1
|
Qin L, Ma D, Lin G, Sun W, Li C. Low temperature promotes the production and efflux of terpenoids in yeast. BIORESOURCE TECHNOLOGY 2024; 395:130376. [PMID: 38278452 DOI: 10.1016/j.biortech.2024.130376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Altering the fermentation environment provides an effective approach to optimizing the production efficiency of microbial cell factories globally. Here, lower fermentation temperatures of yeast were found to significantly improve the synthesis and efflux of terpenoids, including glycyrrhetinic acid (GA), β-caryophyllene, and α-amyrin. The production of GA at 22°C increased by 5.5 times compared to 30°C. Yeast subjected to lower temperature showed substantial changes at various omics levels. Certain genes involved in maintaining cellular homeostasis that were upregulated under the low temperature conditions, leading to enhanced GA production. Substituting Mvd1, a thermo-unstable enzyme in mevalonate pathway identified by transcriptome and proteome, with a thermo-tolerant isoenzyme effectively increased GA production. The lower temperature altered the composition of phospholipids and increased the unsaturation of fatty acid chains, which may influence GA efflux. This study presents a strategy for optimizing the fermentation process and identifying key targets of cell factories for terpenoid production.
Collapse
Affiliation(s)
- Lei Qin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Dongshi Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Guangyuan Lin
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Wentao Sun
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
| | - Chun Li
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
2
|
Wang K, Chen J, Martiniuk J, Ma X, Li Q, Measday V, Lu X. Species identification and strain discrimination of fermentation yeasts Saccharomyces cerevisiae and Saccharomyces uvarum using Raman spectroscopy and convolutional neural networks. Appl Environ Microbiol 2023; 89:e0167323. [PMID: 38038459 PMCID: PMC10734496 DOI: 10.1128/aem.01673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The use of S. cerevisiae and S. uvarum yeast starter cultures is a common practice in the alcoholic beverage fermentation industry. As yeast strains from different or the same species have variable fermentation properties, rapid and reliable typing of yeast strains plays an important role in the final quality of the product. In this study, Raman spectroscopy combined with CNN achieved accurate identification of S. cerevisiae and S. uvarum isolates at both the species and strain levels in a rapid, non-destructive, and easy-to-operate manner. This approach can be utilized to test the identity of commercialized dry yeast products and to monitor the diversity of yeast strains during fermentation. It provides great benefits as a high-throughput screening method for agri-food and the alcoholic beverage fermentation industry. This proposed method has the potential to be a powerful tool to discriminate S. cerevisiae and S. uvarum strains in taxonomic, ecological studies and fermentation applications.
Collapse
Affiliation(s)
- Kaidi Wang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jing Chen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jay Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiangyun Ma
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Qifeng Li
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
3
|
Fay JC, Alonso-del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces Species' Heat Shock Response Is Indicative of Their Thermal Tolerance. Genome Biol Evol 2023; 15:evad207. [PMID: 37972247 PMCID: PMC10683043 DOI: 10.1093/gbe/evad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature, we measured changes in gene expression in response to a 12 °C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families, we sequenced, assembled, and annotated a complete S. uvarum genome. In response to heat, the cryophilic species showed a stronger stress response than the thermophilic species, and the hybrids showed a mixture of parental responses that depended on the time point. After an initial strong response indicative of high thermal stress, hybrids with a thermophilic parent resolved their heat shock response to become similar to their thermophilic parent. Within the hybrids, only a small number of temperature-responsive genes showed consistent differences between alleles from the thermophilic and cryophilic species. Our results show that divergence in the heat shock response is mainly a consequence of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat-induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Javier Alonso-del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| |
Collapse
|
4
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
5
|
Fay JC, Alonso-Del-Real J, Miller JH, Querol A. Divergence in the Saccharomyces species' heat shock response is indicative of their thermal tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547718. [PMID: 37461527 PMCID: PMC10349932 DOI: 10.1101/2023.07.04.547718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The Saccharomyces species have diverged in their thermal growth profile. Both S. cerevisiae and S. paradoxus grow at temperatures well above the maximum growth temperature of S. kudriavzevii and S. uvarum, but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature we measured changes in gene expression in response to a 12°C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families we sequenced, assembled and annotated a complete S. uvarum genome. All the strains exhibited a stronger response to heat than cold treatment. In response to heat, the cryophilic species showed a stronger response than the thermophilic species. The hybrids showed a mixture of parental stress responses depending on the time point. After the initial response, hybrids with a thermophilic parent were more similar to S. cerevisiae and S. paradoxus, and the S. cerevisiae × S. paradoxus hybrid showed the weakest heat shock response. Within the hybrids a small subset of temperature responsive genes showed species specific responses but most were also hybrid specific. Our results show that divergence in the heat shock response is indicative of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat induced changes are relevant to thermal divergence in the Saccharomyces species.
Collapse
Affiliation(s)
- Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Javier Alonso-Del-Real
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
- Present position: Tuberculosis Genomics Unit, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - James H Miller
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Amparo Querol
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Valencia, Spain
| |
Collapse
|
6
|
Fabri JHTM, Rocha MC, Fernandes CM, Campanella JEM, da Cunha AF, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Plays a Role in Membrane Lipids Biosynthesis Connecting Thermotolerance and Unsaturated Fatty Acid Metabolism in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0162723. [PMID: 37195179 PMCID: PMC10269545 DOI: 10.1128/spectrum.01627-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jonatas Erick Maimoni Campanella
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Perez R, Aron S. Protective role of trehalose in the Namib desert ant, Ocymyrmex robustior. J Exp Biol 2023; 226:286983. [PMID: 36695637 DOI: 10.1242/jeb.245149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.
Collapse
Affiliation(s)
- Rémy Perez
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
8
|
Hybrid histidine kinase HisK2301 modulates carotenoid production to counteract cold-induced oxidative stress in Rhodosporidium kratochvilovae YM25235 under low temperature. Antonie Van Leeuwenhoek 2022; 115:1393-1404. [PMID: 36251106 DOI: 10.1007/s10482-022-01783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/02/2022] [Indexed: 10/24/2022]
Abstract
Hybrid histidine kinases (HHKs) are major sensor proteins for fungi that contribute to stress tolerance. In the present work, we investigated the roles and mechanisms of the HHK HisK2301 in cold-adapted Rhodosporidium kratochvilovae strain YM25235. The HisK2301 deletion strain was constructed by homologous recombination method and arranged for multiple stress tests. We analysed the content of carotenoid using UV-Vis and HPLC. Relative transcript levels of genes phytoene desaturase (RKCrtI) and phytoene synthase and lycopene cyclase (RKCrtYB) were analysed by RT-qPCR. Intracellular reactive oxygen species (ROS) generation was measured using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Our results clearly indicated that YM25235 produces γ-carotene, torulene, β-carotene and torularhodin, with the latter two components strongly related to adapt to cold. HisK2301 is crucial for YM25235 adaptation to different types of stress such as cold, salt, osmotic and oxidative stress. Growth at low temperature clearly induced oxidative stress in YM25235, as more ROS accumulated at cold. During cold stress, HisK2301 is suggested to sense cold-induced ROS signals and then promote carotenoid production partially by RKCrtI and RKCrtYB to scavenge excessive ROS production. Such an inducible protective system may confer YM25235 fast response and better adaptation to cold stress. To conclude, our findings give the first insight into the effect of HisK2301 on carotenoid biosynthesis and cold-induced oxidative stress in fungi under low temperature and suggest the potential use of the cold-adapted HHK HisK2301 in industrial production of carotenoid.
Collapse
|
9
|
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022; 13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
In industrial settings and processes, yeasts may face multiple adverse environmental conditions. These include exposure to non-optimal temperatures or pH, osmotic stress, and deleterious concentrations of diverse inhibitory compounds. These toxic chemicals may result from the desired accumulation of added-value bio-products, yeast metabolism, or be present or derive from the pre-treatment of feedstocks, as in lignocellulosic biomass hydrolysates. Adaptation and tolerance to industrially relevant stress factors involve highly complex and coordinated molecular mechanisms occurring in the yeast cell with repercussions on the performance and economy of bioprocesses, or on the microbiological stability and conservation of foods, beverages, and other goods. To sense, survive, and adapt to different stresses, yeasts rely on a network of signaling pathways to modulate the global transcriptional response and elicit coordinated changes in the cell. These pathways cooperate and tightly regulate the composition, organization and biophysical properties of the cell wall. The intricacy of the underlying regulatory networks reflects the major role of the cell wall as the first line of defense against a wide range of environmental stresses. However, the involvement of cell wall in the adaptation and tolerance of yeasts to multiple stresses of biotechnological relevance has not received the deserved attention. This article provides an overview of the molecular mechanisms involved in fine-tuning cell wall physicochemical properties during the stress response of Saccharomyces cerevisiae and their implication in stress tolerance. The available information for non-conventional yeast species is also included. These non-Saccharomyces species have recently been on the focus of very active research to better explore or control their biotechnological potential envisaging the transition to a sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Ricardo A. Ribeiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Bourbon-Melo
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
11
|
Baeza M, Zúñiga S, Peragallo V, Gutierrez F, Barahona S, Alcaino J, Cifuentes V. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts. Front Microbiol 2022; 13:828536. [PMID: 35283858 PMCID: PMC8905146 DOI: 10.3389/fmicb.2022.828536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Growth response of Saccharomyces cerevisiae strains to stressors associated to the vine cycle. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Separovich RJ, Wong MW, Bartolec TK, Hamey JJ, Wilkins MR. Site-specific phosphorylation of histone H3K36 methyltransferase Set2p and demethylase Jhd1p is required for stress responses in Saccharomyces cerevisiae. J Mol Biol 2022; 434:167500. [DOI: 10.1016/j.jmb.2022.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
14
|
Touchette D, Altshuler I, Gostinčar C, Zalar P, Raymond-Bouchard I, Zajc J, McKay CP, Gunde-Cimerman N, Whyte LG. Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. THE ISME JOURNAL 2022; 16:221-232. [PMID: 34294882 PMCID: PMC8692454 DOI: 10.1038/s41396-021-01030-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
The novel extremophilic yeast Rhodotorula frigidialcoholis, formerly R. JG1b, was isolated from ice-cemented permafrost in University Valley (Antarctic), one of coldest and driest environments on Earth. Phenotypic and phylogenetic analyses classified R. frigidialcoholis as a novel species. To characterize its cold-adaptive strategies, we performed mRNA and sRNA transcriptomic analyses, phenotypic profiling, and assessed ethanol production at 0 and 23 °C. Downregulation of the ETC and citrate cycle genes, overexpression of fermentation and pentose phosphate pathways genes, growth without reduction of tetrazolium dye, and our discovery of ethanol production at 0 °C indicate that R. frigidialcoholis induces a metabolic switch from respiration to ethanol fermentation as adaptation in Antarctic permafrost. This is the first report of microbial ethanol fermentation utilized as the major energy pathway in response to cold and the coldest temperature reported for natural ethanol production. R. frigidialcoholis increased its diversity and abundance of sRNAs when grown at 0 versus 23 °C. This was consistent with increase in transcription of Dicer, a key protein for sRNA processing. Our results strongly imply that post-transcriptional regulation of gene expression and mRNA silencing may be a novel evolutionary fungal adaptation in the cryosphere.
Collapse
Affiliation(s)
- D Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - I Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China
| | - P Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - I Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - J Zajc
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - C P McKay
- NASA Ames Research Center, Moffett Field, CA, USA
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - L G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
15
|
Ren C, Li H, Wang Z, Dai Z, Lecourieux F, Kuang Y, Xin H, Li S, Liang Z. Characterization of Chromatin Accessibility and Gene Expression upon Cold Stress Reveals that the RAV1 Transcription Factor Functions in Cold Response in Vitis Amurensis. PLANT & CELL PHYSIOLOGY 2021; 62:1615-1629. [PMID: 34279666 PMCID: PMC8643690 DOI: 10.1093/pcp/pcab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 05/29/2023]
Abstract
Cold tolerance is regulated by a variety of transcription factors (TFs) and their target genes. Except for the well-characterized C-repeat binding factors (CBFs)-dependent transcriptional cascade, the mechanisms of cold tolerance mediated by other transcriptional regulatory networks are still largely unknown. Here, we used the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq to identify cold responsive TFs in Vitis amurensis, a grape species with high cold hardiness. Nine TFs, including CBF4, RAV1 and ERF104, were identified after cold treatment. Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) analysis revealed that these TFs may regulate cold response through different pathways. As a prime candidate TF, overexpression of VaRAV1 in grape cells improved its cold tolerance. The transgenic cells exhibited low electrolyte leakage and malondialdehyde content and high peroxidase activity. Moreover, the TF gene TCP8 and a gene involving in homogalacturonan biosynthesis were found to be regulated by VaRAV1, suggesting that the contribution of VaRAV1 to cold tolerance may be achieved by enhancing the stability of cell membrane and regulating the expression of target genes involved in plant cell wall composition. Our work provides novel insights into plant response to cold stress and demonstrates the utility of ATAC-seq and RNA-seq for the rapid identification of TFs in response to cold stress in grapevine. VaRAV1 may play an important role in adaption to cold stress.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Huayang Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Rd, Beijing 100049, PR China
| | - Zemin Wang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Fatma Lecourieux
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 210 chemin de Leysotte, Villenave d’Ornon 33882, France
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Rd, Beijing 100049, PR China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 1 Lumo Rd, Wuhan 430074, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | | |
Collapse
|
16
|
Development of Korean Indigenous Low-Temperature-Tolerant Yeast for Enhancing the Flavor of Yakju. FERMENTATION 2021. [DOI: 10.3390/fermentation7040260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Yakju, a traditional fermented beverage in Korea, is prepared using various raw materials and methods, and, hence, exhibits various characteristics. Low-temperature-fermented yakju can inhibit the growth of undesirable bacteria and is known for its unique flavor and refreshing taste. To increase the production of volatile aromatic compounds in yakju, strains with strong resistance to low temperatures and excellent production of volatile aromatic compounds were screened from indigenous fruits (grape, persimmon, plum, aronia, wild grape) and nuruk in Korea. One Saccharomyces cerevisiae and three non-Saccharomyces strains were finally screened, and yakju was fermented at 15 °C through mono/co-culture. The analysis of volatile aromatic compounds showed that S. cerevisiae W153 produced 1.5 times more isoamyl alcohol than the control strain and reduced the production of 2,3-butanediol by a third. Similarly, a single culture of Pichia kudriavzevii N373 also produced 237.7 mg/L of ethyl acetate, whereas Hanseniaspora vineae G818 produced ~11 times greater levels of 2-phenethyl acetate than the control. Alternatively, Wickerhamomyces anomalus A159 produced 95.88 mg/L of ethyl hexadecanoate. During principal component analysis, we also observed that the co-culture sample exhibited characteristics of both volatile aroma compounds of the single cultured sample of each strain. Our results suggest that yakju with unique properties can be prepared using various non-Saccharomyces strains.
Collapse
|
17
|
Zhou X, Suo J, Liu C, Niu C, Zheng F, Li Q, Wang J. Genome comparison of three lager yeasts reveals key genes affecting yeast flocculation during beer fermentation. FEMS Yeast Res 2021; 21:6284804. [PMID: 34037755 DOI: 10.1093/femsyr/foab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Yeast flocculation plays an essential role in industrial application. Appropriate flocculation of yeast cells at the end of fermentation benefits the cell separation in production, which is an important characteristic of lager yeast for beer production. Due to the complex fermentation environment and diverse genetic background of yeast strains, it is difficult to explain the flocculation mechanism and find key genes that affect yeast flocculation during beer brewing. By analyzing the genomic mutation of two natural mutant yeasts with stronger flocculation ability compared to the parental strain, it was found that the mutated genes common in both mutants were enriched in protein processing in endoplasmic reticulum, membrane lipid metabolism and other pathways or biological processes involved in stress responses. Further functional verification of genes revealed that regulation of RIM101 and VPS36 played a role in lager yeast flocculation under the brewing condition. This work provided new clues for improving yeast flocculation in beer brewing.
Collapse
Affiliation(s)
- Xuefei Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jingyi Suo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| |
Collapse
|
18
|
Baeza M, Zúñiga S, Peragallo V, Barahona S, Alcaino J, Cifuentes V. Identification of Stress-Related Genes and a Comparative Analysis of the Amino Acid Compositions of Translated Coding Sequences Based on Draft Genome Sequences of Antarctic Yeasts. Front Microbiol 2021; 12:623171. [PMID: 33633709 PMCID: PMC7902016 DOI: 10.3389/fmicb.2021.623171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Microorganisms inhabiting cold environments have evolved strategies to tolerate and thrive in those extreme conditions, mainly the low temperature that slow down reaction rates. Among described molecular and metabolic adaptations to enable functioning in the cold, there is the synthesis of cold-active proteins/enzymes. In bacterial cold-active proteins, reduced proline content and highly flexible and larger catalytic active sites than mesophylls counterparts have been described. However, beyond the low temperature, microorganisms' physiological requirements may differ according to their growth velocities, influencing their global protein compositions. This hypothesis was tested in this work using eight cold-adapted yeasts isolated from Antarctica, for which their growth parameters were measured and their draft genomes determined and bioinformatically analyzed. The optimal temperature for yeasts' growth ranged from 10 to 22°C, and yeasts having similar or same optimal temperature for growth displayed significative different growth rates. The sizes of the draft genomes ranged from 10.7 (Tetracladium sp.) to 30.7 Mb (Leucosporidium creatinivorum), and the GC contents from 37 (Candida sake) to 60% (L. creatinivorum). Putative genes related to various kinds of stress were identified and were especially numerous for oxidative and cold stress responses. The putative proteins were classified according to predicted cellular function and subcellular localization. The amino acid composition was compared among yeasts considering their optimal temperature for growth and growth rates. In several groups of predicted proteins, correlations were observed between their contents of flexible amino acids and both the yeasts' optimal temperatures for growth and their growth rates. In general, the contents of flexible amino acids were higher in yeasts growing more rapidly as their optimal temperature for growth was lower. The contents of flexible amino acids became lower among yeasts with higher optimal temperatures for growth as their growth rates increased.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 2020; 10:22329. [PMID: 33339840 PMCID: PMC7749138 DOI: 10.1038/s41598-020-77846-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
Affiliation(s)
- Tânia Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
20
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
21
|
Cabrera E, Welch LC, Robinson MR, Sturgeon CM, Crow MM, Segarra VA. Cryopreservation and the Freeze-Thaw Stress Response in Yeast. Genes (Basel) 2020; 11:genes11080835. [PMID: 32707778 PMCID: PMC7463829 DOI: 10.3390/genes11080835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/31/2023] Open
Abstract
The ability of yeast to survive freezing and thawing is most frequently considered in the context of cryopreservation, a practical step in both industrial and research applications of these organisms. However, it also relates to an evolved ability to withstand freeze-thaw stress that is integrated with a larger network of survival responses. These responses vary between different strains and species of yeast according to the environments to which they are adapted, and the basis of this adaptation appears to be both conditioned and genetic in origin. This review article briefly touches upon common yeast cryopreservation methods and describes in detail what is known about the biochemical and genetic determinants of cell viability following freeze-thaw stress. While we focus on the budding yeast Saccharomyces cerevisiae, in which the freeze-thaw stress response is best understood, we also highlight the emerging diversity of yeast freeze-thaw responses as a manifestation of biodiversity among these organisms.
Collapse
|
22
|
Lip KYF, García-Ríos E, Costa CE, Guillamón JM, Domingues L, Teixeira J, van Gulik WM. Selection and subsequent physiological characterization of industrial Saccharomyces cerevisiae strains during continuous growth at sub- and- supra optimal temperatures. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00462. [PMID: 32477898 PMCID: PMC7251540 DOI: 10.1016/j.btre.2020.e00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/04/2022]
Abstract
A phenotypic screening of 12 industrial yeast strains and the well-studied laboratory strain CEN.PK113-7D at cultivation temperatures between 12 °C and 40 °C revealed significant differences in maximum growth rates and temperature tolerance. From those 12, two strains, one performing best at 12 °C and the other at 40 °C, plus the laboratory strain, were selected for further physiological characterization in well-controlled bioreactors. The strains were grown in anaerobic chemostats, at a fixed specific growth rate of 0.03 h-1 and sequential batch cultures at 12 °C, 30 °C, and 39 °C. We observed significant differences in biomass and ethanol yields on glucose, biomass protein and storage carbohydrate contents, and biomass yields on ATP between strains and cultivation temperatures. Increased temperature tolerance coincided with higher energetic efficiency of cell growth, indicating that temperature intolerance is a result of energy wasting processes, such as increased turnover of cellular components (e.g. proteins) due to temperature induced damage.
Collapse
Affiliation(s)
- Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carlos E. Costa
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - José Teixeira
- Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Delft 2629HZ, the Netherlands
| |
Collapse
|
23
|
Skowron K, Wałecka-Zacharska E, Grudlewska K, Kwiecińska-Piróg J, Wiktorczyk N, Kowalska M, Paluszak Z, Kosek-Paszkowska K, Brożek K, Korkus J, Gospodarek-Komkowska E. Effect of Selected Environmental Factors on the Microbicidal Effectiveness of Radiant Catalytic Ionization. Front Microbiol 2020; 10:3057. [PMID: 32038531 PMCID: PMC6989485 DOI: 10.3389/fmicb.2019.03057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was the assessment of the effect of time exposure, temperature, distance, and organic contaminants on radiant catalytic ionization (RCI) microbicidal effectiveness. The number of all examined bacteria decreased together with time exposure of RCI. The lowest recovery was obtained, both from the rubber surface (6.36 log CFU × cm-2) and steel (6.04 log CFU × cm-2) in the case of Escherichia coli O157:H7. On the other hand, Staphylococcus aureus was isolated in the largest number (rubber: 7.88 log CFU × cm-2, steel: 7.79 log CFU × cm-2). Among the tested environmental conditions, the greatest bacterial population was re-isolated at 4°C (distance: 0.5 m, time: 24 h), whereas the lowest population was found at a distance of 0.5 m (temperature: 20°C, time: 24 h) and on surfaces without contamination. In the samples treated with RCI, the bacterial population was the lowest on non-contaminated surfaces, ranging from 3.76 log CFU × cm-2 (E. coli O157:H7) to 5.58 log CFU × cm-2 (S. aureus) for the rubber, and from 3.26 log CFU × cm-2 (E. coli O157:H7) to 5.20 log CFU × cm-2 (S. aureus) for the stainless steel. The highest bacteria number was isolated from surfaces contaminated with meat and fish pulp. The lowest bacterial reduction caused by RCI was found in the case of rubber contaminated with meat-fish pulp (24 h, 0.5 m, 20°C). The reduction rate was equal to 0.89 log CFU × cm-2 for S. aureus, 1.17 log CFU × cm-2 for Listeria monocytogenes, 1.43 log CFU × cm-2 for Salmonella Enteritidis and 1.61 log CFU × cm-2 for E. coli O157:H7. In turn, the greatest bacterial reduction was found in the case of non-contaminated steel (24 h, 0.5 m, 37°C). The reduction rate was equal to 4.52 log CFU × cm-2 for L. monocytogenes, 3.61 log CFU × cm-2 for S. Enteritidis, 2.98 log CFU × cm-2 for E. coli O157:H7 and 2.77 log CFU × cm-2 for S. aureus. RCI allows the inactivation of pathogens from stainless steel and rubber surfaces. Its efficacy is species-dependent and affected by environmental factors.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| | - Natalia Wiktorczyk
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| | - Maria Kowalska
- Department of Food Analytics and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Sciences and Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Zbigniew Paluszak
- Department of Microbiology and Food Technology, UTP University of Sciences and Technology in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Kosek-Paszkowska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Klaudia Brożek
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruñ, Bydgoszcz, Poland
| |
Collapse
|
24
|
Zhang W, Zhang F, Zhang J, Wang N. Hierarchical parameter estimation of GRN based on topological analysis. IET Syst Biol 2019; 12:294-303. [PMID: 30472694 DOI: 10.1049/iet-syb.2018.5015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reverse engineering of gene regulatory network (GRN) is an important and challenging task in systems biology. Existing parameter estimation approaches that compute model parameters with the same importance are usually computationally expensive or infeasible, especially in dealing with complex biological networks.In order to improve the efficiency of computational modeling, the paper applies a hierarchical estimation methodology in computational modeling of GRN based on topological analysis. This paper divides nodes in a network into various priority levels using the graph-based measure and genetic algorithm. The nodes in the first level, that correspond to root strongly connected components(SCC) in the digraph of GRN, are given top priority in parameter estimation. The estimated parameters of vertices in the previous priority level ARE used to infer the parameters for nodes in the next priority level. The proposed hierarchical estimation methodology obtains lower error indexes while consuming less computational resources compared with single estimation methodology. Experimental outcomes with insilico networks and a realistic network show that gene networks are decomposed into no more than four levels, which is consistent with the properties of inherent modularity for GRN. In addition, the proposed hierarchical parameter estimation achieves a balance between computational efficiency and accuracy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Control Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, People's Republic of China
| | - Feng Zhang
- Department of Control Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, People's Republic of China
| | - Jianming Zhang
- Department of Control Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, People's Republic of China.
| | - Ning Wang
- Department of Control Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Somani A, Box WG, Smart KA, Powell CD. Physiological and transcriptomic response of Saccharomyces pastorianus to cold storage. FEMS Yeast Res 2019; 19:5420514. [PMID: 31073596 DOI: 10.1093/femsyr/foz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Removal of yeast biomass at the end of fermentation, followed by a period of storage before re-inoculation into a subsequent fermentation, is common in the brewing industry. Storage is typically conducted at cold temperatures to preserve yeast quality, a practice which has unfavourable cost and environmental implications. To determine the potential for alleviating these effects, the transcriptomic and physiological response of Saccharomyces pastorianus strain W34/70 to standard (4°C) and elevated (10°C) storage temperatures was explored. Higher temperatures resulted in increased expression of genes associated with the production and mobilisation of intracellular glycogen, trehalose, glycerol and fatty acids, although these observations were limited to early stages of storage. Intracellular trehalose and glycerol concentrations were higher at 4°C than at 10°C, as a consequence of the cellular response to cold stress. However, significant changes in glycogen degradation or cellular fatty acid composition did not occur between the two sets of populations, ensuring that cell viability remained consistent. It is anticipated that this data may lead to changes in standard practice for handling yeast cultures, without compromising yeast quality. This work has significance not only for the brewing industry, but also for food and biofuel sectors requiring short-term storage of liquid yeast.
Collapse
Affiliation(s)
- Abhishek Somani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Gogerddan Campus, University of Aberystwyth, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom
| | - Wendy G Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Katherine A Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcet Drive, Cambridge, Cambridgeshire, CB3 0AS, United Kingdom
| | - Chris D Powell
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
26
|
Hinkle KL, Olsen D. Exposure to the lampricide TFM elicits an environmental stress response in yeast. FEMS Yeast Res 2019; 19:5184468. [PMID: 30445546 PMCID: PMC6455944 DOI: 10.1093/femsyr/foy121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey populations in the Great Lakes and Lake Champlain. Little is known about the effects of this pesticide on gene expression in eukaryotic species. This study used microarray analysis to determine the effects of short term, high dose TFM exposure on gene expression in Saccharomyces cerevisiae. Yeast grown in standard glucose-containing media showed significant variation in gene expression in pathways related to cytoplasmic translation with the majority of these genes being downregulated. These findings were supported by the analysis of a similar but glucose-free experiment revealing that these cytoplasmic translation genes, mostly ribosomal subunit expressing genes, were similarly downregulated. The repression of the ribosomal subunit genes suggests that TFM exposure, regardless of glucose availability, evokes features of the environmental stress response in yeast.
Collapse
Affiliation(s)
- Karen L Hinkle
- Department of Biology, Norwich University, 158 Harmon Drive, Northfield, VT 05663 USA
| | - Darlene Olsen
- Department of Mathematics, Norwich University, 158 Harmon Drive, Northfield, VT 05663 USA
| |
Collapse
|
27
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
28
|
Feng L, Jia H, Qin Y, Song Y, Tao S, Liu Y. Rapid Identification of Major QTL S Associated With Near- Freezing Temperature Tolerance in Saccharomyces cerevisiae. Front Microbiol 2018; 9:2110. [PMID: 30254614 PMCID: PMC6141824 DOI: 10.3389/fmicb.2018.02110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Temperatures had a strong effect on many life history traits, including growth, development and reproduction. At near-freezing temperatures (0–4°C), yeast cells could trigger series of biochemical reactions to respond and adapt to the stress, protect them against sever cold and freeze injury. Different Saccharomyces cerevisiae strains vary greatly in their ability to grow at near-freezing temperatures. However, the molecular mechanisms that allow yeast cells to sustain this response are not yet fully understood and the genetic basis of tolerance and sensitivity to near-freeze stress remains unclear. Uncovering the genetic determinants of this trait is, therefore, of is of significant interest. In order to investigate the genetic basis that underlies near-freezing temperature tolerance in S. cerevisiae, we mapped the major quantitative trait loci (QTLs) using bulk segregant analysis (BSA) in the F2 segregant population of two Chinese indigenous S. cerevisiae strains with divergent tolerance capability at 4°C. By genome-wide comparison of single-nucleotide polymorphism (SNP) profiles between two bulks of segregants with high and low tolerance to near-freezing temperature, a hot region located on chromosome IV was identified tightly associated with the near-freezing temperature tolerance. The Reciprocal hemizygosity analysis (RHA) and gene deletion was used to validate the genes involved in the trait, showed that the gene NAT1 plays a role in the near-freezing temperature tolerance. This study improved our understanding of the genetic basis of the variability of near-freezing temperature tolerance in yeasts. The superior allele identified could be used to genetically improve the near-freezing stress adaptation of industrial yeast strains.
Collapse
Affiliation(s)
- Li Feng
- College of Enology, Northwest A&F University, Yangling, China
| | - He Jia
- College of Enology, Northwest A&F University, Yangling, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 2018; 35:21-38. [PMID: 29131388 DOI: 10.1002/yea.3294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/3, A-1190, Vienna, Austria
| |
Collapse
|
30
|
Fischer S, Büchner K, Becker T. Induced expression of the alcohol acetyltransferase geneATF1in industrial yeastSaccharomyces pastorianusTUM 34/70. Yeast 2018; 35:531-541. [DOI: 10.1002/yea.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- S. Fischer
- Technical University of Munich, Institute of Brewing and Beverage Technology; Research Group Beverage and Ceral Biotechnology; Weihenstephaner Steig 20 85354 Freising Germany
| | - K.R. Büchner
- Technical University of Munich, Institute of Brewing and Beverage Technology; Research Group Beverage and Ceral Biotechnology; Weihenstephaner Steig 20 85354 Freising Germany
| | - T. Becker
- Technical University of Munich, Institute of Brewing and Beverage Technology; Research Group Beverage and Ceral Biotechnology; Weihenstephaner Steig 20 85354 Freising Germany
| |
Collapse
|
31
|
Zepeda AB, Figueroa CA, Pessoa A, Farías JG. Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Braz J Microbiol 2018; 49:856-864. [PMID: 29705163 PMCID: PMC6175731 DOI: 10.1016/j.bjm.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
The growth of yeasts in culture media can be affected by many factors. For example, methanol can be metabolized by other pathways to produce ethanol, which acts as an inhibitor of the heterologous protein production pathway; oxygen concentration can generate aerobic or anaerobic environments and affects the fermentation rate; and temperature affects the central carbon metabolism and stress response protein folding. The main goal of this study was determine the implication of free fatty acids on the production of heterologous proteins in different culture conditions in cultures of Pichia pastoris. We evaluated cell viability using propidium iodide by flow cytometry and thiobarbituric acid reactive substances to measure cell membrane damage. The results indicate that the use of low temperatures and low methanol concentrations favors the decrease in lipid peroxidation in the transition phase from glycerol to methanol. In addition, a temperature of 14 °C + 1%M provided the most stable viability. By contrast, the temperature of 18 °C + 1.5%M favored the production of a higher antibody fragment concentration. In summary, these results demonstrate that the decrease in lipid peroxidation is related to an increased production of free fatty acids.
Collapse
Affiliation(s)
- Andrea B Zepeda
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Carolina A Figueroa
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Adalberto Pessoa
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Jorge G Farías
- Universidad de La Frontera, Facultad de Ingeniería, Ciencias y Administración, Departamento de Ingeniería Química, Temuco, Chile.
| |
Collapse
|
32
|
Somani A, Bealin-Kelly F, Axcell B, Smart KA. Impact of Storage Temperature on Lager Brewing Yeast Viability, Glycogen, Trehalose, and Fatty Acid Content. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0427-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Abhishek Somani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | - Barry Axcell
- SABMiller Plc., SABMiller House, Woking, Surrey GU21 6HS, UK
| | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
33
|
Martin-Perez M, Villén J. Determinants and Regulation of Protein Turnover in Yeast. Cell Syst 2017; 5:283-294.e5. [PMID: 28918244 DOI: 10.1016/j.cels.2017.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 04/02/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
Protein turnover maintains the recycling needs of the proteome, and its malfunction has been linked to aging and age-related diseases. However, not all proteins turnover equally, and the factors that contribute to accelerate or slow down turnover are mostly unknown. We measured turnover rates for 3,160 proteins in exponentially growing yeast and analyzed their dependence on physical, functional, and genetic properties. We found that functional characteristics, including protein localization, complex membership, and connectivity, have greater effect on turnover than sequence elements. We also found that protein turnover and mRNA turnover are correlated. Analysis under nutrient perturbation and osmotic stress revealed that protein turnover highly depends on cellular state and is faster when proteins are being actively used. Finally, stress-induced changes in protein and transcript abundance correlated with changes in protein turnover. This study provides a resource of protein turnover rates and principles to understand the recycling needs of the proteome under basal conditions and perturbation.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Miteva-Staleva JG, Krumova ET, Vassilev SV, Angelova MB. Cold-stress response during the stationary-growth phase of Antarctic and temperate-climate Penicillium strains. MICROBIOLOGY-SGM 2017; 163:1042-1051. [PMID: 28691665 DOI: 10.1099/mic.0.000486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cold-induced oxidative stress during the aging of three Penicillium strains (two Antarctic and one from a temperate region) in stationary culture was documented and demonstrated a significant increase in the protein carbonyl content, the accumulation of glycogen and trehalose, and an increase in the activities of antioxidant enzymes (superoxide dismutase and catalase). The cell response to a temperature downshift depends on the degree of stress and the temperature characteristics of the strains. Our data give further support for the role of oxidative stress in the aging of fungi in stationary cultures. Comparing the present results for the stationary growth phase with our previous results for the exponential growth phase was informative concerning the relationship between the cold-stress response and age-related changes in the tested strains. Unlike the young cells, stationary-phase cultures demonstrated a more pronounced level of oxidative damage, as well as decreased antioxidant defence.
Collapse
Affiliation(s)
- Jeni G Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Ekaterina T Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Spassen V Vassilev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Maria B Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113 Sofia, Bulgaria
| |
Collapse
|
35
|
Jordan HR, Tomberlin JK. Abiotic and Biotic Factors Regulating Inter-Kingdom Engagement between Insects and Microbe Activity on Vertebrate Remains. INSECTS 2017; 8:E54. [PMID: 28538664 PMCID: PMC5492068 DOI: 10.3390/insects8020054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022]
Abstract
Abstract: A number of abiotic and biotic factors are known to regulate arthropod attraction, colonization, and utilization of decomposing vertebrate remains. Such information is critical when assessing arthropod evidence associated with said remains in terms of forensic relevance. Interactions are not limited to just between the resource and arthropods. There is another biotic factor that has been historically overlooked; however, with the advent of high-throughput sequencing, and other molecular techniques, the curtain has been pulled back to reveal a microscopic world that is playing a major role with regards to carrion decomposition patterns in association with arthropods. The objective of this publication is to review many of these factors and draw attention to their impact on microbial, specifically bacteria, activity associated with these remains as it is our contention that microbes serve as a primary mechanism regulating associated arthropod behavior.
Collapse
Affiliation(s)
- Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39705, USA.
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
36
|
Krogerus K, Seppänen-Laakso T, Castillo S, Gibson B. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb Cell Fact 2017; 16:66. [PMID: 28431563 PMCID: PMC5399851 DOI: 10.1186/s12934-017-0679-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/09/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Interspecific hybridization has proven to be a potentially valuable technique for generating de novo lager yeast strains that possess diverse and improved traits compared to their parent strains. To further enhance the value of hybridization for strain development, it would be desirable to combine phenotypic traits from more than two parent strains, as well as remove unwanted traits from hybrids. One such trait, that has limited the industrial use of de novo lager yeast hybrids, is their inherent tendency to produce phenolic off-flavours; an undesirable trait inherited from the Saccharomyces eubayanus parent. Trait removal and the addition of traits from a third strain could be achieved through sporulation and meiotic recombination or further mating. However, interspecies hybrids tend to be sterile, which impedes this opportunity. RESULTS Here we generated a set of five hybrids from three different parent strains, two of which contained DNA from all three parent strains. These hybrids were constructed with fertile allotetraploid intermediates, which were capable of efficient sporulation. We used these eight brewing strains to examine two brewing-relevant phenotypes: stress tolerance and phenolic off-flavour formation. Lipidomics and multivariate analysis revealed links between several lipid species and the ability to ferment in low temperatures and high ethanol concentrations. Unsaturated fatty acids, such as oleic acid, and ergosterol were shown to positively influence growth at high ethanol concentrations. The ability to produce phenolic off-flavours was also successfully removed from one of the hybrids, Hybrid T2, through meiotic segregation. The potential application of these strains in industrial fermentations was demonstrated in wort fermentations, which revealed that the meiotic segregant Hybrid T2 not only didn't produce any phenolic off-flavours, but also reached the highest ethanol concentration and consumed the most maltotriose. CONCLUSIONS Our study demonstrates the possibility of constructing complex yeast hybrids that possess traits that are relevant to industrial lager beer fermentation and that are derived from several parent strains. Yeast lipid composition was also shown to have a central role in determining ethanol and cold tolerance in brewing strains.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
- Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, 00076 Espoo, Finland
| | | | - Sandra Castillo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044 Espoo, Finland
| |
Collapse
|
37
|
Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol Mol Biol Rev 2017; 81:81/2/e00053-16. [PMID: 28298477 DOI: 10.1128/mmbr.00053-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target.
Collapse
|
38
|
Deed RC, Fedrizzi B, Gardner RC. Saccharomyces cerevisiae FLO1 Gene Demonstrates Genetic Linkage to Increased Fermentation Rate at Low Temperatures. G3 (BETHESDA, MD.) 2017; 7:1039-1048. [PMID: 28143947 PMCID: PMC5345705 DOI: 10.1534/g3.116.037630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
Abstract
Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation.
Collapse
Affiliation(s)
- Rebecca C Deed
- School of Chemical Sciences, University of Auckland, 1010, New Zealand
- School of Biological Sciences, University of Auckland, 1010, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, 1010, New Zealand
| | - Richard C Gardner
- School of Biological Sciences, University of Auckland, 1010, New Zealand
| |
Collapse
|
39
|
Krogerus K, Magalhães F, Vidgren V, Gibson B. Novel brewing yeast hybrids: creation and application. Appl Microbiol Biotechnol 2016; 101:65-78. [PMID: 27885413 PMCID: PMC5203825 DOI: 10.1007/s00253-016-8007-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland. .,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland.
| | - Frederico Magalhães
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, Espoo, 00076, Finland
| | - Virve Vidgren
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
40
|
Ballester-Tomás L, Prieto JA, Alepuz P, González A, Garre E, Randez-Gil F. Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:314-323. [PMID: 27864078 DOI: 10.1016/j.bbamcr.2016.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.
Collapse
Affiliation(s)
- Lidia Ballester-Tomás
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Paula Alepuz
- Departament of Biochemistry and Molecular Biology, ERI Biotecmed, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | | | - Elena Garre
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980-Paterna, Valencia, Spain.
| |
Collapse
|
41
|
Salvadó Z, Ramos-Alonso L, Tronchoni J, Penacho V, García-Ríos E, Morales P, Gonzalez R, Guillamón JM. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. Int J Food Microbiol 2016; 236:38-46. [PMID: 27442849 DOI: 10.1016/j.ijfoodmicro.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023]
Abstract
Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature.
Collapse
Affiliation(s)
- Zoel Salvadó
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain; Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Lucía Ramos-Alonso
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Vanessa Penacho
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de la Rioja, Gobierno de La Rioja), Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
42
|
Christel S, Fridlund J, Watkin EL, Dopson M. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8 °C suggesting it is a eurypsychrophile. Extremophiles 2016; 20:903-913. [PMID: 27783177 PMCID: PMC5085989 DOI: 10.1007/s00792-016-0882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elizabeth L Watkin
- School of Biomedical Sciences, Curtin University, Perth, 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
43
|
Treseder KK, Marusenko Y, Romero-Olivares AL, Maltz MR. Experimental warming alters potential function of the fungal community in boreal forest. GLOBAL CHANGE BIOLOGY 2016; 22:3395-3404. [PMID: 26836961 DOI: 10.1111/gcb.13238] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Fungal community composition often shifts in response to warmer temperatures, which might influence decomposition of recalcitrant carbon (C). We hypothesized that evolutionary trade-offs would enable recalcitrant C-using taxa to respond more positively to warming than would labile C-using taxa. Accordingly, we performed a warming experiment in an Alaskan boreal forest and examined changes in the prevalence of fungal taxa. In a complementary field trial, we characterized the ability of fungal taxa to use labile C (glucose), intermediate C (hemicellulose or cellulose), or recalcitrant C (lignin). We also assigned taxa to functional groups (e.g., free-living filamentous fungi, ectomycorrhizal fungi, and yeasts) based on taxonomic identity. We found that response to warming varied most among taxa at the order level, compared to other taxonomic ranks. Among orders, ability to use lignin was significantly related to increases in prevalence in response to warming. However, the relationship was weak, given that lignin use explained only 9% of the variability in warming responses. Functional groups also differed in warming responses. Specifically, free-living filamentous fungi and ectomycorrhizal fungi responded positively to warming, on average, but yeasts responded negatively. Overall, warming-induced shifts in fungal communities might be accompanied by an increased ability to break down recalcitrant C. This change in potential function may reduce soil C storage under global warming.
Collapse
Affiliation(s)
- Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Yevgeniy Marusenko
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Adriana L Romero-Olivares
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Mia R Maltz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
44
|
García-Ríos E, Ramos-Alonso L, Guillamón JM. Correlation between Low Temperature Adaptation and Oxidative Stress in Saccharomyces cerevisiae. Front Microbiol 2016; 7:1199. [PMID: 27536287 PMCID: PMC4971067 DOI: 10.3389/fmicb.2016.01199] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Many factors, such as must composition, juice clarification, fermentation temperature, or inoculated yeast strain, strongly affect the alcoholic fermentation and aromatic profile of wine. As fermentation temperature is effectively controlled by the wine industry, low-temperature fermentation (10–15°C) is becoming more prevalent in order to produce white and “rosé” wines with more pronounced aromatic profiles. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. Previous research has shown the strong implication of oxidative stress response in adaptation to low temperature during the fermentation process. Here we aimed first to quantify the correlation between recovery after shock with different oxidants and cold, and then to detect the key genes involved in cold adaptation that belong to sulfur assimilation, peroxiredoxins, glutathione-glutaredoxins, and thioredoxins pathways. To do so, we analyzed the growth of knockouts from the EUROSCARF collection S. cerevisiae BY4743 strain at low and optimal temperatures. The growth rate of these knockouts, compared with the control, enabled us to identify the genes involved, which were also deleted and validated as key genes in the background of two commercial wine strains with a divergent phenotype in their low-temperature growth. We identified three genes, AHP1, MUP1, and URM1, whose deletion strongly impaired low-temperature growth.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - Lucía Ramos-Alonso
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| | - José M Guillamón
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas Valencia, Spain
| |
Collapse
|
45
|
García-Ríos E, Querol A, Guillamón JM. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation. J Proteomics 2016; 146:70-9. [PMID: 27343759 DOI: 10.1016/j.jprot.2016.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Temperature is one of the most important parameters to affect the duration and rate of alcoholic fermentation and final wine quality. Some species of the Saccharomyces genus have shown better adaptation at low temperature than Saccharomyces cerevisiae, which was the case of cryotolerant yeasts Saccharomyces uvarum and Saccharomyces kudriavzevii. In an attempt to detect inter-specific metabolic differences, we characterized the proteomic landscape of these cryotolerant species grown at 12°C and 28°C, which we compared with the proteome of S. cerevisiae (poorly adapted at low temperature). Our results showed that the main differences among the proteomic profiling of the three Saccharomyces strains grown at 12°C and 28°C lay in translation, glycolysis and amino acid metabolism. Our data corroborate previous transcriptomic results, which suggest that S. kudriavzevii is better adapted to grow at low temperature as a result of enhanced more efficient translation. Fitter amino acid biosynthetic pathways can also be mechanisms that better explain biomass yield in cryotolerant strains. Yet even at low temperature, S. cerevisiae is the most fermentative competitive species. A higher concentration of glycolytic and alcoholic fermentation enzymes in the S. cerevisiae strain might explain such greater fermentation activity. BIOLOGICAL SIGNIFICANCE Temperature is one of the main relevant environmental variables that microorganisms have to cope with and it is also a key factor in some industrial processes that involve microorganisms. However, we are still far from understanding the molecular and physiological mechanisms of adaptation at low temperatures. The results obtained in this study provided a global atlas of the proteome changes triggered by temperature in three different species of the genus Saccharomyces with different degree of cryotolerance. These results would facilitate a better understanding of mechanisms for how yeast could adapt at the low temperature of growth.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de los alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, E-46980 Paterna, Valencia, Spain.
| |
Collapse
|
46
|
Fischer S, Engstler C, Procopio S, Becker T. EGFP-based evaluation of temperature inducible native promoters of industrial ale yeast by using a high throughput system. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Sharafi G, Khosravi AR, Vahedi G, Yahyaraeyat R, Abbasi T. A comparative study of the timecourse of the expression of the thermo‑inducible HSP70 gene in clinical and environmental isolates of Aspergillus fumigatus. Mol Med Rep 2016; 13:4513-21. [PMID: 27035559 DOI: 10.3892/mmr.2016.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
The internal environment within animals or humans provides different conditions to invading saprophytic fungal pathogens, requiring the differential regulation of genes in comparison to environmental conditions. Understanding the mechanisms by which pathogens regulate genes within the host may be key in determining pathogen behavior within the host and may additionally facilitate further investigation into novel therapeutic agents. The heat shock protein (HSP)70 gene and its associated proteins have been frequently reported to be among the most highly expressed and dominant proteins present within various locations at physiological temperatures. The present study examined relative gene expression levels of the HSP70 gene in Aspergillus fumigatus isolates from both clinical and environmental origins, at a range of temperature points (20, 30, 37 and 42˚C) over five days, using reverse transcription‑quantitative polymerase chain reaction, comparing with a standard A. fumigatus strain incubated at 25˚C. The results indicated a differential gene expression pattern for the environmental and clinical isolates. During the five days, the HSP70 expression levels in the clinical samples were higher than in the environmental samples. However, the difference in the expression levels between the two groups at 42˚C was reduced. The mean HSP70 expression level over the five incubation days demonstrated a gradual and continual increasing trend by temperature elevation in both groups at 30, 37 and 42˚C, however, at 20˚C both groups demonstrated reduced expression. The temperature shift from 20 to 42˚C resulted in HSP70 induction and up to a 10‑ and 8.6‑fold change in HSP70 expression levels on the fifth day of incubation in the clinical and environmental groups, respectively. In conclusion, incubation at 37 and 42˚C resulted in the highest expression levels in both experimental groups, with these temperature points important for the induction of HSP70 expression in A. fumigatus.
Collapse
Affiliation(s)
- Golnaz Sharafi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ali Reza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ghasem Vahedi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ramak Yahyaraeyat
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Teimur Abbasi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| |
Collapse
|
48
|
Ballester-Tomás L, Pérez-Torrado R, Rodríguez-Vargas S, Prieto JA, Randez-Gil F. Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. J Biotechnol 2016; 221:70-7. [DOI: 10.1016/j.jbiotec.2016.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
|
49
|
Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations. Front Bioeng Biotechnol 2016; 4:17. [PMID: 26925399 PMCID: PMC4757645 DOI: 10.3389/fbioe.2016.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.
Collapse
Affiliation(s)
| | | | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University , Istanbul , Turkey
| |
Collapse
|
50
|
Fischer S, Engstler C, Procopio S, Becker T. Induced gene expression in industrialSaccharomyces pastorianusvar.carlsbergensisTUM 34/70: evaluation of temperature and ethanol inducible native promoters. FEMS Yeast Res 2016; 16:fow014. [DOI: 10.1093/femsyr/fow014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 11/12/2022] Open
|