1
|
Gupta A, Sinha KM, Abdin MZ, Puri N, Selvapandiyan A. NDK/NME proteins: a host-pathogen interface perspective towards therapeutics. Curr Genet 2021; 68:15-25. [PMID: 34480234 DOI: 10.1007/s00294-021-01198-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, 122413, India
| | - Malik Z Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Ma Z, Li R, Hu R, Deng X, Xu Y, Zheng W, Yi J, Wang Y, Chen C. Brucella abortus BspJ Is a Nucleomodulin That Inhibits Macrophage Apoptosis and Promotes Intracellular Survival of Brucella. Front Microbiol 2020; 11:599205. [PMID: 33281799 PMCID: PMC7688787 DOI: 10.3389/fmicb.2020.599205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
To date, a variety of Brucella effector proteins have been found to mediate host cell secretion, autophagy, inflammation, and other signal pathways, but nuclear effector proteins have not yet been reported. We identified the first Brucella nucleomodulin, BspJ, and we screened out the BspJ interaction host proteins NME/NM23 nucleoside diphosphate kinase 2 (NME2) and creatine kinase B (CKB) through yeast two-hybrid and co-immunoprecipitation assays. These proteins are related to the host cell energy synthesis, metabolism, and apoptosis pathways. Brucella nucleomodulin BspJ will decrease the expression level of NME2 and CKB. In addition, BspJ gene deletion strains promoted the apoptosis of macrophages and reduced the intracellular survival of Brucella in host cells. In short, we found nucleomodulin BspJ may directly or indirectly regulate host cell apoptosis through the interaction with NME2 and CKB by mediating energy metabolism pathways in response to the intracellular circulation of Brucella infection, but the mechanism needs further study.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Li
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Hu
- College of Life Science, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Wei Zheng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Radić M, Šoštar M, Weber I, Ćetković H, Slade N, Herak Bosnar M. The Subcellular Localization and Oligomerization Preferences of NME1/NME2 upon Radiation-Induced DNA Damage. Int J Mol Sci 2020; 21:ijms21072363. [PMID: 32235358 PMCID: PMC7177722 DOI: 10.3390/ijms21072363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleoside diphosphate kinases (NDPK/NME/Nm23) are enzymes composed of subunits NME1/NDPK A and NME2/NDPK B, responsible for the maintenance of the cellular (d)NTP pool and involved in other cellular processes, such as metastasis suppression and DNA damage repair. Although eukaryotic NDPKs are active only as hexamers, it is unclear whether other NME functions require the hexameric form, and how the isoenzyme composition varies in different cellular compartments. To examine the effect of DNA damage on intracellular localization of NME1 and NME2 and the composition of NME oligomers in the nucleus and the cytoplasm, we used live-cell imaging and the FRET/FLIM technique. We showed that exogenous NME1 and NME2 proteins co-localize in the cytoplasm of non-irradiated cells, and move simultaneously to the nucleus after gamma irradiation. The FRET/FLIM experiments imply that, after DNA damage, there is a slight shift in the homomer/heteromer balance between the nucleus and the cytoplasm. Collectively, our results indicate that, after irradiation, NME1 and NME2 engage in mutual functions in the nucleus, possibly performing specific functions in their homomeric states. Finally, we demonstrated that fluorophores fused to the N-termini of NME polypeptides produce the largest FRET effect and thus recommend this orientation for use in similar studies.
Collapse
Affiliation(s)
- Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.Š.); (I.W.); (H.Ć.)
| | - Neda Slade
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.R.); (N.S.)
- Correspondence: ; Tel.: +385-1-456-0996
| |
Collapse
|
4
|
Zappa F, Wilson C, Di Tullio G, Santoro M, Pucci P, Monti M, D'Amico D, Pisonero‐Vaquero S, De Cegli R, Romano A, Saleem MA, Polishchuk E, Failli M, Giaquinto L, De Matteis MA. The TRAPP complex mediates secretion arrest induced by stress granule assembly. EMBO J 2019; 38:e101704. [PMID: 31429971 PMCID: PMC6769382 DOI: 10.15252/embj.2019101704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
The TRAnsport Protein Particle (TRAPP) complex controls multiple membrane trafficking steps and is strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified the TRAPP complex as a component of a branch of the integrated stress response that impinges on the early secretory pathway. The TRAPP complex associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and arrest of ER export. The relocation of the TRAPP complex and COPII to SGs only occurs in cycling cells and is CDK1/2-dependent, being driven by the interaction of TRAPP with hnRNPK, a CDK substrate that associates with SGs when phosphorylated. In addition, CDK1/2 inhibition impairs TRAPP complex/COPII relocation to SGs while stabilizing them at ER exit sites. Importantly, the TRAPP complex controls the maturation of SGs. SGs that assemble in TRAPP-depleted cells are smaller and are no longer able to recruit RACK1 and Raptor, two TRAPP-interactive signaling proteins, sensitizing cells to stress-induced apoptosis.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | | | | | - Davide D'Amico
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | | | | | - Alessia Romano
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | - Moin A Saleem
- Bristol RenalBristol Medical SchoolUniversity of BristolBristolUK
| | - Elena Polishchuk
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | - Mario Failli
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and MedicinePozzuoli (Naples)Italy
| | | |
Collapse
|
5
|
Abu-Taha IH, Heijman J, Feng Y, Vettel C, Dobrev D, Wieland T. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update. J Transl Med 2018; 98:190-197. [PMID: 29035382 DOI: 10.1038/labinvest.2017.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.
Collapse
Affiliation(s)
- Issam H Abu-Taha
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| |
Collapse
|
6
|
Abu-Taha IH, Heijman J, Feng Y, Vettel C, Dobrev D, Wieland T. Regulation of heterotrimeric G-protein signaling by NDPK/NME proteins and caveolins: an update. J Transl Med 2018. [PMID: 29035382 DOI: 10.38/labinvest.2017.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Heterotrimeric G proteins are pivotal mediators of cellular signal transduction in eukaryotic cells and abnormal G-protein signaling plays an important role in numerous diseases. During the last two decades it has become evident that the activation status of heterotrimeric G proteins is both highly localized and strongly regulated by a number of factors, including a receptor-independent activation pathway of heterotrimeric G proteins that does not involve the classical GDP/GTP exchange and relies on nucleoside diphosphate kinases (NDPKs). NDPKs are NTP/NDP transphosphorylases encoded by the nme/nm23 genes that are involved in a variety of cellular events such as proliferation, migration, and apoptosis. They therefore contribute, for example, to tumor metastasis, angiogenesis, retinopathy, and heart failure. Interestingly, NDPKs are translocated and/or upregulated in human heart failure. Here we describe recent advances in the current understanding of NDPK functions and how they have an impact on local regulation of G-protein signaling.
Collapse
Affiliation(s)
- Issam H Abu-Taha
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
| | - Christiane Vettel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany
| |
Collapse
|
7
|
Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab 2017; 37:2471-2484. [PMID: 27629102 PMCID: PMC5531345 DOI: 10.1177/0271678x16669365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleoside diphosphate kinase B (NDPK-B) is an enzyme required for nucleoside triphosphate homeostasis, which has been shown to interact with caveolin-1 (Cav-1). In endothelial cells (ECs), NDPK-B contributes to the regulation of angiogenesis and adherens junction (AJ) integrity. We therefore investigated whether an interaction of NDPK-B with Cav-1 in ECs is required for this regulation and the involvement of VEGF signaling herein. We report that simultaneous depletion of NDPK-B/Cav-1 in HUVECs synergistically impaired sprouting angiogenesis. NDPK-B depletion alone impaired caveolae formation, VEGF-induced phosphorylation of c-Src/Cav-1 but not of ERK1/2/AKT/eNOS. In vivo, Cav-1-/- mice showed impaired retinal vascularization at postnatal-day five, whereas NDPK-B-/- mice did not. Primary mouse brain ECs (MBMECs) from NDPK-B-/- mice showed no change in caveolae content and transendothelial-electrical resistance upon VEGF stimulation. Interestingly, NDPK-B-/- MBMECs displayed an accumulation of intracellular vesicles and increased Cav-1 levels. Dextran tracer analysis showed increased vascular permeability in the brain of NDPK-B-/- mice compared to wild type. In conclusion, our data indicate that NDPK-B is required for the correct localization of Cav-1 at the plasma membrane and the formation of caveolae. The genetic ablation of NDPK-B could partially be compensated by an increased Cav-1 content, which restored caveolae formation and some endothelial functions.
Collapse
Affiliation(s)
- Shalini Gross
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Thomas Wieland, Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University Maybachstr. 14, 68169 Mannheim, Germany.
| |
Collapse
|
8
|
Wieland T, Attwood PV. Alterations in reversible protein histidine phosphorylation as intracellular signals in cardiovascular disease. Front Pharmacol 2015; 6:173. [PMID: 26347652 PMCID: PMC4543942 DOI: 10.3389/fphar.2015.00173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/03/2015] [Indexed: 01/27/2023] Open
Abstract
Reversible phosphorylation of amino acid side chains in proteins is a frequently used mechanism in cellular signal transduction and alterations of such phosphorylation patterns are very common in cardiovascular diseases. They reflect changes in the activities of the protein kinases and phosphatases involving signaling pathways. Phosphorylation of serine, threonine, and tyrosine residues has been extensively investigated in vertebrates, whereas reversible histidine phosphorylation, a well-known regulatory signal in lower organisms, has been largely neglected as it has been generally assumed that histidine phosphorylation is of minor importance in vertebrates. More recently, it has become evident that the nucleoside diphosphate kinase isoform B (NDPK-B), an ubiquitously expressed enzyme involved in nucleotide metabolism, and a highly specific phosphohistidine phosphatase (PHP) form a regulatory histidine protein kinase/phosphatase system in mammals. At least three well defined substrates of NDPK-B are known: The β-subunit of heterotrimeric G-proteins (Gβ), the intermediate conductance potassium channel SK4 and the Ca(2+) conducting TRP channel family member, TRPV5. In each of these proteins the phosphorylation of a specific histidine residue regulates cellular signal transduction or channel activity. This article will therefore summarize our current knowledge on protein histidine phosphorylation and highlight its relevance for cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty, Heidelberg University , Mannheim, Germany
| | - Paul V Attwood
- School of Chemistry and Biochemistry, The University of Western Australia , Crawley, Australia
| |
Collapse
|
9
|
PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget 2015; 5:8466-77. [PMID: 25193865 PMCID: PMC4226697 DOI: 10.18632/oncotarget.2327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Myc serves as a crucial regulator in multiple cellular events. Cumulative evidences demonstrate that anomalous c-Myc overexpression correlates with proliferation, invasion and metastasis in various human tumors. However, the transcriptionally activating mechanisms responsible for c-Myc overexpression are complex and continue to be intangible. Here we showed that Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2) can upregulate c-Myc via binding with NME/NM23 nucleoside diphosphate kinase 2 (NME2). PIWIL2 promotes c-Myc transcription by interacting with and facilitating NME2 to bind to G4-motif region within c-Myc promoter. Interestingly, in a c-Myc-mediated manner, PIWIL2 upregulates RhoA, which in turn induces filamentary F-actin. Deficiency of PIWIL2 results in obstacle for c-Myc expression, cell cycle progress and cell proliferation. Taken together, our present work demonstrates that PIWIL2 modulates tumor cell proliferation and F-actin filaments via promoting c-Myc expression.
Collapse
|
10
|
Progress on Nme (NDP kinase/Nm23/Awd) gene family-related functions derived from animal model systems: studies on development, cardiovascular disease, and cancer metastasis exemplified. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:109-17. [PMID: 25585611 PMCID: PMC10153104 DOI: 10.1007/s00210-014-1079-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
11
|
Tillmann KD, Millarte V, Farhan H. Regulation of traffic and organelle architecture of the ER-Golgi interface by signal transduction. Histochem Cell Biol 2013; 140:297-306. [PMID: 23821161 DOI: 10.1007/s00418-013-1118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2013] [Indexed: 01/10/2023]
Abstract
The components that control trafficking between organelles of the secretory pathway as well as their architecture were uncovered to a reasonable extent in the past decades. However, only recently did we begin to explore the regulation of the secretory pathway by cellular signaling. In the current review, we focus on trafficking between the endoplasmic reticulum and the Golgi apparatus. We highlight recent advances that have been made toward a better understanding of how the secretory pathway is regulated by signaling and discuss how this knowledge is important to obtain an integrative view of secretion in the context of other homeostatic processes such as growth and proliferation.
Collapse
Affiliation(s)
- Kerstin D Tillmann
- Biotechnology Institute Thurgau, Unterseestrasse 47, 8280, Kreuzlingen, Switzerland
| | | | | |
Collapse
|
12
|
Dykstra KM, Ulengin I, DelRose N, Lee TH. Identification of discrete sites in Yip1A necessary for regulation of endoplasmic reticulum structure. PLoS One 2013; 8:e54413. [PMID: 23342155 PMCID: PMC3544793 DOI: 10.1371/journal.pone.0054413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) of specialized cells can undergo dramatic changes in structural organization, including formation of concentric whorls. We previously reported that depletion of Yip1A, an integral membrane protein conserved between yeast and mammals, caused ER whorl formation reminiscent of that seen in specialized cells. Yip1A and its yeast homologue Yip1p cycle between the ER and early Golgi, have been implicated in a number of distinct trafficking steps, and interact with a conserved set of binding partners including Yif1p/Yif1A and the Ypt1/Ypt31 Rab GTPases. Here, we carried out a mutational analysis of Yip1A to obtain insight into how it regulates ER whorl formation. Most of the Yip1A cytoplasmic domain was dispensable, whereas the transmembrane (TM) domain, especially residues within predicted TM helices 3 and 4, were sensitive to mutagenesis. Comprehensive analysis revealed two discrete functionally required determinants. One was E95 and flanking residues L92 and L96 within the cytoplasmic domain; the other was K146 and nearby residue V152 within the TM domain. Notably, the identified determinants correspond closely to two sites previously found to be essential for yeast viability (E76 and K130 in Yip1p corresponding to E95 and K146 in Yip1A, respectively). In contrast, a third site (E89) also essential for yeast viability (E70 in Yip1p) was dispensable for regulation of whorl formation. Earlier work showed that E76 (E95) was dispensable for binding Yif1p or Ypt1p/Ypt31p, whereas E70 (E89) was required. Collectively, these findings suggest that the ability of Yip1A to bind its established binding partners may be uncoupled from its ability to control ER whorl formation. In support, Yif1A knockdown did not cause ER whorl formation. Thus Yip1A may use the sites identified herein to interact with a novel binding partner to regulate ER membrane organization.
Collapse
Affiliation(s)
- Kaitlyn M. Dykstra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Idil Ulengin
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas DelRose
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Tina H. Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Spooner R, Yilmaz Ö. Nucleoside-diphosphate-kinase: a pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes Infect 2012; 14:228-37. [PMID: 22079150 PMCID: PMC3277739 DOI: 10.1016/j.micinf.2011.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/20/2022]
Abstract
Emerging evidence identifies multiple roles for nucleoside-diphosphate-kinase in host-microbe interaction. We provide the first synopsis of utilization of this molecule by various microorganisms during colonization of host tissues. Additionally, we propose novel mechanisms this effector may participate in, which could be crucial for microbial adaptation in chronic host infection.
Collapse
Affiliation(s)
- Ralee Spooner
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Annesley SJ, Bago R, Bosnar MH, Filic V, Marinović M, Weber I, Mehta A, Fisher PR. Dictyostelium discoideum nucleoside diphosphate kinase C plays a negative regulatory role in phagocytosis, macropinocytosis and exocytosis. PLoS One 2011; 6:e26024. [PMID: 21991393 PMCID: PMC3186806 DOI: 10.1371/journal.pone.0026024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.
Collapse
Affiliation(s)
| | - Ruzica Bago
- Department of Microbology, La Trobe University, Victoria, Australia
- Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filic
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Rudjer Bošković Institute, Zagreb, Croatia
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Paul R. Fisher
- Department of Microbology, La Trobe University, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Boissan M, Lacombe ML. Learning about the functions of NME/NM23: lessons from knockout mice to silencing strategies. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:421-31. [PMID: 21562815 DOI: 10.1007/s00210-011-0649-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
The human NME gene family (also known as NM23) comprises ten genes that are involved in diverse physiological and pathological processes including proliferation, differentiation, development, ciliary functions, and metastasis. For the moment, only the NME1, NME2, and NME7 genes have been inactivated in transgenic knockout mice, as well as a double NME1-NME2 gene knockout. Mice lacking NME1 or NME2 grow to adulthood without health problems, although NME1 (-/-) mice have modest growth retardation. Double knockout NME1 (-/-)-NME2 (-/-) mice, by contrast, are highly hypotrophic and die at birth from profound anemia due to impaired erythroblast development. Evidence for a metastasis suppressor function of NME1 in vivo comes from crossing NME1 (-/-) mice with mice prone to develop hepatocellular carcinoma; the double transgenic mice present a higher incidence of lung metastases. Silencing of NME1 by siRNA interference has confirmed this function by conferring a "metastatic phenotype" on non-invasive human epithelial cancer cell lines. This function is specific to NME1 and is not observed when the NME2 is silenced. The data indicate that NME1 loss is causally involved at the early stages of the metastatic cascade. NME2 (-/-) mice and NME2 silencing experiments reveal a specific role of NME2 in activation of heterotrimeric G proteins and of KCa3.1 channel in T cells, pointing to a role of NME2 as a histidine phosphotransferase. Regarding NME7, consistent with its expression in axonemal structures, NME7 (-/-) mice present lesions similar to primary ciliary dyskinesia. This review summarizes the recent data obtained by knockout and silencing of NME/NM23 genes that provide mechanistic insights into their respective roles in physiology and pathology.
Collapse
|
16
|
Proteomic analysis of NME1/NDPK A null mouse liver: evidence for a post-translational regulation of annexin IV and EF-1Bα. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:407-19. [DOI: 10.1007/s00210-011-0639-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
|
17
|
Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:461-72. [PMID: 21409430 DOI: 10.1007/s00210-011-0618-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 02/25/2011] [Indexed: 01/12/2023]
Abstract
Caveolae are flask-shaped invaginations in the plasma membrane that serve to compartmentalize and organize signal transduction processes, including signals mediated by G protein-coupled receptors and heterotrimeric G proteins. Herein we report evidence for a close association of the nucleoside diphosphate kinase B (NDPK B) and caveolin proteins which is required for G protein scaffolding and caveolae formation. A concomitant loss of the proteins NDPK B, caveolin isoforms 1 (Cav1) and 3, and heterotrimeric G proteins occurred when one of these proteins was specifically depleted in zebrafish embryos. Co-immunoprecipitation of Cav1 with the G protein Gβ-subunit and NDPK B from zebrafish lysates corroborated the direct association of these proteins. Similarly, in embryonic fibroblasts from the respective knockout (KO) mice, the membrane content of the Cav1, Gβ, and NDPK B was found to be mutually dependent on one another. A redistribution of Cav1 and Gβ from the caveolae containing fractions of lower density to other membrane compartments with higher density could be detected by means of density gradient fractionation of membranes derived from NDPK A/B KO mouse embryonic fibroblasts (MEFs) and after shRNA-mediated NDPK B knockdown in H10 cardiomyocytes. This redistribution could be visualized by confocal microscopy analysis showing a decrease in the plasma membrane bound Cav1 in NDPK A/B KO cells and vice versa and a decrease in the plasma membrane pool of NDPK B in Cav1 KO cells. Consequently, ultrastructural analysis revealed a reduction of surface caveolae in the NDPK A/B KO cells. To prove that the disturbed subcellular localization of Cav1 in NDPK A/B KO MEFs as well as NDPK B in Cav1 KO MEFs is a result of the loss of NDPK B and Cav1, respectively, we performed rescue experiments. The adenoviral re-expression of NDPK B in NDPK A/B KO MEFs rescued the protein content and the plasma membrane localization of Cav1. The expression of an EGFP-Cav1 fusion protein in Cav1-KO cells induced a restoration of NDPK B expression levels and its appearance at the plasma membrane. We conclude from these findings that NDPK B, heterotrimeric G proteins, and caveolins are mutually dependent on each other for stabile localization and caveolae formation at the plasma membrane. The data point to a disturbed transport of caveolin/G protein/NDPK B complexes from intracellular membrane compartments if one of the components is missing.
Collapse
|
18
|
Routledge KE, Gupta V, Balch WE. Emergent properties of proteostasis-COPII coupled systems in human health and disease. Mol Membr Biol 2010; 27:385-97. [DOI: 10.3109/09687688.2010.524894] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Farhan H, Wendeler MW, Mitrovic S, Fava E, Silberberg Y, Sharan R, Zerial M, Hauri HP. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. ACTA ACUST UNITED AC 2010; 189:997-1011. [PMID: 20548102 PMCID: PMC2886346 DOI: 10.1083/jcb.200912082] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To what extent the secretory pathway is regulated by cellular signaling is unknown. In this study, we used RNA interference to explore the function of human kinases and phosphatases in controlling the organization of and trafficking within the secretory pathway. We identified 122 kinases/phosphatases that affect endoplasmic reticulum (ER) export, ER exit sites (ERESs), and/or the Golgi apparatus. Numerous kinases/phosphatases regulate the number of ERESs and ER to Golgi protein trafficking. Among the pathways identified, the Raf-MEK (MAPK/ERK [extracellular signal-regulated kinase] kinase)-ERK cascade, including its regulatory proteins CNK1 (connector enhancer of the kinase suppressor of Ras-1) and neurofibromin, controls the number of ERESs via ERK2, which targets Sec16, a key regulator of ERESs and COPII (coat protein II) vesicle biogenesis. Our analysis reveals an unanticipated complexity of kinase/phosphatase-mediated regulation of the secretory pathway, uncovering a link between growth factor signaling and ER export.
Collapse
Affiliation(s)
- Hesso Farhan
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Yip1A depletion leads to reorganization of the ER into stacked and concentrically whorled membranes as well as a slowing of cargo export. The network dispersal function of Yip1A depends on a conserved residue. Thus, a conserved Yip1A-mediated ER network dispersal mechanism may regulate the protein export function of the organelle. The structure of the endoplasmic reticulum (ER) undergoes highly regulated changes in specialized cell types. One frequently observed type of change is its reorganization into stacked and concentrically whorled membranes, but the underlying mechanisms and functional relevance for cargo export are unknown. Here, we identify Yip1A, a conserved membrane protein that cycles between the ER and early Golgi, as a key mediator of ER organization. Yip1A depletion led to restructuring of the network into multiple, micrometer-sized concentric whorls. Membrane stacking and whorl formation coincided with a marked slowing of coat protein (COP)II-mediated protein export. Furthermore, whorl formation driven by exogenous expression of an ER protein with no role in COPII function also delayed cargo export. Thus, the slowing of protein export induced by Yip1A depletion may be attributed to a proximal role for Yip1A in regulating ER network dispersal. The ER network dispersal function of Yip1A was blocked by alteration of a single conserved amino acid (E95K) in its N-terminal cytoplasmic domain. These results reveal a conserved Yip1A-mediated mechanism for ER membrane organization that may serve to regulate cargo exit from the organelle.
Collapse
Affiliation(s)
- Kaitlyn M Dykstra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
21
|
Shindiapina P, Barlowe C. Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:1530-45. [PMID: 20200224 PMCID: PMC2861612 DOI: 10.1091/mbc.e09-07-0605] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Secretory proteins are exported from the ER at specialized regions known as transitional ER (tER). COPII proteins are enriched at tER sites, but mechanisms underlying assembly and maintenance are unclear. This study characterizes tER sites in Saccharomyces cerevisiae and probes protein and lipid requirements for tER site structure and function. Secretory proteins are exported from the endoplasmic reticulum (ER) at specialized regions known as the transitional ER (tER). Coat protein complex II (COPII) proteins are enriched at tER sites, although the mechanisms underlying tER site assembly and maintenance are not understood. Here, we investigated the dynamic properties of tER sites in Saccharomyces cerevisiae and probed protein and lipid requirements for tER site structure and function. Thermosensitive sec12 and sec16 mutations caused a collapse of tER sites in a manner that depended on nascent secretory cargo. Continual fatty acid synthesis was required for ER export and for normal tER site structure, whereas inhibition of sterol and ceramide synthesis produced minor effects. An in vitro assay to monitor assembly of Sec23p-green fluorescent protein at tER sites was established to directly test requirements. tER sites remained active for ∼10 min in vitro and depended on Sec12p function. Bulk phospholipids were also required for tER site structure and function in vitro, whereas depletion of phophatidylinositol selectively inhibited coat protein complex II (COPII) budding but not assembly of tER site structures. These results indicate that tER sites persist through relatively stringent treatments in which COPII budding was strongly inhibited. We propose that tER site structures are stable elements that are assembled on an underlying protein and lipid scaffold.
Collapse
Affiliation(s)
- Polina Shindiapina
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
22
|
Reversible histidine phosphorylation in mammalian cells: a teeter-totter formed by nucleoside diphosphate kinase and protein histidine phosphatase 1. Methods Enzymol 2010; 471:379-402. [PMID: 20946858 DOI: 10.1016/s0076-6879(10)71020-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulation of protein phosphorylation by kinases and phosphatases is involved in many signaling pathways in mammalian cells. In contrast to prokaryotes and lower eukaryotes a role for the reversible phosphorylation of histidine residues is just emerging. The β subunit of heterotrimeric G proteins, the metabolic enzyme adenosine 5'-triphosphate-citrate lyase (ACL), and the Ca2+-activated K+ channel KCa3.1 have been identified as targets for nucleoside diphosphate kinase (NDPK) acting as protein histidine kinase and the so far only identified mammalian protein histidine phosphatase (PHPT-1). Herein, we describe the analysis of the phosphorylation and dephosphorylation of histidine residues by NDPK and PHPT-1. In addition, experimental protocols for studying the consequences of heterotrimeric G protein activation via NDPK/Gβγ mediated phosphorelay, the regulation of ACL activity and of KCa3.1 conductivity by histidine phosphorylation will be presented.
Collapse
|
23
|
Fewou SN, Fernandes A, Stockdale K, Francone VP, Dupree JL, Rosenbluth J, Pfeiffer SE, Bansal R. Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 2009; 112:599-610. [PMID: 19878436 DOI: 10.1111/j.1471-4159.2009.06464.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myelin is highly enriched in galactocerebroside (GalCer) and its sulfated form sulfatide. Mice, unable to synthesize GalCer and sulfatide (CGT(null)) or sulfatide alone (CST(null)), exhibit disorganized paranodal structures and progressive dysmyelination. To obtain insights into the molecular mechanisms underlying these defects, we examined myelin composition of these mutants by two-dimensional differential fluorescence intensity gel electrophoresis proteomic approach and immunoblotting. We identified several proteins whose expressions were significantly altered in these mutants. These proteins are known to regulate cytoskeletal dynamics, energy metabolism, vesicular trafficking or adhesion, suggesting a disruption in these physiological processes in the absence of myelin galactolipids. Further analysis of one of these proteins, nucleotide diphosphate kinase (NDK)/Nm23, showed that it was reduced in myelin of CGT(null) and increased in CST(null), but not in whole brain homogenate. Immunostaining showed an increase in its expression in the cell bodies of CGT(null)- and a decrease in CST(null)-oligodenrocytes, together leading to the hypothesis that transport of NDK/Nm23 from oligodenrocyte cell bodies into myelin may be differentially dysregulated in the absence of these galactolipids. This study provides new insights into the changes that occur in the composition/distribution of myelin proteins in mice lacking either unsulfated and/or sulfated galactolipids and reinforces the role of these lipids in intracellular trafficking.
Collapse
Affiliation(s)
- Simon Ngamli Fewou
- Departments of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Budnik A, Stephens DJ. ER exit sites--localization and control of COPII vesicle formation. FEBS Lett 2009; 583:3796-803. [PMID: 19850039 DOI: 10.1016/j.febslet.2009.10.038] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.
Collapse
Affiliation(s)
- Annika Budnik
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
25
|
Mehta A, Orchard S. Nucleoside diphosphate kinase (NDPK, NM23, AWD): recent regulatory advances in endocytosis, metastasis, psoriasis, insulin release, fetal erythroid lineage and heart failure; translational medicine exemplified. Mol Cell Biochem 2009; 329:3-15. [PMID: 19415463 PMCID: PMC2721137 DOI: 10.1007/s11010-009-0114-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/02/2009] [Indexed: 12/17/2022]
Abstract
The guest editor (AM) provides his perspective on the most recent advances on nucleoside diphosphate kinase (NDPK, otherwise known as AWD or NM23) showcasing phospho-histidine biochemistry and its impact on diverse pathology when disordered. His co-author (SO) provides state-of-the-art analyses from the European institute of Bioinformatics in an appendix to support the most recent advances made by the NDPK community. Unfortunately, to those outside the field, NDPK is often dismissed as a tiny ‘ancient housekeeper’ protein found in marine sponges, social amoebae, worms, fruit flies, rodents and humans but the state-of-the-art papers overviewed here show that NDPK does not act simply in mindless rote, inter-converting cellular ‘energy currencies’. That two NDPK isoforms regulate fetal erythroid lineage is a developmental case in point. Seminal Cancer Research UK support is gratefully acknowledged that generated additional resources to enable the NDPK community to meet in Dundee in 2007 (www.dundee.ac.uk/mchs/ndpk; next meeting is planned: 2010/Mannheim-Heidelberg). The presented papers illustrate the point that when scientists are left alone ‘shut up in the narrow cell of their laboratory’ (as the philosopher Ortega once said, a sentiment echoed by Erwin Schrödinger), then progress will ultimately occur bridging the gap between specialization and translation for human benefit. To aid translation, this overview initially introduces the NDPK family to the non-specialist, who serendipitously finds these proteins in their biology. This is immediately followed by examples of the diverse biology generated by this self-aggregating group of multi-functional proteins and finally capped by an emerging idea explaining how this diversity might arise.
Collapse
Affiliation(s)
- Anil Mehta
- Division of Medical Sciences, Tayside Institute of Child Health, Ninewells Hospital Medical School, Dundee DD19SY, Scotland, UK.
| | | |
Collapse
|
26
|
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
|
27
|
Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML. The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 2009; 329:51-62. [PMID: 19387795 DOI: 10.1007/s11010-009-0120-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 01/12/2023]
Abstract
Nucleoside diphosphate kinases (NDPK) are encoded by the NME genes, also called NM23. They catalyze the transfer of gamma-phosphate from nucleoside triphosphates to nucleoside diphosphates by a ping-pong mechanism involving the formation of a high energy phospho-histidine intermediate [1, 2]. Besides their known functions in the control of intracellular nucleotide homeostasis, they are involved in multiple physiological and pathological cellular processes such as differentiation, development, metastastic dissemination or cilia functions. Over the past 15 years, ten human genes have been discovered encoding partial, full length, and/or tandemly repeated Nm23/NDPK domains, with or without N-or C-terminal extensions and/or additional domains. These genes encode proteins exhibiting different functions at various tissular and subcellular localizations. Most of these genes appear late in evolution with the emergence of the vertebrate lineage. This review summarizes the present knowledge on these multitalented proteins.
Collapse
Affiliation(s)
- Mathieu Boissan
- INSERM UMRS_938, UMPC Université Paris 06, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Subcellular localization of Nm23/NDPK A and B isoforms: a reflection of their biological function? Mol Cell Biochem 2009; 329:63-71. [DOI: 10.1007/s11010-009-0107-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/02/2009] [Indexed: 12/14/2022]
|
29
|
Koeck T, Willard B, Crabb JW, Kinter M, Stuehr DJ, Aulak KS. Glucose-mediated tyrosine nitration in adipocytes: targets and consequences. Free Radic Biol Med 2009; 46:884-92. [PMID: 19135148 PMCID: PMC2888280 DOI: 10.1016/j.freeradbiomed.2008.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/03/2008] [Accepted: 12/11/2008] [Indexed: 12/20/2022]
Abstract
Hyperglycemia, a key factor in insulin resistance and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in 3T3-L1 adipocytes. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified are involved in fatty acid binding, cell signaling, protein folding, energy metabolism, antioxidant capacity, and membrane permeability. The nitration of adipocyte fatty acid binding protein (FABP4) at Tyr19 decreases, similar to phosphorylation, the binding of palmitic acid to the fatty acid-free protein. This potentially alters intracellular fatty acid transport, nuclear translocation of FABP4, and agonism of PPAR gamma. Our results suggest that protein tyrosine nitration may be a factor in obesity, insulin resistance, and the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
- Corresponding authors. Fax: +1 216 444 8372. (T. Koeck), (K.S. Aulak)
| | - Belinda Willard
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W. Crabb
- Departments of Ophthalmic Research and Cell Biology, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mike Kinter
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
- Corresponding authors. Fax: +1 216 444 8372. (T. Koeck), (K.S. Aulak)
| |
Collapse
|
30
|
Mitchell KAP, Szabo G, de S Otero A. Direct binding of cytosolic NDP kinases to membrane lipids is regulated by nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:469-76. [PMID: 19146889 DOI: 10.1016/j.bbamcr.2008.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 11/30/2008] [Accepted: 12/03/2008] [Indexed: 11/19/2022]
Abstract
In spite of their complete lack of any structural features that characterize membrane proteins, cytosolic nucleoside-diphosphate kinases (NDPKs) have been found repeatedly to associate with membranes. In some instances the recruitment of cytosolic NDPKs to membranes was attributed to interactions with peripheral or integral membrane proteins, but in many cases the mechanism underlying the association of NDPKs with membranes remained unknown. We show here that cytosolic NDPKs bind directly to membrane lipids in a dynamic process that is controlled by its substrates, nucleoside tri- and diphosphates, and can be fully reconstituted with chemically defined, protein-free phospholipids and recombinant NDPK, or with purified NDPK. Our results uncover a novel mechanism for the reversible targeting of soluble NDPKs to membranes, where they may act as a reservoir of high energy phosphate, supporting the operation of membrane-based processes that utilize nucleotides other than ATP, such as intracellular traffic and phospholipid biosynthesis.
Collapse
Affiliation(s)
- Kimberly A P Mitchell
- Department of Molecular Physiology and Biological Physics, University of Virginia Medical School, P.O. Box 800736, Charlottesville, VA 22908-0736, USA
| | | | | |
Collapse
|
31
|
Errasti‐Murugarren E, Molina‐Arcas M, Casado FJ, Pastor‐Anglada M. A splice variant of the
SLC28A3
gene encodes a novel human concentrative nucleoside transporter‐3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB J 2008; 23:172-82. [DOI: 10.1096/fj.08-113902] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ekaitz Errasti‐Murugarren
- Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaInstitut de Biomedicina, CIBER EHD, Universitat de BarcelonaBarcelonaSpain
| | - Miriam Molina‐Arcas
- Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaInstitut de Biomedicina, CIBER EHD, Universitat de BarcelonaBarcelonaSpain
| | - Fco Javier Casado
- Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaInstitut de Biomedicina, CIBER EHD, Universitat de BarcelonaBarcelonaSpain
| | - Marcal Pastor‐Anglada
- Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaInstitut de Biomedicina, CIBER EHD, Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
32
|
Morin-Leisk J, Lee TH. Nucleotide-dependent self-assembly of Nucleoside Diphosphate Kinase (NDPK) in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2045-51. [PMID: 18725328 DOI: 10.1016/j.bbapap.2008.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/14/2008] [Accepted: 07/29/2008] [Indexed: 12/17/2022]
Abstract
In addition to their role in nucleotide homeostasis, members of the Nucleoside Diphosphate Kinase (NDPK) family have been implicated in tumor metastasis, cell migration and vesicle trafficking. Although its role in most cases depends on nucleotide catalysis, a precise understanding of how the catalytic activity of NDPK supports its function in diverse processes is lacking. Here we report that wild type, but not catalytically inactive (H118C) NDPKB, undergoes dynamic self-assembly into ordered 20-25 nm diameter filaments in vitro. Self-assembly is nucleoside triphosphate dependent, GTP being most effective at promoting polymer formation. In addition, polymerization appears to depend on formation of the phosphoryl-Histidine intermediate of the enzyme, suggesting a previously unappreciated conformational change in NDPK during its catalytic cycle. We hypothesize that the observed nucleotide-dependent self-assembly property of NDPKB may reflect a key feature of NDPK enzymes that enables their function in diverse processes.
Collapse
Affiliation(s)
- Jeanne Morin-Leisk
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
33
|
Nucleoside diphosphate kinase B (NDKB) scaffolds endoplasmic reticulum membranes in vitro. Exp Cell Res 2008; 314:2702-14. [PMID: 18601920 DOI: 10.1016/j.yexcr.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 12/29/2022]
Abstract
The mechanisms that structure the mammalian endoplasmic reticulum (ER) network are not fully understood. Here we show that salt extraction of semi-intact normal rat kidney (NRK) fibroblasts and subsequent incubation of the extracted cells with ATP resulted in dramatic ER network retraction. Under these conditions, addition of a single protein, Nucleoside Diphosphate Kinase B (NDKB), was sufficient to reverse the retraction and to promote ER network extension. The underlying mechanism of membrane extension involved direct lipid binding, as NDKB bound phosphatidylinositol (PtdIns)(4)P, PtdIns(4,5)P(2) and phosphatidic acid (PA); binding to these anionic lipids required clusters of basic residues on the surface of the NDKB hexamer; and amino acid changes in NDKB that blocked lipid binding also blocked ER network extension. Remarkably, purified NDKB transformed a uniform population of synthetic lipid vesicles into extensive membrane networks, and this also required its phospholipid-binding activity. Altogether these results identify a protein sufficient to scaffold extended membrane networks, and suggest a possible role for NDKB-like proteins, as well as phosphoinositides and/or acidic phospholipids, in modulating ER network morphogenesis.
Collapse
|
34
|
Abstract
A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states.
Collapse
|
35
|
Higashio H, Sato K, Nakano A. Smy2p participates in COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex. Traffic 2007; 9:79-93. [PMID: 17973654 PMCID: PMC2239301 DOI: 10.1111/j.1600-0854.2007.00668.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2, a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro. Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2. We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.
Collapse
Affiliation(s)
- Hironori Higashio
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
36
|
Kirk SJ, Ward TH. COPII under the microscope. Semin Cell Dev Biol 2007; 18:435-47. [PMID: 17693103 DOI: 10.1016/j.semcdb.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Transport through the secretory pathway begins with COPII regulation of ER export. Driven by the Sar1 GTPase cycle, cytosolic COPII proteins exchange on and off the membrane at specific sites on the ER to regulate cargo exit. Here recent developments in COPII research are discussed, particularly the use of live-cell imaging, which has revealed surprising insights into the coat's role. The seemingly static ER exit sites are in fact highly dynamic, and the ability to visualise trafficking processes in intact living cells has highlighted the adaptable nature of COPII in cargo transport and the emerging roles of auxiliary factors.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
37
|
Hippe HJ, Luedde M, Lutz S, Koehler H, Eschenhagen T, Frey N, Katus HA, Wieland T, Niroomand F. Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein beta gamma dimer complexes. Circ Res 2007; 100:1191-9. [PMID: 17363702 DOI: 10.1161/01.res.0000264058.28808.cc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heterotrimeric G proteins are pivotal regulators of myocardial contractility. In addition to the receptor-induced GDP/GTP exchange, G protein alpha subunits can be activated by a phosphate transfer via a plasma membrane-associated complex of nucleoside diphosphate kinase B (NDPK B) and G protein betagamma-dimers (Gbetagamma). To investigate the physiological role of this phosphate transfer in cardiomyocytes, we generated a Gbeta1gamma2-dimer carrying a single amino acid exchange at the intermediately phosphorylated His-266 in the beta1 subunit (Gbeta1H266Lgamma2). Recombinantly expressed Gbeta1H266Lgamma2 were integrated into heterotrimeric G proteins in rat cardiomyocytes but were deficient in intermediate Gbeta phosphorylation. Compared with wild-type Gbeta1gamma2 (Gbeta1WTgamma2), overexpression of Gbeta1H266Lgamma2 suppressed basal cAMP formation up to 55%. A similar decrease in basal cAMP production occurred when the formation of NDPK B/Gbetagamma complexes was attenuated by siRNA-mediated NDPK B knockdown. In adult rat cardiomyocytes expressing Gbeta1H266Lgamma2, the basal contractility was suppressed by approximately 50% which correlated to similarly reduced basal cAMP levels and reduced Ser16-phosphorylation of phospholamban. In the presence of the beta-adrenoceptor agonist isoproterenol, the total cAMP formation and contractility were significantly lower in Gbeta1H266Lgamma2 than in Gbeta1WTgamma2 expressing cardiomyocytes. However, the relative isoproterenol-induced increased was not affected by Gbeta1H266Lgamma2. We conclude that the receptor-independent activation of G proteins via NDPK B/Gbetagamma complexes requires the intermediate phosphorylation of G protein beta subunits at His-266. Our results highlight the histidine kinase activity of NDPK B for Gbeta and demonstrate its contribution to the receptor-independent regulation of cAMP synthesis and contractility in intact cardiomyocytes.
Collapse
Affiliation(s)
- Hans-Joerg Hippe
- Innere Medizin III-Kardiologie, Universität Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wieland T. Interaction of nucleoside diphosphate kinase B with heterotrimeric G protein betagamma dimers: consequences on G protein activation and stability. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:373-83. [PMID: 17200862 DOI: 10.1007/s00210-006-0126-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 11/20/2006] [Indexed: 12/31/2022]
Abstract
It is generally accepted that G protein coupled receptors (GPCR) activate heterotrimeric G proteins by inducing a GDP/GTP exchange at the G protein alpha subunit. In addition, the transfer of high energetic phosphate by nucleoside diphosphate kinase (NDPK) and/or the beta subunit of G proteins (Gbeta) can induce G protein activation. Recent evidence suggests that the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers. In this complex, NDPK B acts as a protein histidine kinase phosphorylating Gbeta at histidine residue 266 (His266). The high energetic phosphoamidate bond on His266 allows for a phosphate transfer specifically onto GDP and thus local formation of GTP, which binds to and thereby activates the respective G protein alpha subunit. Apparently, this process occurs independent of the classical GPCR-induced GDP/GTP exchange at least for members of the G(s) and G(i) subfamilies of heterotrimeric G proteins. By using a mutant of Gbeta(1) in which His266 was replaced by Leu, it was recently demonstrated that NDPK B/Gbetagamma-mediated G(s) activation contributes by about 50% to basal cAMP formation and contractility in rat cardiac myocytes. Besides its apparent role in G protein activation, the complex formation of NDPK B with Gbetagamma dimers might be essential for G protein stability. Depletion of either the NDPK B orthologue or Gbeta(1) isoforms in zebrafish embryos led to a similar phenotype displaying contractile dysfunction in the heart accompanied by a complete loss of heterotrimeric G protein expression. In conclusion, the interaction of NDKP B with Gbetagamma dimers might play an important role in signal transduction, and alterations in this novel pathway might be of pathophysiological importance.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät Mannheim, Universität Heidelberg, Maybachstrasse 14, D-68169 Mannheim, Germany.
| |
Collapse
|
39
|
Bhattacharyya D, Glick BS. Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol Biol Cell 2006; 18:839-49. [PMID: 17192411 PMCID: PMC1805085 DOI: 10.1091/mbc.e06-08-0707] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast Sec16 is a large peripheral endoplasmic reticulum (ER) membrane protein that functions in generating COPII transport vesicles and in clustering COPII components at transitional ER (tER) sites. Sec16 interacts with multiple COPII components. Although the COPII assembly pathway is evolutionarily conserved, Sec16 homologues have not been described in higher eukaryotes. Here, we show that mammalian cells contain two distinct Sec16 homologues: a large protein that we term Sec16L and a smaller protein that we term Sec16S. These proteins localize to tER sites, and an N-terminal region of each protein is necessary and sufficient for tER localization. The Sec16L and Sec16S genes are both expressed in every tissue examined, and both proteins are required in HeLa cells for ER export and for normal tER organization. Sec16L resembles yeast Sec16 in having a C-terminal conserved domain that interacts with the COPII coat protein Sec23, but Sec16S lacks such a C-terminal conserved domain. Immunoprecipitation data indicate that Sec16L and Sec16S are each present at multiple copies in a heteromeric complex. We infer that mammalian cells have preserved and extended the function of Sec16.
Collapse
Affiliation(s)
- Dibyendu Bhattacharyya
- Department of Molecular Genetics and Cell Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
40
|
Abstract
Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in the ER. Analysis in a permeabilized cell assay indicated that up-regulation of COPII assembly occurred in the absence GTP hydrolysis and any cytosolic factors other than the COPII prebudding complex Sar1p–Sec23p–Sec24p. Remarkably, acting via a direct interaction with Sar1p, increased expression of the Golgi enzyme N-acetylgalactosaminyl transferase-2 induced increased COPII assembly on the ER and an overall increase in the size of the Golgi apparatus. These results suggest that direct interactions between Golgi proteins exiting the ER and COPII components regulate ER exit, providing a variable exit rate mechanism that ensures homeostasis of the Golgi apparatus.
Collapse
Affiliation(s)
- Yusong Guo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
41
|
Saitoh N, Uchimura Y, Tachibana T, Sugahara S, Saitoh H, Nakao M. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp Cell Res 2006; 312:1418-30. [PMID: 16688858 DOI: 10.1016/j.yexcr.2006.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.
Collapse
Affiliation(s)
- Noriko Saitoh
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumanmoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Gurkan C, Balch WE. Recombinant Production in Baculovirus‐Infected Insect Cells and Purification of the Mammalian Sec13/Sec31 Complex. Methods Enzymol 2005; 404:58-66. [PMID: 16413257 DOI: 10.1016/s0076-6879(05)04006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane traffic along the eukaryotic secretory pathway starts with the selective packing of biosynthetic cargo into nascent vesicles that are forming on the endoplasmic reticulum (ER). This process is mediated by the coat protein complex II (COPII) machinery, which at the minimum, comprises the Sar1 GTPase and the cytosolic protein complexes Sec23/Sec24 (Sec23/24) and Sec13/Sec31 (Sec13/31). While the components of the basic COPII machinery are highly conserved from yeast to human, it is now clearly evident that the overall process is under tighter spatial and temporal regulation in higher eukaryotes. Here we describe recombinant production in baculovirus-infected insect cells and subsequent purification to homogeneity of the mammalian Sec13/31 complex for biochemical and biophysical characterization.
Collapse
Affiliation(s)
- Cemal Gurkan
- The Scripps Research Institute, Department of Cell Biology, La Jolla, California, USA
| | | |
Collapse
|