness. Cutaneous exposure to Imiquimod (IMQ), a TLR7 agonist, induced acute expression of pro-inflammatory factors (IL1β, IL6, CXCL1) and neutrophil influx equally in both wildtype and Mmp10 -/- mice. However, whereas subsequent exposure (11 and 12 days later) to IMQ led to marked abrogation of pro-inflammatory factor expression in wildtype mice, Mmp10 -/- mice responded similarly as they did to the first application. In addition, the second exposure led to increased expression of negative regulators of TLR signaling (TNFAIP3, IRAK3) and immunosuppressive cytokines (IL10, TGFβ1) in wildtype mice but not in Mmp10 -/- mice. In vitro studies demonstrated that prior exposure of IMQ to bone marrow-derived macrophages (BMDM) made wildtype cells refractory to subsequent stimulation but did not for Mmp10 -/- macrophages. These findings expand the critical roles MMP10 plays in controlling macrophage activation to indicate that the development of immune tolerance to TLR7 ligand is dependent on this macrophage-derived proteinase.
Collapse
Affiliation(s)
- Maryam G Rohani
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Elizabeth Dimitrova
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Andrew Beppu
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ying Wang
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline A Jefferies
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
28
|
Cooper F, Overmiller AM, Loder A, Brennan-Crispi DM, McGuinn KP, Marous MR, Freeman TA, Riobo-Del Galdo NA, Siracusa LD, Wahl JK, Mahoney MG. Enhancement of Cutaneous Wound Healing by Dsg2 Augmentation of uPAR Secretion. J Invest Dermatol 2018; 138:2470-2479. [PMID: 29753032 PMCID: PMC6200597 DOI: 10.1016/j.jid.2018.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
In addition to playing a role in adhesion, desmoglein 2 (Dsg2) is an important regulator of growth and survival signaling pathways, cell proliferation, migration and invasion, and oncogenesis. Although low-level Dsg2 expression is observed in basal keratinocytes and is downregulated in nonhealing venous ulcers, overexpression has been observed in both melanomas and nonmelanoma malignancies. Here, we show that transgenic mice overexpressing Dsg2 in basal keratinocytes primed the activation of mitogenic pathways, but did not induce dramatic epidermal changes or susceptibility to chemical-induced tumor development. Interestingly, acceleration of full-thickness wound closure and increased wound-adjacent keratinocyte proliferation was observed in these mice. As epidermal cytokines and their receptors play critical roles in wound healing, Dsg2-induced secretome alterations were assessed with an antibody profiler array and revealed increased release and proteolytic processing of the urokinase-type plasminogen activator receptor. Dsg2 induced urokinase-type plasminogen activator receptor expression in the skin of transgenic compared with wild-type mice. Wounding further enhanced urokinase-type plasminogen activator receptor in both epidermis and dermis with a concomitant increase in the prohealing laminin-332, a major component of the basement membrane zone, in transgenic mice. This study demonstrates that Dsg2 induces epidermal activation of various signaling cascades and accelerates cutaneous wound healing, in part, through urokinase-type plasminogen activator receptor-related signaling cascades.
Collapse
Affiliation(s)
- Felicia Cooper
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew M Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anthony Loder
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Donna M Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kathleen P McGuinn
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Molly R Marous
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Theresa A Freeman
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Linda D Siracusa
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James K Wahl
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
29
|
Shi J, Ma X, Su Y, Song Y, Tian Y, Yuan S, Zhang X, Yang D, Zhang H, Shuai J, Cui W, Ren F, Plikus MV, Chen Y, Luo J, Yu Z. MiR-31 Mediates Inflammatory Signaling to Promote Re-Epithelialization during Skin Wound Healing. J Invest Dermatol 2018; 138:2253-2263. [PMID: 29605672 PMCID: PMC6153075 DOI: 10.1016/j.jid.2018.03.1521] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022]
Abstract
Wound healing is essential for skin repair after injury, and it consists of hemostasis, inflammation, re-epithelialization, and remodeling phases. Successful re-epithelialization, which relies on proliferation and migration of epidermal keratinocytes, requires a reduction in tissue inflammation. Therefore, understanding the molecular mechanism underlying the transition from inflammation to re-epithelialization will help to better understand the principles of wound healing. Currently, the in vivo functions of specific microRNAs in wound healing are not fully understood. We observed that miR-31 expression is strongly induced in wound edge keratinocytes, and is directly regulated by the activity of NF-κB and signal transducer and activator of transcription 3 signaling pathways during the inflammation phase. We used miR-31 loss-of-function mouse models to demonstrate that miR-31 promotes keratinocyte proliferation and migration. Mechanistically, miR-31 activates the Ras/mitogen-activated protein kinase signaling by directly targeting Rasa1, Spred1, Spred2, and Spry4, which are negative regulators of the Ras/mitogen-activated protein kinase pathway. Knockdown of these miR-31 targets at least partially rescues the delayed scratch wound re-epithelialization phenotype observed in vitro in miR-31 knockdown keratinocytes. Taken together, these findings identify miR-31 as an important cell-autonomous mediator during the transition from inflammation to re-epithelialization phases of wound healing, suggesting a therapeutic potential for miR-31 in skin injury repair.
Collapse
Affiliation(s)
- Jianyun Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianghui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yang Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuhua Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shukai Yuan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Xiuqing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Wei Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California Irvine, Irvine, California, USA
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China.
| | - Jie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China.
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Abu Bakar AR, Ripen AM, Merican AF, Mohamad SB. Enzymatic inhibitory activity of Ficus deltoidea leaf extract on matrix metalloproteinase-2, 8 and 9. Nat Prod Res 2018; 33:1765-1768. [PMID: 29394875 DOI: 10.1080/14786419.2018.1434631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dysregulation of matrix metalloproteinases (MMPs) activity is known in many pathological conditions with which most of the conditions are related to elevate MMPs activities. Ficus deltoidea (FD) is a plant known for its therapeutic properties. In order to evaluate the therapeutic potential of FD leaf extract, we study the enzymatic inhibition properties of FD leaf extract and its major bioactive compounds (vitexin and isovitexin) on a panel of MMPs (MMP-2, MMP-8 and MMP-9) using experimental and computational approaches. FD leaf extract and its major bioactive compounds showed pronounced inhibition activity towards the MMPs tested. Computational docking analysis revealed that vitexin and isovitexin bind to the active site of the three tested MMPs. We also evaluated the cytotoxicity and cell migration inhibition activity of FD leaf extract in the endothelial EA.hy 926 cell line. Conclusively, this study provided additional information on the potential of FD leaf extract for therapeutical application.
Collapse
Affiliation(s)
- Amirul Ridzuan Abu Bakar
- a Faculty of Science , Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Adiratna Mat Ripen
- b Allergy and Immunology Research Centre, Institute for Medical Research , Kuala Lumpur , Malaysia
| | - Amir Feisal Merican
- a Faculty of Science , Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia.,c Centre of Research for Computational Sciences and Informatics for Biology, Bio-industry, Environment, Agriculture and Healthcare (CRYSTAL) , University of Malaya , Kuala Lumpur , Malaysia
| | - Saharuddin Bin Mohamad
- a Faculty of Science , Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia.,c Centre of Research for Computational Sciences and Informatics for Biology, Bio-industry, Environment, Agriculture and Healthcare (CRYSTAL) , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
31
|
Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, Asano T, Saijo H, Kuroda T, Yasuda K, Mizuuchi M, Saito T, Sato N. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget 2018; 7:26806-22. [PMID: 27072580 PMCID: PMC5042016 DOI: 10.18632/oncotarget.8645] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC.
Collapse
Affiliation(s)
- Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Tabuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Saijo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
33
|
Smigiel KS, Parks WC. Matrix Metalloproteinases and Leukocyte Activation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:167-195. [PMID: 28413028 DOI: 10.1016/bs.pmbts.2017.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As their name implies, matrix metalloproteinases (MMPs) are thought to degrade extracellular matrix proteins, a function that is indeed performed by some members. However, regardless of their cell source, matrix degradation is not the only function of these enzymes. Rather, individual MMPs have been shown to regulate specific immune processes, such as leukocyte influx and migration, antimicrobial activity, macrophage activation, and restoration of barrier function, typically by processing a range of nonmatrix protein substrates. Indeed, MMP expression is low under steady-state conditions but is markedly induced during inflammatory processes including infection, wound healing, and cancer. Increasing research is showing that MMPs are not just a downstream consequence of a generalized inflammatory process, but rather are critical factors in the overall regulation of the pattern, type, and duration of immune responses. This chapter outlines the role of leukocytes in tissue remodeling and describes recent progress in our understanding of how MMPs alter leukocyte activity.
Collapse
Affiliation(s)
- Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
34
|
McMahan RS, Birkland TP, Smigiel KS, Vandivort TC, Rohani MG, Manicone AM, McGuire JK, Gharib SA, Parks WC. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:899-909. [PMID: 27316687 PMCID: PMC4955757 DOI: 10.4049/jimmunol.1600502] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023]
Abstract
Several members of the matrix metalloproteinase (MMP) family control a range of immune processes, such as leukocyte influx and chemokine activity. Stromelysin-2 (MMP10) is expressed by macrophages in numerous tissues after injury; however, little is known of its function. In this study, we report that MMP10 is expressed by macrophages in human lungs from patients with cystic fibrosis and induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by isolated resident alveolar and bone marrow-derived macrophages (BMDM). Our data indicates that macrophage MMP10 serves a beneficial function in response to acute infection. Whereas wild-type mice survived infection with minimal morbidity, 50% of Mmp10(-/-) mice died and all showed sustained weight loss (morbidity). Although bacterial clearance and neutrophil influx did not differ between genotypes, macrophage numbers were ∼3-fold greater in infected Mmp10(-/-) lungs than in wild-types. Adoptive transfer of wild-type BMDM normalized infection-induced morbidity in Mmp10(-/-) recipients to wild-type levels, demonstrating that the protective effect of MMP10 was due to its production by macrophages. Both in vivo and in cultured alveolar macrophages and BMDM, expression of several M1 macrophage markers was elevated, whereas M2 markers were reduced in Mmp10(-/-) tissue and cells. Global gene expression analysis revealed that infection-mediated transcriptional changes persisted in Mmp10(-/-) BMDM long after they were downregulated in wild-type cells. These results indicate that MMP10 serves a beneficial role in response to acute infection by moderating the proinflammatory response of resident and infiltrating macrophages.
Collapse
Affiliation(s)
- Ryan S McMahan
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105
| | - Timothy P Birkland
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Tyler C Vandivort
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Maryam G Rohani
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - John K McGuire
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington, Seattle, WA 98195
| | - Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
35
|
Na J, Lee K, Na W, Shin JY, Lee MJ, Yune TY, Lee HK, Jung HS, Kim WS, Ju BG. Histone H3K27 Demethylase JMJD3 in Cooperation with NF-κB Regulates Keratinocyte Wound Healing. J Invest Dermatol 2016; 136:847-858. [DOI: 10.1016/j.jid.2015.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023]
|
36
|
Abstract
In this issue, Rohani et al. (2015) report on the role of macrophage-derived stromelysin-2 (matrix metalloproteinase (MMP)-10) in promoting the turnover of extracellular matrix (ECM) during cutaneous wound repair. They provide evidence that MMP-10 specifically enhances collagenolytic activity of murine MMP-13 produced by M2-like macrophages. These results emphasize the important role of macrophage-derived MMP-10 in regulating tissue remodeling and scar formation during wound healing.
Collapse
|
37
|
Schlage P, Kockmann T, Sabino F, Kizhakkedathu JN, Auf dem Keller U. Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions. Mol Cell Proteomics 2015; 14:3234-46. [PMID: 26475864 DOI: 10.1074/mcp.m115.053520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/29/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are important players in skin homeostasis, wound repair, and in the pathogenesis of skin cancer. It is now well established that most of their functions are related to processing of bioactive proteins rather than components of the extracellular matrix (ECM). MMP10 is highly expressed in keratinocytes at the wound edge and at the invasive front of tumors, but hardly any non-ECM substrates have been identified and its function in tissue repair and carcinogenesis is unclear. To better understand the role of MMP10 in the epidermis, we employed multiplexed iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS) and monitored MMP10-dependent proteolysis over time in secretomes from keratinocytes. Time-resolved abundance clustering of neo-N termini classified MMP10-dependent cleavage events by efficiency and refined the MMP10 cleavage site specificity by revealing a so far unknown preference for glutamate in the P1 position. Moreover, we identified and validated the integrin alpha 6 subunit, cysteine-rich angiogenic inducer 61 and dermokine as novel direct MMP10 substrates and provide evidence for MMP10-dependent but indirect processing of phosphatidylethanolamine-binding protein 1. Finally, we sampled the epidermal proteome and degradome in unprecedented depth and confirmed MMP10-dependent processing of dermokine in vivo by TAILS analysis of epidermis from transgenic mice that overexpress a constitutively active mutant of MMP10 in basal keratinocytes. The newly identified substrates are involved in cell adhesion, migration, proliferation, and/or differentiation, indicating a contribution of MMP10 to local modulation of these processes during wound healing and cancer development. Data are available via ProteomeXchange with identifier PXD002474.
Collapse
Affiliation(s)
- Pascal Schlage
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabio Sabino
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Jayachandran N Kizhakkedathu
- §University of British Columbia, Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, 4.401Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ulrich Auf dem Keller
- From the ‡ETH Zurich, Department of Biology,Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland;
| |
Collapse
|
38
|
Rohani MG, McMahan RS, Razumova MV, Hertz AL, Cieslewicz M, Pun SH, Regnier M, Wang Y, Birkland TP, Parks WC. MMP-10 Regulates Collagenolytic Activity of Alternatively Activated Resident Macrophages. J Invest Dermatol 2015; 135:2377-2384. [PMID: 25927164 PMCID: PMC4567949 DOI: 10.1038/jid.2015.167] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinase-10 (MMP-10) is expressed by macrophages and epithelium in response to injury, but its functions in wound repair are unknown. We observed increased collagen deposition and skin stiffness in Mmp10(-/-) wounds, with no difference in collagen expression or reepithelialization. Increased collagen deposition in Mmp10(-/-) wounds was accompanied by less collagenolytic activity and reduced expression of specific metallocollagenases, particularly MMP-8 and MMP-13, where MMP-13 was the key collagenase. Ablation and adoptive transfer approaches and cell-based models demonstrated that the MMP-10-dependent collagenolytic activity was a product of alternatively activated (M2) resident macrophages. These data demonstrate a critical role for macrophage MMP-10 in controlling the tissue remodeling activity of macrophages and moderating scar formation during wound repair.
Collapse
Affiliation(s)
- Maryam G Rohani
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Ryan S McMahan
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Angie L Hertz
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maryelise Cieslewicz
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Ying Wang
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Timothy P Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Sokai A, Handa T, Tanizawa K, Oga T, Uno K, Tsuruyama T, Kubo T, Ikezoe K, Nakatsuka Y, Tanimura K, Muro S, Hirai T, Nagai S, Chin K, Mishima M. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis. Respir Res 2015; 16:120. [PMID: 26415518 PMCID: PMC4587921 DOI: 10.1186/s12931-015-0280-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/20/2015] [Indexed: 02/10/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are believed to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), and MMP-7 has been described as a useful biomarker for IPF. However, little is known regarding the significance of MMP-10 as a biomarker for IPF. Methods This observational cohort study included 57 patients with IPF. Serum MMPs were comprehensively measured in all patients, and the relationships between these markers and both disease severity and prognosis were evaluated. Bronchoalveolar lavage fluid (BALF) MMP-7 and -10 levels were measured in 19 patients to investigate the correlation between these markers and their corresponding serum values. Immunohistochemical staining for MMP-10 was also performed in IPF lung tissue. Results Serum MMP-7 and -10 levels correlated significantly with both the percentage of predicted forced vital capacity (ρ = −0.31, p = 0.02 and ρ = −0.34, p < 0.01, respectively) and the percentage of predicted diffusing capacity of the lung for carbon monoxide (ρ = −0.32, p = 0.02 and ρ = −0.43, p < 0.01, respectively). BALF MMP-7 and -10 levels correlated with their corresponding serum concentrations. Only serum MMP-10 predicted clinical deterioration within 6 months and overall survival. In IPF lungs, the expression of MMP-10 was enhanced and localized to the alveolar epithelial cells, macrophages, and peripheral bronchiolar epithelial cells. Conclusions MMP-10 may be a novel biomarker reflecting both disease severity and prognosis in patients with IPF. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0280-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihiko Sokai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kiminobu Tanizawa
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Toru Oga
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan.
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kohei Ikezoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yoshinari Nakatsuka
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kazuya Tanimura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Sonoko Nagai
- Kyoto Central Clinic/Clinical Research Center, Sakyo-ku, Kyoto, Japan.
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Michiaki Mishima
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
40
|
García-Irigoyen O, Latasa MU, Carotti S, Uriarte I, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Benito P, Ladero JM, Rodriguez JA, Prieto J, Orbe J, Páramo JA, Fernández-Barrena MG, Berasain C, Avila MA. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-C chemokine receptor 4 axis. Hepatology 2015; 62:166-78. [PMID: 25808184 DOI: 10.1002/hep.27798] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/18/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)-induced mouse hepatocarcinogenesis. MMP10 was induced in human and murine HCC tissues and cells. MMP10-deficient mice showed less HCC incidence, smaller histological lesions, reduced tumor vascularization, and less lung metastases. Importantly, expression of the protumorigenic, C-X-C chemokine receptor-4 (CXCR4), was reduced in DEN-induced MMP10-deficient mice livers. Human HCC cells stably expressing MMP10 had increased CXCR4 expression and migratory capacity. Pharmacological inhibition of CXCR4 significantly reduced MMP10-stimulated HCC cell migration. Furthermore, MMP10 expression in HCC cells was induced by hypoxia and the CXCR4 ligand, stromal-derived factor-1 (SDF1), through the extracellular signal-regulated kinase 1/2 pathway, involving an activator protein 1 site in MMP10 gene promoter. CONCLUSION MMP10 contributes to HCC development, participating in tumor angiogenesis, growth, and dissemination. We identified a new reciprocal crosstalk between MMP10 and the CXCR4/SDF1 axis contributing to HCC progression and metastasis. To our knowledge, this is the first report addressing the role of a MMP in hepatocarcinogenesis in the corresponding genetic mouse model.
Collapse
Affiliation(s)
| | - Maria U Latasa
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy, Center for Integrated Biomedical Research- CIR, University Campus Bio-Medico of Rome, Rome, Italy
| | - Iker Uriarte
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Sergio Morini
- Microscopic and Ultrastructural Anatomy, Center for Integrated Biomedical Research- CIR, University Campus Bio-Medico of Rome, Rome, Italy
| | - Patricia Benito
- Department of Digestive Diseases, Hospital Clinico San Carlos, Madrid, Spain
| | - Jose M Ladero
- Department of Digestive Diseases, Hospital Clinico San Carlos, Madrid, Spain
| | - Jose A Rodriguez
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain
| | - Josune Orbe
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jose A Páramo
- Division of Cardiovascular Sciences, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Maite G Fernández-Barrena
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matias A Avila
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
41
|
Arora S, Saha S, Roy S, Das M, Jana SS, Ta M. Role of Nonmuscle Myosin II in Migration of Wharton's Jelly-Derived Mesenchymal Stem Cells. Stem Cells Dev 2015; 24:2065-77. [PMID: 25923805 DOI: 10.1089/scd.2015.0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is the promise of regeneration and therapeutic applications that has sparked an interest in mesenchymal stem cells (MSCs). Following infusion, MSCs migrate to sites of injury or inflammation by virtue of their homing property. To exert optimal clinical benefits, systemically delivered MSCs need to migrate efficiently and in adequate numbers to pathological areas in vivo. However, underlying molecular mechanisms responsible for MSC migration are still not well understood. The Wharton's jelly (WJ) of the umbilical cord is an attractive source of MSCs for stem cell therapy because of its abundant availability and painless collection. In this study, we attempted to identify the role of nonmuscle myosin II (NMII), if any, in the migration of WJ-derived MSCs (WJ-MSCs). Expression of NMII isoforms, NMIIA, and NMIIB was observed both at RNA and protein levels in WJ-MSCs. Inhibition of NMII or its regulator ROCK, by pharmacological inhibitors, resulted in significant reduction in the migration of WJ-MSCs as confirmed by the scratch migration assay and time-lapse microscopy. Next, trying to dissect the role of each NMII isoform in migration of WJ-MSCs, we found that siRNA-mediated downregulation of NMIIA, but not NMIIB expression, led to cells failing to retract their trailing edge and losing cell-cell cohesiveness, while exhibiting a nondirectional migratory pathway. Migration, moreover, is also dependent on optimal affinity adhesion, which would allow rapid attachment and release of cells and, hence, can be influenced by extracellular matrix (ECM) and adhesion molecules. We demonstrated that inhibition of NMII and more specifically NMIIA resulted in increased gene expression of ECM and adhesion molecules, which possibly led to stronger adhesions and, hence, decreased migration. Therefore, these data suggest that NMII acts as a regulator of cell migration and adhesion in WJ-MSCs.
Collapse
Affiliation(s)
- Sneha Arora
- 1 Indian Institute of Science Education and Research Kolkata , Mohanpur, India
| | - Shekhar Saha
- 2 Indian Association for the Cultivation of Science , Kolkata, India
| | - Saheli Roy
- 1 Indian Institute of Science Education and Research Kolkata , Mohanpur, India
| | - Madhurima Das
- 1 Indian Institute of Science Education and Research Kolkata , Mohanpur, India
| | - Siddhartha S Jana
- 2 Indian Association for the Cultivation of Science , Kolkata, India
| | - Malancha Ta
- 1 Indian Institute of Science Education and Research Kolkata , Mohanpur, India
| |
Collapse
|
42
|
Schlage P, Kockmann T, Kizhakkedathu JN, auf dem Keller U. Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS. Proteomics 2015; 15:2491-502. [PMID: 25871442 DOI: 10.1002/pmic.201400627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
Secreted proteases act on interstitial tissue secretomes released from multiple cell types. Thus, substrate proteins might be part of higher molecular complexes constituted by many proteins with diverse and potentially unknown cellular origin. In cell culture, these may be reconstituted by mixing native secretomes from different cell types prior to incubation with a test protease. Although current degradomics techniques could identify novel substrate proteins in these complexes, all information on the cellular origin is lost. To address this limitation, we combined iTRAQ-based terminal amine isotopic labeling of substrates (iTRAQ-TAILS) with SILAC to assign proteins to a specific cell type by MS1- and their cleavage by MS2-based quantification in the same experiment. We demonstrate the power of our newly established workflow by monitoring matrix metalloproteinase (MMP) 10 dependent cleavages in mixtures from light-labeled keratinocyte and heavy-labeled fibroblast secretomes. This analysis correctly assigned extracellular matrix components, such as laminins and collagens, to their respective cellular origins and revealed their processing in an MMP10-dependent manner. Hence, our newly devised degradomics workflow facilitates deeper insight into protease activity in complex intercellular compartments such as the epidermal-dermal interface by integrating multiple modes of quantification with positional proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001643 (http://proteomecentral.proteomexchange.org/dataset/PXD001643).
Collapse
Affiliation(s)
- Pascal Schlage
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ulrich auf dem Keller
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Alpha-1 antitrypsin and granulocyte colony-stimulating factor as serum biomarkers of disease severity in ulcerative colitis. Inflamm Bowel Dis 2015; 21:1077-88. [PMID: 25803506 DOI: 10.1097/mib.0000000000000348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Initial assessment of patients with ulcerative colitis (UC) is challenging and relies on apparent clinical symptoms and measurements of surrogate markers (e.g., C-reactive protein [CRP] or similar acute phase proteins). As CRP only reliably identifies patients with severe disease, novel biomarkers are currently needed for identification of patients with mild or moderate disease activity. Using a commercially available platform, we aimed at identifying serum biomarkers that are able to grade the disease severity. METHODS Serum samples from 65 patients with UC with varying disease activity (Mayo score) and from 40 healthy controls were analyzed by multiplex enzyme-linked immunosorbent assay for 78 potential disease biomarkers. Using the statistical software SIMCA-P+ and GraphPad Prism, multivariate statistical analyses were conducted to identify a limited number of biomarkers to assess disease severity. RESULTS Alpha-1 antitrypsin (AAT) differentiated between mild and moderate UC (area under the curve [AUC] = 0.79) with a sensitivity of 0.90 and a specificity of 0.70, thereby exceeding the predictive ability of CRP (AUC = 0.52). Combining alpha-1 antitrypsin and granulocyte colony-stimulating factor produced a predictive model with an AUC of 0.72 when differentiating mild and moderate UC, and an AUC of 0.96 when differentiating moderate and severe UC, the latter being as reliable as CRP. CONCLUSIONS Alpha-1 antitrypsin is identified as a potential serum biomarker of mild-to-moderate disease activity in UC. With the ability to differentiate between mild, moderate, and severe stages of UC using a simple serum biomarker that is already commercially available, clinicians can initiate individualized treatment regimens at an earlier stage before endoscopic examinations are available.
Collapse
|
44
|
Caley MP, Martins VL, O'Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:225-234. [PMID: 25945285 DOI: 10.1089/wound.2014.0581] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
Significance: Matrix metalloproteinases (MMPs) are present in both acute and chronic wounds. They play a pivotal role, with their inhibitors, in regulating extracellular matrix degradation and deposition that is essential for wound reepithelialization. The excess protease activity can lead to a chronic nonhealing wound. The timed expression and activation of MMPs in response to wounding are vital for successful wound healing. MMPs are grouped into eight families and display extensive homology within these families. This homology leads in part to the initial failure of MMP inhibitors in clinical trials and the development of alternative methods for modulating the MMP activity. MMP-knockout mouse models display altered wound healing responses, but these are often subtle phenotypic changes indicating the overlapping MMP substrate specificity and inter-MMP compensation. Recent Advances: Recent research has identified several new MMP modulators, including photodynamic therapy, protease-absorbing dressing, microRNA regulation, signaling molecules, and peptides. Critical Issues: Wound healing requires the controlled activity of MMPs at all stages of the wound healing process. The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal. Future Directions: Further research into how MMPs are regulated should allow the development of novel treatments for wound healing.
Collapse
Affiliation(s)
- Matthew P. Caley
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| | - Vera L.C. Martins
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| | - Edel A. O'Toole
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| |
Collapse
|
45
|
Matrix remodeling by MMPs during wound repair. Matrix Biol 2015; 44-46:113-21. [PMID: 25770908 DOI: 10.1016/j.matbio.2015.03.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Repair following injury involves a range of processes - such as re-epithelialization, scar formation, angiogenesis, inflammation, and more - that function, often together, to restore tissue architecture. MMPs carry out diverse roles in all of these activities. In this article, we discuss how specific MMPs act on ECM during two critical repair processes: re-epithelialization and resolution of scar tissue. For wound closure, we discuss how two MMPs - MMP1 in human epidermis and MMP7 in mucosal epithelia - facilitate re-epithelialization by cleaving different ECM or ECM-associated proteins to affect similar integrin:matrix adhesion. In scars and fibrotic tissues, we discuss that a variety of MMPs carry out a diverse range of activities that can either promote or limit ECM deposition. However, few of these MMP-driven activities have been demonstrated to be due a direct action on ECM.
Collapse
|
46
|
Expression and vitamin D-mediated regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy skin and in diabetic foot ulcers. Arch Dermatol Res 2014; 306:809-21. [DOI: 10.1007/s00403-014-1494-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/12/2014] [Accepted: 08/20/2014] [Indexed: 01/13/2023]
|
47
|
Garcia-Irigoyen O, Carotti S, Latasa MU, Uriarte I, Fernández-Barrena MG, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Banales JM, Parks WC, Rodriguez JA, Orbe J, Prieto J, Páramo JA, Berasain C, Ávila MA. Matrix metalloproteinase-10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver Int 2014; 34:e257-70. [PMID: 24119197 DOI: 10.1111/liv.12337] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases (MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin-2) in liver wound healing and regeneration. METHODS The hepatic expression of MMP10 was examined in two murine models: liver regeneration after two-thirds partial hepatectomy (PH) and bile duct ligation (BDL). MMP10 was detected in liver tissues by qPCR, western blotting and immunohistochemistry. The effect of growth factors and toll-like receptor 4 (TLR4) agonists on MMP10 expression was studied in cultured parenchymal and biliary epithelial cells and macrophages respectively. The role of MMP10 was evaluated by comparing the response of Mmp10+/+ and Mmp10-/- mice to PH and BDL. The intrahepatic turnover of the extracellular matrix proteins fibrin (ogen) and fibronectin was examined. RESULTS MMP10 mRNA was readily induced after PH and BDL. MMP10 protein was detected in hepatocytes, cholangiocytes and macrophages. In cultured liver epithelial cells, MMP10 expression was additively induced by transforming growth factor-β and epidermal growth factor receptor ligands. TLR4 ligands also stimulated MMP10 expression in macrophages. Lack of MMP10 resulted in increased liver injury upon PH and BDL. Resolution of necrotic areas was impaired, and Mmp10-/- mice showed increased fibrogenesis and defective turnover of fibrin (ogen) and fibronectin. CONCLUSIONS MMP10 expression is induced during mouse liver injury and participates in the hepatic wound healing response. The profibrinolytic activity of MMP10 may be essential in this novel hepatoprotective role.
Collapse
Affiliation(s)
- Oihane Garcia-Irigoyen
- Centro de Investigación Médica Aplicada (CIMA), Division of Hepatology and Gene Therapy, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 857] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
49
|
Zhang G, Miyake M, Lawton A, Goodison S, Rosser CJ. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer 2014; 14:310. [PMID: 24885595 PMCID: PMC4022983 DOI: 10.1186/1471-2407-14-310] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. METHODS Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. RESULTS Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. CONCLUSION Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Charles J Rosser
- Cancer Research Institute, MD Anderson Cancer Center Orlando, Orlando Health, Orlando, FL 32827, USA.
| |
Collapse
|
50
|
De Abrew KN, Thomas-Virnig CL, Rasmussen CA, Bolterstein EA, Schlosser SJ, Allen-Hoffmann BL. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin. Toxicol Appl Pharmacol 2014; 276:171-8. [PMID: 24576722 DOI: 10.1016/j.taap.2014.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/30/2014] [Accepted: 02/13/2014] [Indexed: 01/02/2023]
Abstract
The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial-stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin.
Collapse
Affiliation(s)
- K Nadira De Abrew
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Cathy A Rasmussen
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elyse A Bolterstein
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sandy J Schlosser
- Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - B Lynn Allen-Hoffmann
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|