1
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Podinovskaia M, Prescianotto-Baschong C, Buser DP, Spang A. A novel live-cell imaging assay reveals regulation of endosome maturation. eLife 2021; 10:e70982. [PMID: 34846303 PMCID: PMC8635980 DOI: 10.7554/elife.70982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential process in life, with endosomes acting as key organelles for regulating uptake and secretion of signaling molecules. Endocytosed material is accepted by the sorting endosome where it either is sorted for recycling or remains in the endosome as it matures to be degraded in the lysosome. Investigation of the endosome maturation process has been hampered by the small size and rapid movement of endosomes in most cellular systems. Here, we report an easy versatile live-cell imaging assay to monitor endosome maturation kinetics, which can be applied to a variety of mammalian cell types. Acute ionophore treatment led to enlarged early endosomal compartments that matured into late endosomes and fused with lysosomes to form endolysosomes. Rab5-to-Rab7 conversion and PI(3)P formation and turn over were recapitulated with this assay and could be observed with a standard widefield microscope. We used this approach to show that Snx1 and Rab11-positive recycling endosome recruitment occurred throughout endosome maturation and was uncoupled from Rab conversion. In contrast, efficient endosomal acidification was dependent on Rab conversion. The assay provides a powerful tool to further unravel various aspects of endosome maturation.
Collapse
Affiliation(s)
| | | | | | - Anne Spang
- Biozentrum, University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Del Olmo T, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert FM, Jean S. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. EMBO Rep 2019; 20:e47192. [PMID: 30610016 PMCID: PMC6362359 DOI: 10.15252/embr.201847192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.
Collapse
Affiliation(s)
- Tomas Del Olmo
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Normandin
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mia Lecours
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dominique Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Lessard
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Florian Steinberg
- Center for Biological Systems Analysis (ZBSA), Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - François-Michel Boisvert
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Su K, Xu T, Yu Z, Zhu J, Zhang Y, Wu M, Xiong Y, Liu J, Xu J. Structure of the PX domain of SNX25 reveals a novel phospholipid recognition model by dimerization in the PX domain. FEBS Lett 2017; 591:2011-2018. [PMID: 28542875 DOI: 10.1002/1873-3468.12688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022]
Abstract
SNX25, a regulator of GPCR signaling-phox-homology (PX) domain containing sorting nexin (SNX) member, has been proposed to be involved in the lysosomal degradation of the transforming growth factor β receptor and the development of temporal lobe epilepsy. Targeting to the endosomal membranes by the specific binding of phosphorylated phosphatidylinositols (PIPs) through the PX domain is critical for the function of SNXs. However, the mechanism for SNX25-PX targeting to the endosomes remains unclear. Here, we demonstrate that the PX domain of zebrafish SNX25 (zSNX25-PX) is capable of binding to PI3P only in its dimeric form. We also present the crystal structure of zSNX25-PX. Combined with biochemical experiments, we further identify a potential PI3P-binding region and propose a novel PI-binding model based on dimerization in the PX domain of SNXs.
Collapse
Affiliation(s)
- Kai Su
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Tingting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Zhijun Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ying Xiong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Paul B, Kim HS, Kerr MC, Huston WM, Teasdale RD, Collins BM. Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. eLife 2017; 6. [PMID: 28226239 PMCID: PMC5348129 DOI: 10.7554/elife.22311] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/19/2017] [Indexed: 12/17/2022] Open
Abstract
During infection chlamydial pathogens form an intracellular membrane-bound replicative niche termed the inclusion, which is enriched with bacterial transmembrane proteins called Incs. Incs bind and manipulate host cell proteins to promote inclusion expansion and provide camouflage against innate immune responses. Sorting nexin (SNX) proteins that normally function in endosomal membrane trafficking are a major class of inclusion-associated host proteins, and are recruited by IncE/CT116. Crystal structures of the SNX5 phox-homology (PX) domain in complex with IncE define the precise molecular basis for these interactions. The binding site is unique to SNX5 and related family members SNX6 and SNX32. Intriguingly the site is also conserved in SNX5 homologues throughout evolution, suggesting that IncE captures SNX5-related proteins by mimicking a native host protein interaction. These findings thus provide the first mechanistic insights both into how chlamydial Incs hijack host proteins, and how SNX5-related PX domains function as scaffolds in protein complex assembly.
Collapse
Affiliation(s)
- Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Hyun Sung Kim
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Markus C Kerr
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
7
|
Vergés M. Retromer in Polarized Protein Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:129-79. [PMID: 26944621 DOI: 10.1016/bs.ircmb.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of receptors for lysosomal hydrolases. It is constituted by a heterotrimer encoded by the vacuolar protein sorting (VPS) gene products Vps26, Vps35, and Vps29, which selects cargo, and a dimer of phosphoinositide-binding sorting nexins, which deforms the membrane. Recent progress in the mechanism of retromer assembly and functioning has strengthened the link between sorting at the endosome and cytoskeleton dynamics. Retromer is implicated in endosomal sorting of many cargos and plays an essential role in plant and animal development. Although it is best known for endosome sorting to the trans-Golgi network, it also intervenes in recycling to the plasma membrane. In polarized cells, such as epithelial cells and neurons, retromer may also be utilized for transcytosis and long-range transport. Considerable evidence implicates retromer in establishment and maintenance of cell polarity. That includes sorting of the apical polarity module Crumbs; regulation of retromer function by the basolateral polarity module Scribble; and retromer-dependent recycling of various cargoes to a certain surface domain, thus controlling polarized location and cell homeostasis. Importantly, altered retromer function has been linked to neurodegeneration, such as in Alzheimer's or Parkinson's disease. This review will underline how alterations in retromer localization and function may affect polarized protein transport and polarity establishment, thereby causing developmental defects and disease.
Collapse
Affiliation(s)
- Marcel Vergés
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain.
| |
Collapse
|
8
|
Shultis D, Dodge G, Zhang Y. Crystal structure of designed PX domain from cytokine-independent survival kinase and implications on evolution-based protein engineering. J Struct Biol 2015; 191:197-206. [PMID: 26073968 DOI: 10.1016/j.jsb.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023]
Abstract
The Phox homology domain (PX domain) is a phosphoinositide-binding structural domain that is critical in mediating protein and cell membrane association and has been found in more than 100 eukaryotic proteins. The abundance of PX domains in nature offers an opportunity to redesign the protein using EvoDesign, a computational approach to design new sequences based on structure profiles of multiple evolutionarily related proteins. In this study, we report the X-ray crystallographic structure of a designed PX domain from the cytokine-independent survival kinase (CISK), which has been implicated as functioning in parallel with PKB/Akt in cell survival and insulin responses. Detailed data analysis of the designed CISK-PX protein demonstrates positive impacts of knowledge-based secondary structure and solvation predictions and structure-based sequence profiles on the efficiency of the evolutionary-based protein design method. The structure of the designed CISK-PX domain is close to the wild-type (1.54 Å in Cα RMSD), which was accurately predicted by I-TASSER based fragment assembly simulations (1.32 Å in Cα RMSD). This study represents the first successfully designed conditional peripheral membrane protein fold and has important implications in the examination and experimental validation of the evolution-based protein design approaches.
Collapse
Affiliation(s)
- David Shultis
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Gregory Dodge
- Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Oxley D, Ktistakis N, Farmaki T. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography. J Proteomics 2013; 91:580-94. [PMID: 24007659 DOI: 10.1016/j.jprot.2013.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/25/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED A phosphatidylinositol-phosphate affinity chromatographic approach combined with mass spectrometry was used in order to identify novel PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana suspension cell extracts. Most of the phosphatidylinositol-phosphate interacting candidates identified from this differential screening are characterized by lysine/arginine rich patches. Direct phosphoinositide binding was identified for important membrane trafficking regulators as well as protein quality control proteins such as the ATG18p orthologue involved in autophagosome formation and the lipid Sec14p like transfer protein. A pentatricopeptide repeat (PPR) containing protein was shown to directly bind to PI(3,5)P2 but not to PI(3)P. PIP chromatography performed using extracts obtained from high salt (0.4M and 1M NaCl) pretreated suspensions showed that the association of an S5-1 40S ribosomal protein with both PI(3)P and PI(3,5)P2 was abolished under salt stress whereas salinity stress induced an increase in the phosphoinositide association of the DUF538 domain containing protein SVB, associated with trichome size. Additional interacting candidates were co-purified with the phosphoinositide bound proteins. Binding of the COP9 signalosome, the heat shock proteins, and the identified 26S proteasomal subunits, is suggested as an indirect effect of their interaction with other proteins directly bound to the PI(3)P and the PI(3,5)P2 phosphoinositides. BIOLOGICAL SIGNIFICANCE PI(3,5)P2 is of special interest because of its low abundance. Furthermore, no endogenous levels have yet been detected in A. thaliana (although there is evidence for its existence in plants). Therefore the isolation of novel interacting candidates in vitro would be of a particular importance since the future study and localization of the respective endogenous proteins may indicate possible targeted compartments or tissues where PI(3,5)P2 could be enriched and thereafter identified. In addition, PI(3,5)P2 is a phosphoinositide extensively studied in mammalian and yeast systems. However, our knowledge of its role in plants as well as a list of its effectors from plants is very limited.
Collapse
Affiliation(s)
- David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | |
Collapse
|
10
|
Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLoS One 2012; 7:e48241. [PMID: 23133621 PMCID: PMC3487907 DOI: 10.1371/journal.pone.0048241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/21/2012] [Indexed: 01/03/2023] Open
Abstract
A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1(-) knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1(-)/2(-)). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.
Collapse
Affiliation(s)
- Debora Karali
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| | - David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, United Kingdom
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| |
Collapse
|
11
|
McGough IJ, Cullen PJ. Clathrin is not required for SNX-BAR-retromer-mediated carrier formation. J Cell Sci 2012; 126:45-52. [PMID: 23015596 DOI: 10.1242/jcs.112904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clathrin has been implicated in retromer-mediated trafficking, but its precise function remains elusive. Given the importance of retromers for efficient endosomal sorting, we have sought to clarify the relationship between clathrin and the SNX-BAR retromer. We find that the retromer SNX-BARs do not interact directly or indirectly with clathrin. In addition, we observe that SNX-BAR-retromer tubules and carriers are not clathrin coated. Furthermore, perturbing clathrin function, by overexpressing a dominant-negative clathrin or through suppression of clathrin expression, has no detectable effect on the frequency of SNX-BAR-retromer tubulation. We propose that SNX-BAR-retromer-mediated membrane deformation and carrier formation does not require clathrin, and hence the role of clathrin in SNX-BAR-retromer function would appear to lie in pre-SNX-BAR-retromer cargo sorting.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
12
|
Abstract
Diverse biological processes including cell growth and survival require transient association of proteins with cellular membranes. A large number of these proteins are drawn to a bilayer through binding of their modular domains to phosphoinositide (PI) lipids. Seven PI isoforms are found to concentrate in distinct pools of intracellular membranes, and this lipid compartmentalization provides an efficient way for recruiting PI-binding proteins to specific cellular organelles. The atomic-resolution structures and membrane docking mechanisms of a dozen PI effectors have been elucidated in the last decade, offering insight into the molecular basis for regulation of the PI-dependent signaling pathways. In this chapter, I summarize the mechanistic aspects of deciphering the 'PI code' by the most common PI-recognizing domains and discuss similarities and differences in the membrane anchoring mechanisms.
Collapse
Affiliation(s)
- Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Doreleijers JF, Vranken WF, Schulte C, Markley JL, Ulrich EL, Vriend G, Vuister GW. NRG-CING: integrated validation reports of remediated experimental biomolecular NMR data and coordinates in wwPDB. Nucleic Acids Res 2011; 40:D519-24. [PMID: 22139937 PMCID: PMC3245154 DOI: 10.1093/nar/gkr1134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For many macromolecular NMR ensembles from the Protein Data Bank (PDB) the experiment-based restraint lists are available, while other experimental data, mainly chemical shift values, are often available from the BioMagResBank. The accuracy and precision of the coordinates in these macromolecular NMR ensembles can be improved by recalculation using the available experimental data and present-day software. Such efforts, however, generally fail on half of all NMR ensembles due to the syntactic and semantic heterogeneity of the underlying data and the wide variety of formats used for their deposition. We have combined the remediated restraint information from our NMR Restraints Grid (NRG) database with available chemical shifts from the BioMagResBank and the Common Interface for NMR structure Generation (CING) structure validation reports into the weekly updated NRG-CING database (http://nmr.cmbi.ru.nl/NRG-CING). Eleven programs have been included in the NRG-CING production pipeline to arrive at validation reports that list for each entry the potential inconsistencies between the coordinates and the available experimental NMR data. The longitudinal validation of these data in a publicly available relational database yields a set of indicators that can be used to judge the quality of every macromolecular structure solved with NMR. The remediated NMR experimental data sets and validation reports are freely available online.
Collapse
Affiliation(s)
- Jurgen F Doreleijers
- IMM, Radboud University Nijmegen, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Park SJ, Huh JW, Kim YH, Kim JS, Song BS, Lee SR, Kim SU, Kim HS, Imakawa K, Chang KT. Quantitative analysis of retromer complex-related genes during embryo development in the mouse. Mol Cells 2011; 31:431-6. [PMID: 21359680 PMCID: PMC3887610 DOI: 10.1007/s10059-011-0272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/27/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022] Open
Abstract
The retromer complex is a heteropentameric protein unit associated with retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Functional silencing study of the Vps26a gene indicated the important role of the retromer complex during early developmental stages in the mouse. However, individual expression patterns and quantitative analysis of individual members of the retromer complex during the early developmental stages has not been investigated. In this study, we conducted quantitative expression analysis of six retromer complex genes (Vps26a, Vps26b, Vps29, Vps35, Snx1, and Snx2) and one related receptor gene (Ci-mpr) during the eleven embryonic stages with normal MEF (mouse embryonic fibroblast) and Vps26a(-/-) MEF cells. Remarkably, except for Vps26a (maternal expression pattern), all tested genes showed maternal-zygotic expression patterns. And five genes (Vps26b, Vps29, Vps35, Snx2, and Ci-mpr) showed a pattern of decreased expression in Vps26a(-/-) MEF cells by comparative analysis between normal MEF and Vps26a(-/-) MEF cells. However, the Snx1 gene showed a pattern of increased expression in Vps26a(-/-) MEF cells. From our results, we could assume that retromer complex-related genes have important roles during oocyte development. However, in the preimplantation stage, they did not have significant roles.
Collapse
Affiliation(s)
- Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this work
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
- These authors contributed equally to this work
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Korea
- These authors contributed equally to this work
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
- These authors contributed equally to this work
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Kazuhiko Imakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon 305-333, Korea
| |
Collapse
|
15
|
Abstract
Phosphoinositide (PI) lipids are essential components of eukaryotic cell membranes. They are produced by mono-, bis- and trisphosphorylation of the inositol headgroup of phosphatidylinositol (PtdIns) and are concentrated in separate pools of cytosolic membranes. PIs serve as markers of the cell compartments and form unique docking sites for protein effectors. Collectively, seven known PIs, the protein effectors that bind them and enzymes that generate or modify PIs compose a remarkably complex protein-lipid signaling network. A number of cytosolic proteins contain one or several effector modules capable of recognizing individual PIs and recruiting the host proteins to distinct intracellular compartment. The recently determined atomic-resolution structures and membrane-targeting mechanisms of a dozen PI effectors have provided insights into the molecular basis for regulation of endocytic membrane trafficking and signaling. In this review, I highlight the structural aspects of the deciphering of the 'PI code' by the most common PI-recognizing effectors and discuss the mechanistic details of their membrane anchoring.
Collapse
|
16
|
Characterization of PXK as a protein involved in epidermal growth factor receptor trafficking. Mol Cell Biol 2010; 30:1689-702. [PMID: 20086096 DOI: 10.1128/mcb.01105-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor.
Collapse
|
17
|
PX domain and CD domain play different roles in localization and vacuolation of Sorting Nexin 10. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0529-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Sorting nexin 3, a protein upregulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells. Cell Signal 2009; 21:1586-94. [DOI: 10.1016/j.cellsig.2009.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/19/2022]
|
19
|
Koharudin LMI, Furey W, Liu H, Liu YJ, Gronenborn AM. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). J Biol Chem 2009; 284:23697-707. [PMID: 19553671 PMCID: PMC2749144 DOI: 10.1074/jbc.m109.008995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Indexed: 11/06/2022] Open
Abstract
Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 A resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new alpha2'-helix and a much longer alpha3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.
Collapse
Affiliation(s)
| | - William Furey
- Pharmacology and Chemical Biology
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | | | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | | |
Collapse
|
20
|
Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJR, Raposo G, van der Sluijs P, Bonifacino JS. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. ACTA ACUST UNITED AC 2008; 183:513-26. [PMID: 18981234 PMCID: PMC2575791 DOI: 10.1083/jcb.200804048] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The retromer complex mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network (TGN). Mammalian retromer is composed of a sorting nexin (SNX) dimer that binds to phosphatidylinositol 3-phosphate–enriched endosomal membranes and a vacuolar protein sorting (Vps) 26/29/35 trimer that participates in cargo recognition. The mammalian SNX dimer is necessary but not sufficient for recruitment of the Vps26/29/35 trimer to membranes. In this study, we demonstrate that the guanosine triphosphatase Rab7 contributes to this recruitment. The Vps26/29/35 trimer specifically binds to Rab7–guanosine triphosphate (GTP) and localizes to Rab7-containing endosomal domains. Interference with Rab7 function causes dissociation of the Vps26/29/35 trimer but not the SNX dimer from membranes. This blocks retrieval of mannose 6-phosphate receptors to the TGN and impairs cathepsin D sorting. Rab5-GTP does not bind to the Vps26/29/35 trimer, but perturbation of Rab5 function causes dissociation of both the SNX and Vps26/29/35 components from membranes through inhibition of a pathway involving phosphatidylinositol 3-kinase. These findings demonstrate that Rab5 and Rab7 act in concert to regulate retromer recruitment to endosomes.
Collapse
Affiliation(s)
- Raul Rojas
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McLaughlin NJD, Banerjee A, Khan SY, Lieber JL, Kelher MR, Gamboni-Robertson F, Sheppard FR, Moore EE, Mierau GW, Elzi DJ, Silliman CC. Platelet-activating factor-mediated endosome formation causes membrane translocation of p67phox and p40phox that requires recruitment and activation of p38 MAPK, Rab5a, and phosphatidylinositol 3-kinase in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:8192-203. [PMID: 18523285 DOI: 10.4049/jimmunol.180.12.8192] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils (polymorphonuclear leukocytes, PMNs) are vital to innate immunity and receive proinflammatory signals that activate G protein-coupled receptors (GPCRs). Because GPCRs transduce signals through clathrin-mediated endocytosis (CME), we hypothesized that platelet-activating factor (PAF), an effective chemoattractant that primes the PMN oxidase, would signal through CME, specifically via dynamin-2 activation and endosomal formation resulting in membrane translocation of cytosolic phagocyte oxidase (phox) proteins. PMNs were incubated with buffer or 2 muM PAF for 1-3 min, and in some cases activated with PMA, and O(2)(-) was measured, whole-cell lysates and subcellular fractions were prepared, or the PMNs were fixed onto slides for digital or electron microscopy. PAF caused activation of dynamin-2, resulting in endosomal formation that required PI3K and contained early endosomal Ag-1 (EEA-1) and Rab5a. The apoptosis signal-regulating kinase-1/MAPK kinase-3/p38 MAPK signalosome assembled on Rab5a and phosphorylated EEA-1 and Rab GDP dissociation inhibitor, with the latter causing Rab5a activation. Electron microscopy demonstrated that PAF caused two distinct sites for activation of p38 MAPK. EEA-1 provided a scaffold for recruitment of the p40(phox)-p67(phox) complex and PI3K-dependent Akt1 phosphorylation of these two phox proteins. PAF induced membrane translocation of p40(phox)-p67(phox) localizing to gp91(phox), which was PI3K-, but not p47(phox)-, dependent. In conclusion, PAF transduces signals through CME, and such GPCR signaling may allow for pharmacological manipulation of these cells to decrease PMN-mediated acute organ injury.
Collapse
Affiliation(s)
- Nathan J D McLaughlin
- Bonfils Blood Center, University of Colorado Denver School of Medicine, Children's Hospital, Denver, CO 80230, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Robinson DG, Jiang L, Schumacher K. The endosomal system of plants: charting new and familiar territories. PLANT PHYSIOLOGY 2008; 147:1482-92. [PMID: 18678740 PMCID: PMC2492610 DOI: 10.1104/pp.108.120105] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- David G Robinson
- Heidelberg Institute of Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Retromer. Curr Opin Cell Biol 2008; 20:427-36. [PMID: 18472259 DOI: 10.1016/j.ceb.2008.03.009] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/20/2008] [Indexed: 01/17/2023]
Abstract
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
Collapse
|
24
|
Abstract
Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.
| |
Collapse
|
25
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
26
|
Kutateladze TG. Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog Lipid Res 2007; 46:315-27. [PMID: 17707914 PMCID: PMC2211451 DOI: 10.1016/j.plipres.2007.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared.
Collapse
Affiliation(s)
- Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Rojas R, Kametaka S, Haft CR, Bonifacino JS. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 2006; 27:1112-24. [PMID: 17101778 PMCID: PMC1800681 DOI: 10.1128/mcb.00156-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retromer is a cytosolic/peripheral membrane protein complex that mediates the retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network (TGN) in mammalian cells. Previous studies showed that the mammalian retromer comprises three proteins, named Vps26, Vps29, and Vps35, plus the sorting nexin, SNX1. There is conflicting evidence, however, as to whether a homologous sorting nexin, SNX2, is truly a component of the retromer. In addition, the nature of the subunit interactions and assembly of the mammalian retromer complex are poorly understood. We have addressed these issues by performing biochemical and functional analyses of endogenous retromers in the human cell line HeLa. We found that the mammalian retromer complex consists of two autonomously assembling subcomplexes, namely, a Vps26-Vps29-Vps35 obligate heterotrimer and a SNX1/2 alternative heterodimer or homodimer. The association of Vps26-Vps29-Vps35 with endosomes requires the presence of either SNX1 or SNX2, whereas SNX1/2 can be recruited to endosomes independently of Vps26-Vps29-Vps35. We also found that the presence of either SNX1 or SNX2 is essential for the retrieval of the cation-independent mannose 6-phosphate receptor to the TGN. These observations indicate that the mammalian retromer complex assembles by sequential association of SNX1/2 and Vps26-Vps29-Vps35 subcomplexes on endosomal membranes and that SNX1 and SNX2 play interchangeable but essential roles in retromer structure and function.
Collapse
Affiliation(s)
- Raul Rojas
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Cheever ML, Kutateladze TG, Overduin M. Increased mobility in the membrane targeting PX domain induced by phosphatidylinositol 3-phosphate. Protein Sci 2006; 15:1873-82. [PMID: 16877709 PMCID: PMC1838525 DOI: 10.1110/ps.062194906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phosphoinositides (PIs) are concentrated in specific subcellular membranes in order to recruit and regulate cytosolic proteins responsible for vesicular trafficking, cytoskeletal rearrangement, and eukaryotic cell growth, differentiation, and survival. Phox homology (PX) domains are found in proteins that are integral players in endocytic pathways. For example, Vam7p is targeted by its PX domain to phosphatidylinositol 3-phosphate [PtdIns(3)P] in the yeast vacuole, where it interacts with other SNARE proteins and GTPases of the vesicular membrane fusion machinery. Although several PX structures have been solved, the role of dynamics in their interactions with membrane lipids is unclear. Here, we present the first detailed characterization of the backbone dynamics of a PX domain, that of Vam7p, in the presence and absence of its ligand. The structure appears to tumble more rapidly in solution upon binding PtdIns(3)P, revealing a conformational change that includes adjustments in the flexible membrane insertion loop (MIL). The flexibilities of the MIL and domain termini are pronounced in both states, while the alpha1 and alpha2 helices are rigid. Dynamic effects are spread across the binding pocket, with PtdIns(3)P inducing altered mobility of different residues on multiple timescales, including a shift in the MIL to slower timescale motions. The bound state is more dynamic overall, particularly in the beta-sheet lobe, which packs against the ligand's 3-phosphate. Thus, the induced dynamic and structural effects are transduced from the buried heart of the binding pocket in the helical lobe through the beta-sheet lobe to the exposed surface of the bilayer-inserted protein.
Collapse
Affiliation(s)
- Matthew L Cheever
- Molecular Biology Program, University of Colorado Health Sciences Center, Aurora, 80045, USA
| | | | | |
Collapse
|
29
|
Kerr MC, Lindsay MR, Luetterforst R, Hamilton N, Simpson F, Parton RG, Gleeson PA, Teasdale RD. Visualisation of macropinosome maturation by the recruitment of sorting nexins. J Cell Sci 2006; 119:3967-80. [PMID: 16968745 DOI: 10.1242/jcs.03167] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that phosphoinositol-binding sorting nexin 5 (SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.
Collapse
Affiliation(s)
- Markus C Kerr
- Institute for Molecular Bioscience and ARC Centre in Bioinformatics, University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Childress C, Lin Q, Yang W. Dimerization is required for SH3PX1 tyrosine phosphorylation in response to epidermal growth factor signalling and interaction with ACK2. Biochem J 2006; 394:693-8. [PMID: 16316319 PMCID: PMC1383719 DOI: 10.1042/bj20050576] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SH3PX1 [SNX9 (sorting nexin 9)] is a member of SNX super-family that is recognized by sharing a PX (phox homology) domain. We have previously shown that SH3PX1, phosphorylated by ACK2 (activated Cdc42-associated tyrosine kinase 2), regulates the degradation of EGF (epidermal growth factor) receptor. In mapping the tyrosine phosphorylation region, we found that the C-terminus of SH3PX1 is required for its tyrosine phosphorylation. Further analysis indicates that this region, known as the coiled-coil domain or the BAR (Bin-amphiphysin-Rvs homology) domain, is the dimerization domain of SH3PX1. Truncation of as little as 13 amino acid residues at the very C-terminus in the coiled-coil/BAR domain of SH3PX1 resulted in no dimerization, no ACK2-catalysed and EGF-stimulated tyrosine phosphorylation and no interaction with ACK2. The intracellular localization of SH3PX1 became dysfunctional upon truncation in the BAR domain. Taken together, our results indicate that the dimerization, which is mediated by the BAR domain, is essential for the intracellular function of SH3PX1.
Collapse
Affiliation(s)
- Chandra Childress
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822, U.S.A
| | - Qiong Lin
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822, U.S.A
| | - Wannian Yang
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
31
|
Shi H, Rojas R, Bonifacino JS, Hurley JH. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 2006; 13:540-8. [PMID: 16732284 PMCID: PMC1584284 DOI: 10.1038/nsmb1103] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 05/03/2006] [Indexed: 11/09/2022]
Abstract
The mammalian retromer complex consists of SNX1, SNX2, Vps26, Vps29 and Vps35, and retrieves lysosomal enzyme receptors from endosomes to the trans-Golgi network. The structure of human Vps26A at 2.1-A resolution reveals two curved beta-sandwich domains connected by a polar core and a flexible linker. Vps26 has an unpredicted structural relationship to arrestins. The Vps35-binding site on Vps26 maps to a mobile loop spanning residues 235-246, near the tip of the C-terminal domain. The loop is phylogenetically conserved and provides a mechanism for Vps26 integration into the complex that leaves the rest of the structure free for engagements with membranes and for conformational changes. Hydrophobic residues and a glycine in this loop are required for integration into the retromer complex and endosomal localization of human Vps26, and for the function of yeast Vps26 in carboxypeptidase Y sorting.
Collapse
Affiliation(s)
- Hang Shi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Raul Rojas
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
- To whom correspondence should be addressed: James H. Hurley, (301) 402–4703, fax (301) 480–0639; E-mail:
| |
Collapse
|
32
|
Liu H, Liu ZQ, Chen CXQ, Magill S, Jiang Y, Liu YJ. Inhibitory regulation of EGF receptor degradation by sorting nexin 5. Biochem Biophys Res Commun 2006; 342:537-46. [PMID: 16487940 DOI: 10.1016/j.bbrc.2006.01.179] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/20/2006] [Indexed: 12/18/2022]
Abstract
Endosomal trafficking of EGF receptor (EGFR) upon stimulation is a highly regulated process during receptor-mediated signaling. Recently, the sorting nexin (SNX) family has emerged as an important regulator in the membrane trafficking of EGFR. Here, we report the identification of a novel interaction between two members of the family, SNX1 and SNX5, which is mediated by the newly defined BAR domain of both SNXs. We have also shown that the PX domain of SNX5 binds specifically to PtdIns other than to PtdIns(3)P. Furthermore, the BAR domain but not the PX domain of SNX5 is sufficient for its subcellular membrane association. Functionally, overexpression of SNX5 inhibits the degradation of EGFR. This process appears to be independent of its interaction with SNX1. However, overexpression of SNX1 is able to attenuate the effect of SNX5 on EGFR degradation, suggesting the two proteins may play antagonistic roles in regulating endosomal trafficking of the receptor.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurology and Neurobiology, University of Pittsburgh School of Medicine, W958 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
33
|
Carlton JG, Cullen PJ. Coincidence detection in phosphoinositide signaling. Trends Cell Biol 2005; 15:540-7. [PMID: 16139503 PMCID: PMC1904488 DOI: 10.1016/j.tcb.2005.08.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 07/06/2005] [Accepted: 08/19/2005] [Indexed: 11/20/2022]
Abstract
Phosphoinositide lipids function as both signaling molecules and as compartment-specific localization signals for phosphoinositide-binding proteins. In recent years, both phosphoinositides and phosphoinositide-binding proteins have been reported to display a restricted, rather than a uniform, distribution across intracellular membranes. Here, we examine recent data documenting the restricted distribution of both phosphoinositides and phosphoinositide-binding proteins and examine how phosphoinositide-binding proteins might engage multiple binding partners to achieve these restricted localizations, effectively acting as detectors of coincident localization signals.
Collapse
|