1
|
Kimmich MJ, Sundaramurthy S, Geary MA, Lesanpezeshki L, Yingling CV, Vanapalli SA, Littlefield RS, Pruyne D. FHOD-1 and profilin protect sarcomeres against contraction-induced deformation> in C. elegans. Mol Biol Cell 2024; 35:ar137. [PMID: 39259762 DOI: 10.1091/mbc.e24-04-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from Caenorhabditis elegans results in thin body wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that mutations predicted to specifically disrupt actin polymerization by FHOD-1 similarly disrupt muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and with profilins PFN-2 and PFN-3 to promote body wall muscle growth. We further demonstrate that dense bodies in worms lacking FHOD-1 or PFN-2/PFN-3 are less stable than in wild-type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin and actin depolymerization factor/cofilin homologue UNC-60B in body wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, possibly accounting for the abnormally slow growth and reduced body wall muscle strength in fhod-1 mutants. Overall, these results implicate FHOD protein-mediated actin assembly in forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Collapse
Affiliation(s)
- Michael J Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Meaghan A Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | | | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Lewis M, Ono K, Qin Z, Johnsen RC, Baillie DL, Ono S. The α-arrestin SUP-13/ARRD-15 promotes isoform turnover of actin-interacting protein 1 in Caenorhabditis elegans striated muscle. PNAS NEXUS 2023; 2:pgad330. [PMID: 37869480 PMCID: PMC10590129 DOI: 10.1093/pnasnexus/pgad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.
Collapse
Affiliation(s)
- Mario Lewis
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Shoichiro Ono
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. Methods Mol Biol 2021. [PMID: 34542852 DOI: 10.1007/978-1-0716-1661-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.
Collapse
|
4
|
Tang VW, Nadkarni AV, Brieher WM. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J Biol Chem 2020; 295:13299-13313. [PMID: 32723865 DOI: 10.1074/jbc.ra120.015018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
Cofilin is an actin filament severing protein necessary for fast actin turnover dynamics. Coronin and Aip1 promote cofilin-mediated actin filament disassembly, but the mechanism is somewhat controversial. An early model proposed that the combination of cofilin, coronin, and Aip1 disassembled filaments in bursts. A subsequent study only reported severing. Here, we used EM to show that actin filaments convert directly into globular material. A monomer trap assay also shows that the combination of all three factors produces actin monomers faster than any two factors alone. We show that coronin accelerates the release of Pi from actin filaments and promotes highly cooperative cofilin binding to actin to create long stretches of polymer with a hypertwisted morphology. Aip1 attacks these hypertwisted regions along their sides, disintegrating them into monomers or short oligomers. The results are consistent with a catastrophic mode of disassembly, not enhanced severing alone.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
5
|
Jin ZL, Yao XR, Wen L, Hao G, Kwon JW, Hao J, Kim NH. AIP1 and Cofilin control the actin dynamics to modulate the asymmetric division and cytokinesis in mouse oocytes. FASEB J 2020; 34:11292-11306. [PMID: 32602619 DOI: 10.1096/fj.202000093r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
Actin-interacting protein 1 (AIP1), also known as WD repeat-containing protein 1 (WDR1), is ubiquitous in eukaryotic organisms, and it plays critical roles in the dynamic reorganization of the actin cytoskeleton. However, the biological function and mechanism of AIP1 in mammalian oocyte maturation is still largely unclear. In this study, we demonstrated that AIP1 boosts ADF/Cofilin activity in mouse oocytes. AIP1 is primarily distributed around the spindle region during oocyte maturation, and its depletion impairs meiotic spindle migration and asymmetric division. The knockdown of AIP1 resulted in the gathering of a large number of actin-positive patches around the spindle region. This effect was reduced by human AIP1 (hAIP1) or Cofilin (S3A) expression. AIP1 knockdown also reduced the phosphorylation of Cofilin near the spindle, indicating that AIP1 interacts with ADF/Cofilin-decorated actin filaments and enhances filament disassembly. Moreover, the deletion of AIP1 disrupts Cofilin localization in metaphase I (MI) and induces cytokinesis defects in metaphase II (MII). Taken together, our results provide evidence that AIP1 promotes actin dynamics and cytokinesis via Cofilin in the gametes of female mice.
Collapse
Affiliation(s)
- Zhe-Long Jin
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Xue-Rui Yao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Liu Wen
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Guo Hao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong-Woo Kwon
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Jiang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Nam-Hyung Kim
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
6
|
Hayashi Y, Ono K, Ono S. Mutations in Caenorhabditis elegans actin, which are equivalent to human cardiomyopathy mutations, cause abnormal actin aggregation in nematode striated muscle. F1000Res 2019; 8:279. [PMID: 30984387 PMCID: PMC6446495 DOI: 10.12688/f1000research.18476.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/19/2023] Open
Abstract
Actin is a central component of muscle contractile apparatuses, and a number of actin mutations cause diseases in skeletal, cardiac, and smooth muscles. However, many pathogenic actin mutations have not been characterized at cell biological and physiological levels. In this study, we tested whether the nematode Caenorhabditis elegans could be used to characterize properties of actin mutants in muscle cells in vivo. Two representative actin mutations, E99K and P164A, which cause hypertrophic cardiomyopathy in humans, are introduced in a muscle-specific C. elegans actin ACT-4 as E100K and P165A, respectively. When green fluorescent protein-tagged wild-type ACT-4 (GFP-ACT-4), is transgenically expressed in muscle at low levels as compared with endogenous actin, it is incorporated into sarcomeres without disturbing normal structures. GFP-ACT-4 variants with E100K and P165A are incorporated into sarcomeres, but also accumulated in abnormal aggregates, which have not been reported for equivalent actin mutations in previous studies. Muscle contractility, as determined by worm motility, is not apparently affected by expression of ACT-4 mutants. Our results suggest that C. elegans muscle is a useful model system to characterize abnormalities caused by actin mutations.
Collapse
Affiliation(s)
- Yuriko Hayashi
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
7
|
Huang X, Li Z, Hu J, Yang Z, Liu Z, Zhang T, Zhang C, Yuan B. Knockout of Wdr1 results in cardiac hypertrophy and impaired cardiac function in adult mouse heart. Gene 2019; 697:40-47. [PMID: 30794912 DOI: 10.1016/j.gene.2019.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
WDR1 is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, accelerating ADF/cofilin-mediated actin disassembly. We had previously showed that WDR1-mediated actin dynamics is required for postnatal myocardial growth and adult myocardial maintenance in mice, in which the detailed phenotypes of adult cardiomyocyte-specific Wdr1 deletion mice had not been analyzed. In this study, we systematically analyzed the role of Wdr1 in adult mouse heart. Adult cardiomyocyte-specific Wdr1 deletion mice (cKO) exhibited cardiac hypertrophy and myocardial fibrosis. Echocardiographic study and electrocardiography revealed impaired contractile function, prolonged QT interval and Tpeak-Tend interval, and abnormal T-wave amplitude in cKO mice. Increased levels of sarcomeric proteins, adherens junction proteins and cofilin, and severe actin filament (F-actin) accumulations were observed in cKO mice heart. Taken together, this finding demonstrates that WDR1 is a critical factor for normal structure and function of adult mouse heart.
Collapse
Affiliation(s)
- Xia Huang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Ziyi Li
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zihao Yang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| | - Chenxi Zhang
- Central Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, PR China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, PR China.
| |
Collapse
|
8
|
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang T, Yang Z, Yuan B. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev Biol 2018; 438:124-137. [PMID: 29654745 DOI: 10.1016/j.ydbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
Outflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments. Its function in embryonic heart development has been unknown. Using Wdr1 floxed mice and Nkx2.5-Cre, we deleted Wdr1 in embryonic heart (Wdr1F/F;Nkx2.5-Cre) and found that these mice exhibited embryonic lethality, and hypoplasia of OFT and RV. To investigate the role of WDR1 in OFT and RV development, we generated SHF progenitors-specific Wdr1 deletion mice (shfKO). shfKO mice began to die at embryonic day 11.5 (E11.5), and displayed decreased size of the proximal OFT and RV at E10.5. In shfKO embryos, neither the number of SHF cells deployment to OFT nor cell proliferation and the cell number were changed, whereas the cellular organization and myofibrillar assembly of cardiomyocytes were severely disrupted. In the proximal OFT and RV of both shfKO and Wdr1F/F;Nkx2.5-Cre embryos, cardiomyocytes were dissociated from the outer compact myocardial layer and loosely and disorderly arranged into multilayered myocardium. Our results demonstrate that WDR1 is indispensable for normal OFT and RV development, and suggest that WDR1-mediated actin dynamics functions in controlling the size of OFT and RV, which might through regulating the spatial arrangement of cardiomyocytes.
Collapse
Affiliation(s)
- Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Yingchao Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Meng Xia
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Hongmei Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.
| |
Collapse
|
9
|
Attaching-and-Effacing Pathogens Exploit Junction Regulatory Activities of N-WASP and SNX9 to Disrupt the Intestinal Barrier. Cell Mol Gastroenterol Hepatol 2018. [PMID: 29675452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Neural Wiskott-Aldrich Syndrome protein (N-WASP) is a key regulator of the actin cytoskeleton in epithelial tissues and is poised to mediate cytoskeletal-dependent aspects of apical junction complex (AJC) homeostasis. Attaching-and-effacing (AE) pathogens disrupt this homeostasis through translocation of the effector molecule early secreted antigenic target-6 (ESX)-1 secretion-associated protein F (EspF). Although the mechanisms underlying AJC disruption by EspF are unknown, EspF contains putative binding sites for N-WASP and the endocytic regulator sorting nexin 9 (SNX9). We hypothesized that N-WASP regulates AJC integrity and AE pathogens use EspF to induce junction disassembly through an N-WASP- and SNX9-dependent pathway. METHODS We analyzed mice with intestine-specific N-WASP deletion and generated cell lines with N-WASP and SNX9 depletion for dynamic functional assays. We generated EPEC and Citrobacter rodentium strains complemented with EspF bearing point mutations abolishing N-WASP and SNX9 binding to investigate the requirement for these interactions. RESULTS Mice lacking N-WASP in the intestinal epithelium showed spontaneously increased permeability, abnormal AJC morphology, and mislocalization of occludin. N-WASP depletion in epithelial cell lines led to impaired assembly and disassembly of tight junctions in response to changes in extracellular calcium. Cells lacking N-WASP or SNX9 supported actin pedestals and type III secretion, but were resistant to EPEC-induced AJC disassembly and loss of transepithelial resistance. We found that during in vivo infection with AE pathogens, EspF must bind both N-WASP and SNX9 to disrupt AJCs and induce intestinal barrier dysfunction. CONCLUSIONS Overall, these studies show that N-WASP critically regulates AJC homeostasis, and the AE pathogen effector EspF specifically exploits both N-WASP and SNX9 to disrupt intestinal barrier integrity during infection.
Collapse
Key Words
- ADF, actin depolymerization factor
- AE, attaching-and-effacing
- AJ, adherens junction
- AJC, apical junction complex
- Arp, actin-related protein
- CR, Citrobacter rodentium
- Crb, Crumbs
- Cytoskeleton
- DBS100, David B. Schauer 100
- EHEC, enterohemorrhagic Escherichia coli
- EM, electron microscopy
- EPEC, enteropathogenic Escherichia coli
- EcoRI, E. coli RY13 I
- EspF
- EspF, early secreted antigenic target-6 (ESX)-1 secretion-associated protein F
- FITC, fluorescein isothiocyanate
- Junction Regulation
- KO, knockout
- N-WASP
- N-WASP, Neural Wiskott-Aldrich Syndrome protein
- NWKD, Neural Wiskott-Aldrich Syndrome protein knockdown
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SNX9, sorting nexin 9
- SNX9KD, sorting nexin 9 knockdown
- TER, transepithelial electrical resistance
- TJ, tight junction
- Tir, translocated intimin receptor
- ZO-1, zonula occludens-1
- iNWKO, intestine Neural Wiskott-Aldrich Syndrome protein knockout
- shRNA, short hairpin RNA
Collapse
|
10
|
Garber JJ, Mallick EM, Scanlon KM, Turner JR, Donnenberg MS, Leong JM, Snapper SB. Attaching-and-Effacing Pathogens Exploit Junction Regulatory Activities of N-WASP and SNX9 to Disrupt the Intestinal Barrier. Cell Mol Gastroenterol Hepatol 2017; 5:273-288. [PMID: 29675452 PMCID: PMC5904039 DOI: 10.1016/j.jcmgh.2017.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/28/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Neural Wiskott-Aldrich Syndrome protein (N-WASP) is a key regulator of the actin cytoskeleton in epithelial tissues and is poised to mediate cytoskeletal-dependent aspects of apical junction complex (AJC) homeostasis. Attaching-and-effacing (AE) pathogens disrupt this homeostasis through translocation of the effector molecule early secreted antigenic target-6 (ESX)-1 secretion-associated protein F (EspF). Although the mechanisms underlying AJC disruption by EspF are unknown, EspF contains putative binding sites for N-WASP and the endocytic regulator sorting nexin 9 (SNX9). We hypothesized that N-WASP regulates AJC integrity and AE pathogens use EspF to induce junction disassembly through an N-WASP- and SNX9-dependent pathway. METHODS We analyzed mice with intestine-specific N-WASP deletion and generated cell lines with N-WASP and SNX9 depletion for dynamic functional assays. We generated EPEC and Citrobacter rodentium strains complemented with EspF bearing point mutations abolishing N-WASP and SNX9 binding to investigate the requirement for these interactions. RESULTS Mice lacking N-WASP in the intestinal epithelium showed spontaneously increased permeability, abnormal AJC morphology, and mislocalization of occludin. N-WASP depletion in epithelial cell lines led to impaired assembly and disassembly of tight junctions in response to changes in extracellular calcium. Cells lacking N-WASP or SNX9 supported actin pedestals and type III secretion, but were resistant to EPEC-induced AJC disassembly and loss of transepithelial resistance. We found that during in vivo infection with AE pathogens, EspF must bind both N-WASP and SNX9 to disrupt AJCs and induce intestinal barrier dysfunction. CONCLUSIONS Overall, these studies show that N-WASP critically regulates AJC homeostasis, and the AE pathogen effector EspF specifically exploits both N-WASP and SNX9 to disrupt intestinal barrier integrity during infection.
Collapse
Key Words
- ADF, actin depolymerization factor
- AE, attaching-and-effacing
- AJ, adherens junction
- AJC, apical junction complex
- Arp, actin-related protein
- CR, Citrobacter rodentium
- Crb, Crumbs
- Cytoskeleton
- DBS100, David B. Schauer 100
- EHEC, enterohemorrhagic Escherichia coli
- EM, electron microscopy
- EPEC, enteropathogenic Escherichia coli
- EcoRI, E. coli RY13 I
- EspF
- EspF, early secreted antigenic target-6 (ESX)-1 secretion-associated protein F
- FITC, fluorescein isothiocyanate
- Junction Regulation
- KO, knockout
- N-WASP
- N-WASP, Neural Wiskott-Aldrich Syndrome protein
- NWKD, Neural Wiskott-Aldrich Syndrome protein knockdown
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SNX9, sorting nexin 9
- SNX9KD, sorting nexin 9 knockdown
- TER, transepithelial electrical resistance
- TJ, tight junction
- Tir, translocated intimin receptor
- ZO-1, zonula occludens-1
- iNWKO, intestine Neural Wiskott-Aldrich Syndrome protein knockout
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- John J. Garber
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts,Division of Gastroenterology/Nutrition and Center for Inflammatory Bowel Disease Treatment and Research, Boston Children's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emily M. Mallick
- Department of Medicine Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen M. Scanlon
- Department of Medicine and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Jerrold R. Turner
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael S. Donnenberg
- Department of Medicine and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Scott B. Snapper
- Division of Gastroenterology/Nutrition and Center for Inflammatory Bowel Disease Treatment and Research, Boston Children's Hospital, Boston, Massachusetts,Division of Gastroenterology and Hepatology, Brigham and Women's Hospital, Boston, Massachusetts,Department of Medicine, Harvard Medical School, Boston, Massachusetts,Correspondence Address correspondence to: Scott B. Snapper, MD, PhD, Division of Gastroenterology/Nutrition, Boston Children’s Hospital, Enders 676, 300 Longwood Avenue, Boston, Massachusetts 02115. fax: (617) 730-0498.
| |
Collapse
|
11
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
12
|
Barnes DE, Hwang H, Ono K, Lu H, Ono S. Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion. Cytoskeleton (Hoboken) 2016; 73:117-30. [PMID: 26849746 DOI: 10.1002/cm.21281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/29/2023]
Abstract
The troponin complex, composed of troponin T (TnT), troponin I (TnI), and troponin C (TnC), is the major calcium-dependent regulator of muscle contraction, which is present widely in both vertebrates and invertebrates. Little is known about evolutionary aspects of troponin in the animal kingdom. Using a combination of data mining and functional analysis of TnI, we report evidence that an N-terminal extension of TnI is present in most of bilaterian animals as a functionally important domain. Troponin components have been reported in species in most of representative bilaterian phyla. Comparison of TnI sequences shows that the core domains are conserved in all examined TnIs, and that N- and C-terminal extensions are variable among isoforms and species. In particular, N-terminal extensions are present in all protostome TnIs and chordate cardiac TnIs but lost in a subset of chordate TnIs including vertebrate skeletal-muscle isoforms. Transgenic rescue experiments in Caenorhabditis elegans striated muscle show that the N-terminal extension of TnI (UNC-27) is required for coordinated worm locomotion but not in sarcomere assembly and single muscle-contractility kinetics. These results suggest that N-terminal extensions of TnIs are retained from a TnI ancestor as a functional domain.
Collapse
Affiliation(s)
- Dawn E Barnes
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hyundoo Hwang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,School of Engineering and Sciences, Technológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Interdisciplinary Program of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia.,The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Nomura K, Hayakawa K, Tatsumi H, Ono S. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner. J Biol Chem 2016; 291:5146-56. [PMID: 26747606 DOI: 10.1074/jbc.m115.713495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 02/02/2023] Open
Abstract
Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics.
Collapse
Affiliation(s)
- Kazumi Nomura
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Hitoshi Tatsumi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan, and the Department of Applied Biosciences, Kanazawa Institute of Technology, Kanazawa 924-0838, Japan
| | - Shoichiro Ono
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322,
| |
Collapse
|
14
|
Lechuga S, Baranwal S, Ivanov AI. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions. Am J Physiol Gastrointest Liver Physiol 2015; 308:G745-56. [PMID: 25792565 PMCID: PMC4421013 DOI: 10.1152/ajpgi.00446.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis.
Collapse
Affiliation(s)
- Susana Lechuga
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Somesh Baranwal
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia;
| | - Andrei I. Ivanov
- 1Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; ,2Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia; ,3VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Ono S. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans. Anat Rec (Hoboken) 2015; 297:1548-59. [PMID: 25125169 DOI: 10.1002/ar.22965] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 02/01/2023]
Abstract
The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessory proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia; Department of Cell Biology, Emory University, Atlanta, Georgia
| |
Collapse
|
16
|
Ono K, Obinata T, Yamashiro S, Liu Z, Ono S. UNC-87 isoforms, Caenorhabditis elegans calponin-related proteins, interact with both actin and myosin and regulate actomyosin contractility. Mol Biol Cell 2015; 26:1687-98. [PMID: 25717181 PMCID: PMC4436780 DOI: 10.1091/mbc.e14-10-1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Two UNC-87 isoforms with seven calponin-like repeats are expressed widely in muscle and nonmuscle cells in Caenorhabditis elegans. They bind to actin and myosin and inhibit actomyosin motility in vitro. unc-87 mutation enhances contraction of nonstriated muscle in vivo, suggesting that UNC-87 isoforms are negative regulators of actomyosin contractility. Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Takashi Obinata
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Zhongmei Liu
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
17
|
Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, Lu S, Chen J, Yang Z. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1967-80. [PMID: 24840128 DOI: 10.1016/j.ajpath.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/26/2014] [Accepted: 04/07/2014] [Indexed: 11/25/2022]
Abstract
Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice.
Collapse
Affiliation(s)
- Baiyin Yuan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Ping Wan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Dandan Chu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Junwei Nie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Yunshan Cao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Wen Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Shuangshuang Lu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jiong Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Talman AM, Chong R, Chia J, Svitkina T, Agaisse H. Actin network disassembly powers dissemination of Listeria monocytogenes. J Cell Sci 2014; 127:240-9. [PMID: 24155331 PMCID: PMC3874788 DOI: 10.1242/jcs.140038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens hijack the actin assembly machinery and display intracellular motility in the cytosol of infected cells. At the cell cortex, intracellular motility leads to bacterial dissemination through formation of plasma membrane protrusions that resolve into vacuoles in adjacent cells. Here, we uncover a crucial role for actin network disassembly in dissemination of Listeria monocytogenes. We found that defects in the disassembly machinery decreased the rate of actin tail turnover but did not affect the velocity of the bacteria in the cytosol. By contrast, defects in the disassembly machinery had a dramatic impact on bacterial dissemination. Our results suggest a model of L. monocytogenes dissemination in which the disassembly machinery, through local recycling of the actin network in protrusions, fuels continuous actin assembly at the bacterial pole and concurrently exhausts cytoskeleton components from the network distal to the bacterium, which enables membrane apposition and resolution of protrusions into vacuoles.
Collapse
Affiliation(s)
- Arthur M. Talman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | - Ryan Chong
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | - Jonathan Chia
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
19
|
Ono K, Ono S. Two actin-interacting protein 1 isoforms function redundantly in the somatic gonad and are essential for reproduction in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2013; 71:36-45. [PMID: 24130131 DOI: 10.1002/cm.21152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/17/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Abstract
The somatic gonad of the nematode Caenorhabditis elegans exhibits highly regulated contractility during ovulation, which is essential for successful reproduction. Nonstriated actin filament networks in the myoepithelial sheath at the proximal ovary provide contractile forces to push a mature oocyte for ovulation, but the mechanism of assembly and regulation of the contractile actin networks is poorly understood. Here, we show that actin-interacting protein 1 (AIP1) is essential for the assembly of the contractile actin networks in the myoepithelial sheath. AIP1 promotes disassembly of actin filaments in the presence of actin depolymerizing factor (ADF)/cofilin. C. elegans has two AIP1 genes, unc-78 and aipl-1. Mutation or RNA interference of a single AIP1 isoform causes only minor impacts on reproduction. However, simultaneous depletion of the two AIP1 isoforms causes sterility. AIP1-depleted animals show very weak contractility of the myoepithelial sheath and fail to ovulate a mature oocyte, which results in accumulation of endomitotic oocytes in the ovary. Depletion of AIP1 prevents assembly of actin networks and causes abnormal aggregation of actin as well as ADF/cofilin in the myoepithelial sheath. These results indicate that two AIP1 isoforms have redundant roles in assembly of the contractile apparatuses necessary for C. elegans reproduction.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
20
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
21
|
Shi M, Xie Y, Zheng Y, Wang J, Su Y, Yang Q, Huang S. Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:747-60. [PMID: 23134061 DOI: 10.1111/tpj.12065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 05/03/2023]
Abstract
Rapid actin turnover is essential for numerous actin-based processes. However, how it is precisely regulated remains poorly understood. Actin-interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin-depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate-limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down-regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over-expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF-mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real-time visualization of single filament dynamics showed that OsAIP1 enhanced ADF-mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off-rate were enhanced in OsAIP1 over-expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F-actin levels in plants.
Collapse
Affiliation(s)
- Meng Shi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Nomura K, Ono K, Ono S. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle. J Cell Sci 2012; 125:4077-89. [PMID: 22623720 DOI: 10.1242/jcs.104950] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.
Collapse
Affiliation(s)
- Kazumi Nomura
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
23
|
Tropomodulin capping of actin filaments in striated muscle development and physiology. J Biomed Biotechnol 2011; 2011:103069. [PMID: 22013379 PMCID: PMC3196151 DOI: 10.1155/2011/103069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/18/2011] [Indexed: 11/17/2022] Open
Abstract
Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.
Collapse
|
24
|
Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods 2011; 56:11-7. [PMID: 21945576 DOI: 10.1016/j.ymeth.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/06/2011] [Accepted: 09/10/2011] [Indexed: 11/21/2022] Open
Abstract
The nematode Caenorhabditis elegans has long been a useful model organism for muscle research. Its body wall muscle is obliquely striated muscle and exhibits structural similarities with vertebrate striated muscle. Actin is the core component of the muscle thin filaments, which are highly ordered in sarcomeric structures in striated muscle. Genetic studies have identified genes that regulate proper organization and function of actin filaments in C. elegans muscle, and sequence of the worm genome has revealed a number of conserved candidate genes that may regulate actin. To precisely understand the functions of actin-binding proteins, such genetic and genomic studies need to be complemented by biochemical characterization of these actin-binding proteins in vitro. This article describes methods for purification and biochemical characterization of actin from C. elegans. Although rabbit muscle actin is commonly used to characterize actin-binding proteins from many eukaryotic organisms, we detect several quantitative differences between C. elegans actin and rabbit muscle actin, highlighting that use of actin from an appropriate source is important in some cases. Additionally, we describe probes for cell biological analysis of actin in C. elegans.
Collapse
|
25
|
Ono S, Nomura K, Hitosugi S, Tu DK, Lee JA, Baillie DL, Ono K. The two actin-interacting protein 1 genes have overlapping and essential function for embryonic development in Caenorhabditis elegans. Mol Biol Cell 2011; 22:2258-69. [PMID: 21551072 PMCID: PMC3128528 DOI: 10.1091/mbc.e10-12-0934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bergeron SE, Wedemeyer EW, Lee R, Wen KK, McKane M, Pierick AR, Berger AP, Rubenstein PA, Bartlett HL. Allele-specific effects of thoracic aortic aneurysm and dissection alpha-smooth muscle actin mutations on actin function. J Biol Chem 2011; 286:11356-69. [PMID: 21288906 DOI: 10.1074/jbc.m110.203174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Twenty-two missense mutations in ACTA2, which encodes α-smooth muscle actin, have been identified to cause thoracic aortic aneurysm and dissection. Limited access to diseased tissue, the presence of multiple unresolvable actin isoforms in the cell, and lack of an animal model have prevented analysis of the biochemical mechanisms underlying this pathology. We have utilized actin from the yeast Saccharomyces cerevisiae, 86% identical to human α-smooth muscle actin, as a model. Two of the known human mutations, N115T and R116Q, were engineered into yeast actin, and their effect on actin function in vivo and in vitro was investigated. Both mutants exhibited reduced ability to grow under a variety of stress conditions, which hampered N115T cells more than R116Q cells. Both strains exhibited abnormal mitochondrial morphology indicative of a faulty actin cytoskeleton. In vitro, the mutant actins exhibited altered thermostability and nucleotide exchange rates, indicating effects of the mutations on monomer conformation, with R116Q the most severely affected. N115T demonstrated a biphasic elongation phase during polymerization, whereas R116Q demonstrated a markedly extended nucleation phase. Allele-specific effects were also seen on critical concentration, rate of depolymerization, and filament treadmilling. R116Q filaments were hypersensitive to severing by the actin-binding protein cofilin. In contrast, N115T filaments were hyposensitive to cofilin despite nearly normal binding affinities of actin for cofilin. The mutant-specific effects on actin behavior suggest that individual mechanisms may contribute to thoracic aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Sarah E Bergeron
- Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
28
|
Choi CH, Patel H, Barber DL. Expression of actin-interacting protein 1 suppresses impaired chemotaxis of Dictyostelium cells lacking the Na+-H+ exchanger NHE1. Mol Biol Cell 2010; 21:3162-70. [PMID: 20668166 PMCID: PMC2938382 DOI: 10.1091/mbc.e09-12-1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium cells lacking the intracellular pH regulator NHE1 have defective chemotaxis. A modifier screen and reconstitution studies show expression of recombinant actin interacting protein 1 (Aip1) suppresses the Ddnhe1-phenotype. Aip1 promotes cofilin-dependent actin remodeling, which is likely a major determinant in pH-dependent chemotaxis. Increased intracellular pH is an evolutionarily conserved signal necessary for directed cell migration. We reported previously that in Dictyostelium cells lacking H+ efflux by a Na+-H+ exchanger (NHE; Ddnhe1−), chemotaxis is impaired and the assembly of filamentous actin (F-actin) is attenuated. We now describe a modifier screen that reveals the C-terminal fragment of actin-interacting protein 1 (Aip1) enhances the chemotaxis defect of Ddnhe1− cells but has no effect in wild-type Ax2 cells. However, expression of full-length Aip1 mostly suppresses chemotaxis defects of Ddnhe1− cells and restores F-actin assembly. Aip1 functions to promote cofilin-dependent actin remodeling, and we found that although full-length Aip1 binds cofilin and F-actin, the C-terminal fragment binds cofilin but not F-actin. Because pH-dependent cofilin activity is attenuated in mammalian cells lacking H+ efflux by NHE1, our current data suggest that full-length Aip1 facilitates F-actin assembly when cofilin activity is limited. We predict the C-terminus of Aip1 enhances defective chemotaxis of Ddnhe1− cells by sequestering the limited amount of active cofilin without promoting F-actin assembly. Our findings indicate a cooperative role of Aip1 and cofilin in pH-dependent cell migration, and they suggest defective chemotaxis in Ddnhe1− cells is determined primarily by loss of cofilin-dependent actin dynamics.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
29
|
Doukhanine E, Gavino C, Haines JD, Almazan G, Richard S. The QKI-6 RNA binding protein regulates actin-interacting protein-1 mRNA stability during oligodendrocyte differentiation. Mol Biol Cell 2010; 21:3029-40. [PMID: 20631256 PMCID: PMC2929996 DOI: 10.1091/mbc.e10-04-0305] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quaking viable (qk(v)) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qk(v) mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identify the actin-interacting protein (AIP)-1 mRNA as a target of QKI-6 by using two-dimensional differential gel electrophoresis. The AIP-1 mRNA contains a consensus QKI response element within its 3'-untranslated region that, when bound by QKI-6, decreases the half-life of the AIP-1 mRNA. Although the expression of QKI-6 is known to increase during OL differentiation and CNS myelination, we show that this increase is paralleled with a corresponding decrease in AIP-1 expression in rat brains. Furthermore, qk(v)/qk(v) mice that lack QKI-6 and QKI-7 within its OLs had an increased level of AIP-1 in OLs. Moreover, primary rat OL precursors harboring an AIP-1 small interfering RNA display defects in OL process outgrowth. Our findings suggest that the QKI RNA-binding proteins regulate OL differentiation by modulating the expression of AIP-1.
Collapse
Affiliation(s)
- Evgueni Doukhanine
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, Québec H3T1E2, Canada
| | | | | | | | | |
Collapse
|
30
|
Ono K, Ono S. Actin-ADF/cofilin rod formation in Caenorhabditis elegans muscle requires a putative F-actin binding site of ADF/cofilin at the C-terminus. ACTA ACUST UNITED AC 2009; 66:398-408. [PMID: 19459188 DOI: 10.1002/cm.20383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Under a number of stress or pathological conditions, actin and actin depolymerizing factor (ADF)/cofilin form rod-like structures that contain abnormal bundles of actin filaments that are heavily decorated with ADF/cofilin. However, the mechanism of actin rod formation and the physiological role of actin rods are not clearly understood. Here, we report that overexpression of green fluorescent protein-fused UNC-60B, a muscle-specific ADF/cofilin isoform, in Caenorhabditis elegans body wall muscle induces formation of rod-like structures. The rods contained GFP-UNC-60B, actin-interacting protein 1 (AIP1), and actin, but not other major actin-associated proteins, thus resembling actin-ADF/cofilin rods found in other organisms. However, depletion or overexpression of AIP1 did not affect formation of the actin-GFP-UNC-60B rods, suggesting that AIP1 does not play a significant role in the rod assembly. Truncation of the C-terminal tail, a putative F-actin binding site, of UNC-60B abolished induction of the rod formation, strongly suggesting that stable association of UNC-60B with F-actin, which is mediated by its C-terminus, is required for inducing actin-ADF/cofilin rods. This study suggests that C. elegans can be a new model to study functions of actin-ADF/cofilin rods.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
31
|
Yamashiro S, Cox EA, Baillie DL, Hardin JD, Ono S. Sarcomeric actin organization is synergistically promoted by tropomodulin, ADF/cofilin, AIP1 and profilin in C. elegans. J Cell Sci 2008; 121:3867-77. [PMID: 18984629 DOI: 10.1242/jcs.040477] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sarcomeric organization of thin and thick filaments in striated muscle is important for the efficient generation of contractile forces. Sarcomeric actin filaments are uniform in their lengths and regularly arranged in a striated pattern. Tropomodulin caps the pointed end of actin filaments and is a crucial regulator of sarcomere assembly. Here, we report unexpected synergistic functions of tropomodulin with enhancers of actin filament dynamics in Caenorhabditis elegans striated muscle. Pointed-end capping by tropomodulin inhibited actin filament depolymerization by ADF/cofilin in vitro. However, in vivo, the depletion of tropomodulin strongly enhanced the disorganization of sarcomeric actin filaments in ADF/cofilin mutants, rather than antagonistically suppressing the phenotype. Similar phenotypic enhancements by tropomodulin depletion were also observed in mutant backgrounds for AIP1 and profilin. These in vivo effects cannot be simply explained by antagonistic effects of tropomodulin and ADF/cofilin in vitro. Thus, we propose a model in which tropomodulin and enhancers of actin dynamics synergistically regulate elongation and shortening of actin filaments at the pointed end.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
32
|
Stokasimov E, McKane M, Rubenstein PA. Role of intermonomer ionic bridges in the stabilization of the actin filament. J Biol Chem 2008; 283:34844-54. [PMID: 18945676 DOI: 10.1074/jbc.m804419200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filament formation is required for most of the functions of actin. However, the intermonomer interactions that stabilize F-actin have not been elucidated because of a lack of an F-actin crystal structure. The Holmes muscle actin model suggests that an ionic interaction between Arg-39 of one monomer and Glu-167 of an adjacent monomer in the same strand contributes to this stabilization. Yeast actin has an Ala-167 instead. F-actin molecular dynamics modeling predicts another interaction between Arg-39 of one monomer and Asp-275 of an opposing strand monomer. In Toxoplasma gondii actin, which forms short stubby filaments, the Asp-275 equivalent is replaced by Arg leading to a potential filament-destabilizing charge-charge repulsion. Using yeast actin, we tested the effect of A167E as a potential stabilizer and A167R and D275R as potential filament disruptors. All mutations caused abnormal growth and mitochondrial malfunction. A167E and D275R actins polymerize normally and form relatively normal appearing filaments. A167R nucleates filaments more slowly and forms filament bundles. The R39D/A167R double mutant, which re-establishes an ionic bond in the opposite orientation, reverses this polymerization and bundling defect. Stoichiometric amounts of yeast cofilin have little effect on wild-type and A167E filaments. However, D275R and A167R actin depolymerization is profound with cofilin. Although our results suggest that disruption of an interaction between Arg-39 and Asp-275 is not sufficient to cause fragmentation, it suggests that it changes filament stability thereby disposing it for enhanced cofilin depolymerizing effects. Ala-167 results demonstrate the in vivo and in vitro importance of another potential Arg-39 ionic interaction.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
33
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
34
|
Critical roles of actin-interacting protein 1 in cytokinesis and chemotactic migration of mammalian cells. Biochem J 2008; 414:261-70. [PMID: 18494608 DOI: 10.1042/bj20071655] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cofilin regulates actin filament dynamics by stimulating actin filament disassembly and plays a critical role in cytokinesis and chemotactic migration. Aip1 (actin-interacting protein 1), also called WDR1 (WD-repeat protein 1), is a highly conserved WD-repeat protein in eukaryotes and promotes cofilin-mediated actin filament disassembly in vitro; however, little is known about the mechanisms by which Aip1 functions in cytokinesis and cell migration in mammalian cells. In the present study, we investigated the roles of Aip1 in cytokinesis and chemotactic migration of human cells by silencing the expression of Aip1 using siRNA (small interfering RNA). Knockdown of Aip1 in HeLa cells increased the percentage of multinucleate cells; this effect was reversed by expression of an active form of cofilin. In Aip1-knockdown cells, the cleavage furrow ingressed normally from anaphase to early telophase; however, an excessive accumulation of actin filaments was observed on the contractile ring in late telophase. These results suggest that Aip1 plays a crucial role in the completion of cytokinesis by promoting cofilin-mediated actin filament disassembly in telophase. We have also shown that Aip1 knockdown significantly suppressed chemokine-induced chemotactic migration of Jurkat T-lymphoma cells, and this was blocked by expression of an active form of cofilin. Whereas control cells mostly formed a single lamellipodium in response to chemokine stimulation, Aip1 knockdown cells abnormally exhibited multiple protrusions around the cells before and after cell stimulation. This indicates that Aip1 plays an important role in directional cell migration by restricting the stimulus-induced membrane protrusion to one direction via promoting cofilin activity.
Collapse
|
35
|
Ono K, Yamashiro S, Ono S. Essential role of ADF/cofilin for assembly of contractile actin networks in the C. elegans somatic gonad. J Cell Sci 2008; 121:2662-70. [PMID: 18653537 DOI: 10.1242/jcs.034215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The somatic gonad of the nematode Caenorhabditis elegans contains a myoepithelial sheath, which surrounds oocytes and provides contractile forces during ovulation. Contractile apparatuses of the myoepithelial-sheath cells are non-striated and similar to those of smooth muscle. We report the identification of a specific isoform of actin depolymerizing factor (ADF)/cofilin as an essential factor for assembly of contractile actin networks in the gonadal myoepithelial sheath. Two ADF/cofilin isoforms, UNC-60A and UNC-60B, are expressed from the unc-60 gene by alternative splicing. RNA interference of UNC-60A caused disorganization of the actin networks in the myoepithelial sheath. UNC-60B, which is known to function in the body-wall muscle, was not necessary or sufficient for actin organization in the myoepithelial sheath. However, mutant forms of UNC-60B with reduced actin-filament-severing activity rescued the UNC-60A-depletion phenotype. UNC-60A has a much weaker filament-severing activity than UNC-60B, suggesting that an ADF/cofilin with weak severing activity is optimal for assembly of actin networks in the myoepithelial sheath. By contrast, strong actin-filament-severing activity of UNC-60B was required for assembly of striated myofibrils in the body-wall muscle. Our results suggest that an optimal level of actin-filament-severing activity of ADF/cofilin is required for assembly of actin networks in the somatic gonad.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
36
|
Klaavuniemi T, Yamashiro S, Ono S. Caenorhabditis elegans gelsolin-like protein 1 is a novel actin filament-severing protein with four gelsolin-like repeats. J Biol Chem 2008; 283:26071-80. [PMID: 18640981 DOI: 10.1074/jbc.m803618200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The gelsolin family of proteins is a major class of actin regulatory proteins that sever, cap, and nucleate actin filaments in a calcium-dependent manner and are involved in various cellular processes. Typically, gelsolin-related proteins have three or six repeats of gelsolin-like (G) domain, and each domain plays a distinct role in severing, capping, and nucleation. The Caenorhabditis elegans gelsolin-like protein-1 (gsnl-1) gene encodes an unconventional gelsolin-related protein with four G domains. Sequence alignment suggests that GSNL-1 lacks two G domains that are equivalent to fourth and fifth G domains of gelsolin. In vitro, GSNL-1 severed actin filaments and capped the barbed end in a calcium-dependent manner. However, unlike gelsolin, GSNL-1 remained bound to the side of F-actin with a submicromolar affinity and did not nucleate actin polymerization, although it bound to G-actin with high affinity. These results indicate that GSNL-1 is a novel member of the gelsolin family of actin regulatory proteins and provide new insight into functional diversity and evolution of gelsolin-related proteins.
Collapse
Affiliation(s)
- Tuula Klaavuniemi
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
37
|
WDR1 presence in the songbird basilar papilla. Hear Res 2008; 240:102-11. [PMID: 18514449 DOI: 10.1016/j.heares.2008.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/26/2008] [Accepted: 03/21/2008] [Indexed: 11/16/2022]
Abstract
WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1.
Collapse
|
38
|
SALS, a WH2-Domain-Containing Protein, Promotes Sarcomeric Actin Filament Elongation from Pointed Ends during Drosophila Muscle Growth. Dev Cell 2007; 13:828-42. [DOI: 10.1016/j.devcel.2007.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 07/20/2007] [Accepted: 10/04/2007] [Indexed: 11/21/2022]
|
39
|
Yamashiro S, Gimona M, Ono S. UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics. J Cell Sci 2007; 120:3022-33. [PMID: 17684058 PMCID: PMC2365702 DOI: 10.1242/jcs.013516] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilin-dependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofilin for binding to actin filaments and inhibits ADF/cofilin-dependent filament severing and depolymerization in vitro. Mutations in the unc-87 gene suppress the disorganized actin phenotype in an ADF/cofilin mutant in the C. elegans body wall muscle, supporting their antagonistic roles in regulating actin stability in vivo. UNC-87 and tropomyosin exhibit synergistic effects in stabilizing actin filaments against ADF/cofilin, and direct comparison reveals that UNC-87 effectively stabilizes actin filaments at much lower concentrations than tropomyosin. However, the in vivo functions of UNC-87 and tropomyosin appear different, suggesting their distinct roles in the regulation of actomyosin assembly and cellular contractility. Our results demonstrate that actin binding via calponin-like repeats competes with ADF/cofilin-driven cytoskeletal turnover, and is critical for providing the spatiotemporal regulation of actin filament stability.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Mario Gimona
- Unit of Actin Cytoskeleton Regulation, Consorzio Mario Negri Sud, Department of Cell Biology and Oncology, Via Nazionale 8a, 66030 Santa Maria, Imbaro, Italy
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
40
|
Ren N, Charlton J, Adler PN. The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics 2007; 176:2223-34. [PMID: 17565945 PMCID: PMC1950627 DOI: 10.1534/genetics.107.072959] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Institute for Morphogenesis and Regenerative Medicine and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
41
|
A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase. BMC DEVELOPMENTAL BIOLOGY 2007; 7:35. [PMID: 17445261 PMCID: PMC1867819 DOI: 10.1186/1471-213x-7-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 04/19/2007] [Indexed: 12/13/2022]
Abstract
Background Heterodera glycines (soybean cyst nematode [SCN]), the major pathogen of Glycine max (soybean), undergoes muscle degradation (sarcopenia) as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc) family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin) during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est) and genomic data of C. elegans and H. glycines (CeHg database). We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin), unc-89, unc-15 (paromyosin), unc-27 (troponin I), unc-54 (myosin), and the potassium channel unc-110 (twk-18). Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.
Collapse
|
42
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Yu R, Ono S. Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in Caenorhabditis elegans body wall muscle. ACTA ACUST UNITED AC 2006; 63:659-72. [PMID: 16937397 PMCID: PMC1705952 DOI: 10.1002/cm.20152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin is a well-characterized regulator of muscle contraction. It also stabilizes actin filaments in a variety of muscle and non-muscle cells. Although these two functions of tropomyosin could have different impacts on actin cytoskeletal organization, their functional relationship has not been studied in the same experimental system. Here, we investigated how tropomyosin stabilizes actin filaments and how this function is influenced by muscle contraction in Caenorhabditis elegans body wall muscle. We confirmed the antagonistic role of tropomyosin against UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament organization using multiple UNC-60B mutant alleles. Tropomyosin was also antagonistic to UNC-78 (AIP1) in vivo and protected actin filaments from disassembly by UNC-60B and UNC-78 in vitro, suggesting that tropomyosin protects actin filaments from the ADF/cofilin-AIP1 actin disassembly system in muscle cells. A mutation in the myosin heavy chain caused greater reduction in contractility than tropomyosin depletion. However, the myosin mutation showed much weaker suppression of the phenotypes of ADF/cofilin or AIP1 mutants than tropomyosin depletion. These results suggest that muscle contraction has only minor influence on the tropomyosin's protective role against ADF/cofilin and AIP1, and that the two functions of tropomyosin in actin stability and muscle contraction are independent of each other.
Collapse
Affiliation(s)
- Robinson Yu
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
44
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|