1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Klipp A, Greitens C, Scherer D, Elsener A, Leroux JC, Burger M. Modular Calcium-Responsive and CD9-Targeted Phospholipase System Enhancing Endosomal Escape for DNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410815. [PMID: 39998318 DOI: 10.1002/advs.202410815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Gene delivery systems must overcome multiple barriers, with endosomal escape representing a prominent obstacle. We have previously shown that a bacterial phospholipase C (PLC) enabled endosomal escape of a non-viral protein-based DNA delivery system termed TFAMoplex. Building upon this, this work introduces a calcium-responsive system designed to enhance endosomal escape through non-covalent capturing of PLC to the TFAMoplex followed by its release within endosomes and nanobody-mediated targeting to the endosomal membrane. This approach leads to improved TFAMoplexes enabling transfection of HeLa cells in full serum with a half maximal effective concentration (EC50) of less than 200 ng DNA per mL serum, using only 5 nM PLC. Particularly, the modular capture, release and targeting system could potentially be adapted to other delivery agents previously constrained by poor endosomal escape. These findings present a promising strategy to achieve efficient endosomal escape, offering prospects for improved delivery of macromolecules, in particular nucleic acids.
Collapse
Affiliation(s)
- Alexander Klipp
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Christina Greitens
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - David Scherer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Alexander Elsener
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Michael Burger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| |
Collapse
|
3
|
Li J, Wang X, Jordana L, Bonneil É, Ginestet V, Ahmed M, Bourouh M, Pascariu CM, Schmeing TM, Thibault P, Archambault V. Mechanisms of PP2A-Ankle2 dependent nuclear reassembly after mitosis. eLife 2025; 13:RP104233. [PMID: 39964262 PMCID: PMC11835388 DOI: 10.7554/elife.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.
Collapse
Affiliation(s)
- Jingjing Li
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Département de biochimie et médecine moléculaire, Université de MontréalMontrealCanada
| | - Xinyue Wang
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Laia Jordana
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Département de biochimie et médecine moléculaire, Université de MontréalMontrealCanada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Victoria Ginestet
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Momina Ahmed
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Département de chimie, Université de MontréalMontrealCanada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de MontréalMontrealCanada
- Département de biochimie et médecine moléculaire, Université de MontréalMontrealCanada
| |
Collapse
|
4
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Lazo PA. Nuclear functions regulated by the VRK1 kinase. Nucleus 2024; 15:2353249. [PMID: 38753965 PMCID: PMC11734890 DOI: 10.1080/19491034.2024.2353249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
In the nucleus, the VRK1 Ser-Thr kinase is distributed in nucleoplasm and chromatin, where it has different roles. VRK1 expression increases in response to mitogenic signals. VRK1 regulates cyclin D1 expression at G0 exit and facilitates chromosome condensation at the end of G2 and G2/M progression to mitosis. These effects are mediated by the phosphorylation of histone H3 at Thr3 by VRK1, and later in mitosis by haspin. VRK1 regulates the apigenetic patterns of histones in processes requiring chromating remodeling, such as transcription, replication and DNA repair. VRK1 is overexpressed in tumors, facilitating tumor progression and resistance to genotoxic treatments. VRK1 also regulates the organization of Cajal bodies assembled on coilin, which are necessary for the assembly of different types of RNP complexes. VRK1 pathogenic variants cuase defects in Cajal bodies, functionally altering neurons with long axons and leading to neurological diseases, such as amyotrophic laterla sclerosis, spinal muscular atrophy, distal hereditay motor neuropathies and Charcot-Marie-Tooth.
Collapse
Affiliation(s)
- Pedro A. Lazo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Romero-Bueno R, Fragoso-Luna A, Ayuso C, Mellmann N, Kavsek A, Riedel CG, Ward JD, Askjaer P. A human progeria-associated BAF-1 mutation modulates gene expression and accelerates aging in C. elegans. EMBO J 2024; 43:5718-5746. [PMID: 39367234 PMCID: PMC11574047 DOI: 10.1038/s44318-024-00261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Alterations in the nuclear envelope are linked to a variety of rare diseases termed laminopathies. A single amino acid substitution at position 12 (A12T) of the human nuclear envelope protein BAF (Barrier to Autointegration Factor) causes Néstor-Guillermo Progeria Syndrome (NGPS). This premature ageing condition leads to growth retardation and severe skeletal defects, but the underlying mechanisms are unknown. Here, we have generated a novel in vivo model for NGPS by modifying the baf-1 locus in C. elegans to mimic the human NGPS mutation. These baf-1(G12T) mutant worms displayed multiple phenotypes related to fertility, lifespan, and stress resistance. Importantly, nuclear morphology deteriorated faster during aging in baf-1(G12T) compared to wild-type animals, recapitulating an important hallmark of cells from progeria patients. Although localization of BAF-1(G12T) was similar to wild-type BAF-1, lamin accumulation at the nuclear envelope was reduced in mutant worms. Tissue-specific chromatin binding and transcriptome analyses showed reduced BAF-1 association in most genes deregulated by the baf-1(G12T) mutation, suggesting that altered BAF chromatin association induces NGPS phenotypes via altered gene expression.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Nina Mellmann
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Alan Kavsek
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain.
| |
Collapse
|
7
|
He Y, Li H, Li J, Huang J, Liu R, Yao Y, Hu Y, Yang X, Wei J. BANF1 is a novel prognostic biomarker linked to immune infiltration in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1465348. [PMID: 39439799 PMCID: PMC11493654 DOI: 10.3389/fimmu.2024.1465348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Barrier-to-autointegration factor 1 (BANF1) is an abundant and ubiquitously expressed postnatal mammalian protein that is overexpressed in numerous human cancers and can promote cancer cell proliferation. However, the role of BANF1 in prognosis remains unclear in head and neck squamous cell carcinoma (HNSCC). Methods BANF1 expression data were obtained from the GEO and TCGA databases. We used Cox regression and Kaplan-Meier curves to assess the prognostic potential of BANF1. The role of BANF1-related genes was investigated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. In addition, we explored the link between BANF1, drug sensitivity, and the tumor immune microenvironment. Finally, functional in vitro and in vivo assays were used to explore the effects of BANF1 on tumor growth and metastasis of HNSCC. Results BANF1 was markedly overexpressed in HNSCC and was correlated with clinicopathological characteristics. According to survival analysis, BANF1 can be inversely correlated with patient survival and can act as a prognostic risk indicator. IC50 values for chemotherapeutic treatments indicated that the group with high BANF1 expression was more responsive to most antitumor treatments. Furthermore, higher TIDE scores were observed in the low BANF1 expression group, indicating a decline in the efficacy of immune checkpoint inhibitor therapy. Functionally, the malignant biological behavior of HNSCC cell lines was inhibited when BANF1 expression was knocked down. Conclusion BANF1 can promote tumor progression in patients with HNSCC. BANF1 shows great promise as a potential biomarker to assess the prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xinjie Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jianhua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
8
|
Li J, Jordana L, Mehsen H, Wang X, Archambault V. Nuclear reassembly defects after mitosis trigger apoptotic and p53-dependent safeguard mechanisms in Drosophila. PLoS Biol 2024; 22:e3002780. [PMID: 39186808 PMCID: PMC11379398 DOI: 10.1371/journal.pbio.3002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/06/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.
Collapse
Affiliation(s)
- Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Laia Jordana
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Xinyue Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
9
|
Funakoshi T, Imamoto N. Reconstitution of nuclear envelope subdomain formation on mitotic chromosomes in semi-intact cells. Cell Struct Funct 2024; 49:31-46. [PMID: 38839376 PMCID: PMC11926407 DOI: 10.1247/csf.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
In metazoans, the nuclear envelope (NE) disassembles during the prophase and reassembles around segregated chromatids during the telophase. The process of NE formation has been extensively studied using live-cell imaging. At the early step of NE reassembly in human cells, specific pattern-like localization of inner nuclear membrane (INM) proteins, connected to the nuclear pore complex (NPC), was observed in the so-called "core" region and "noncore" region on telophase chromosomes, which corresponded to the "pore-free" region and the "pore-rich" region, respectively, in the early G1 interphase nucleus. We refer to these phenomena as NE subdomain formation. To biochemically investigate this process, we aimed to develop an in vitro NE reconstitution system using digitonin-permeabilized semi-intact mitotic human cells coexpressing two INM proteins, emerin and lamin B receptor, which were labeled with fluorescent proteins. The targeting and accumulation of INM proteins to chromosomes before and after anaphase onset in semi-intact cells were observed using time-lapse imaging. Our in vitro NE reconstitution system recapitulated the formation of the NE subdomain, as in living cells, although chromosome segregation and cytokinesis were not observed. This in vitro NE reconstitution required the addition of a mitotic cytosolic fraction supplemented with a cyclin-dependent kinase inhibitor and energy sources. The cytoplasmic soluble factor(s) dependency of INM protein targeting differed among the segregation states of chromosomes. Furthermore, the NE reconstituted on segregated chromosomes exhibited active nucleocytoplasmic transport competency. These results indicate that the chromosome status changes after anaphase onset for recruiting NPC components.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences
| |
Collapse
|
10
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
11
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
12
|
Fan Z, Wang X, Cheng H, Pan M. VRK1 promotes DNA-induced type I interferon production. Mol Biol Rep 2024; 51:453. [PMID: 38536553 DOI: 10.1007/s11033-024-09414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Type I interferons (IFNs) are an essential class of cytokines with antitumor, antiviral and immunoregulatory effects. However, over-productive the type I IFNs are tightly associated with autoimmune disorders. Thus, the induction of type I interferons is precisely regulated to maintain immune hemostasis. This study aimed to identify a novel regulator of type I interferon signaling. METHODS AND RESULTS Primary BMDMs, isolated from mice, and human cell lines (HEK293 cells, Hela cells) and murine cell line (MEF cells) were cultured to generate in vitro models. After knockdown VRK1, real-time PCR and dual-luciferase reporter assay were performed to determine the expression level of the type I IFNs and ISGs following HTDNA and Poly (dA:dT) stimulation. Additionally, cells were treated with the VRK1 inhibitor, and the impact of VRK1 inhibition was detected. Upon HTDNA and Poly (dA:dT) stimulation, knockdown of VRK1 attenuated the induction of the type I IFNs and ISGs. Consistently, VRK-IN-1, a potent and selective VRK1 inhibitor, significantly suppressed the induction of the type I IFNs and ISGs in human and murine cell lines. Further, VRK-IN-1 inhibited induction of the type I IFNs in mouse primary BMDMs. Intriguingly, VRK1 potentiated the cGAS-STING- IFN-I axis response at STING level. CONCLUSIONS Our study reveals a novel function of VRK1 in regulating the production of type I IFNs. VRK-IN-1 might be a potential lead compound for suppressing aberrant type I IFNs in autoimmune disorders.
Collapse
Affiliation(s)
- Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Xiong Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China.
| | - Mingyu Pan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
van Heerden D, Klima S, van den Bout I. How nuclear envelope dynamics can direct laminopathy phenotypes. Curr Opin Cell Biol 2024; 86:102290. [PMID: 38048657 DOI: 10.1016/j.ceb.2023.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
The nuclear envelope separates the genome from the cytoplasmic environment. However, the nuclear envelope is also physically associated with the genome and exerts influence on gene expression and genome modification. The nucleus is dynamic, changing shape and responding to cell movement, disassembling and assembling during cell division, and undergoing rupture and repair. These dynamics can be impacted by genetic disease, leading to a family of diseases called laminopathies. Their disparate phenotypes suggest that multiple processes are affected. We highlight three such processes here, which we believe can be used to classify most of the laminopathies. While much still needs to be learned, some commonalities between these processes, such as proteins involved in nuclear envelope formation and rupture repair, may drive a variety of laminopathies. Here we review the latest information regarding nuclear dynamics and its role in laminopathies related to mutations in the nuclear lamina and linker of nucleoskeleton and cytoskeleton complex (LINC) proteins.
Collapse
Affiliation(s)
- David van Heerden
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Stefanie Klima
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa; Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
14
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
15
|
Halfmann CT, Scott KL, Sears RM, Roux KJ. Mechanisms by which barrier-to-autointegration factor regulates dynamics of nucleocytoplasmic leakage and membrane repair following nuclear envelope rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572811. [PMID: 38187776 PMCID: PMC10769424 DOI: 10.1101/2023.12.21.572811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The nuclear envelope (NE) creates a barrier between the cytosol and nucleus during interphase that is key for cellular compartmentalization and protecting genomic DNA. NE rupture can expose genomic DNA to the cytosol and allow admixture of the nuclear and cytosolic constituents, a proposed mechanism of cancer and NE-associated diseases. Barrier-to-autointegration factor (BAF) is a DNA-binding protein that localizes to NE ruptures where it recruits LEM-domain proteins, A-type lamins, and participates in rupture repair. To further reveal the mechanisms by which BAF responds to and aids in repairing NE ruptures, we investigated known properties of BAF including LEM domain binding, lamin binding, compartmentalization, phosphoregulation of DNA binding, and BAF dimerization. We demonstrate that it is the cytosolic population of BAF that functionally repairs NE ruptures, and phosphoregulation of BAF's DNA-binding that enables its ability to facilitate that repair. Interestingly, BAF's LEM or lamin binding activity appears dispensable for its role in functional repair. Furthermore, we demonstrate that BAF functions to reduce the extent of leakage though NE ruptures, suggesting that BAF effectively forms a diffusion barrier prior to NE repair. Collectively, these results enhances our knowledge of the mechanisms by which BAF responds to NE ruptures and facilitates their repair.
Collapse
Affiliation(s)
| | - Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | - Rhiannon M. Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls SD
| |
Collapse
|
16
|
Menez V, Kergrohen T, Shasha T, Silva-Evangelista C, Le Dret L, Auffret L, Subecz C, Lancien M, Ajlil Y, Vilchis IS, Beccaria K, Blauwblomme T, Oberlin E, Grill J, Castel D, Debily MA. VRK3 depletion induces cell cycle arrest and metabolic reprogramming of pontine diffuse midline glioma - H3K27 altered cells. Front Oncol 2023; 13:1229312. [PMID: 37886173 PMCID: PMC10599138 DOI: 10.3389/fonc.2023.1229312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
We previously identified VRK3 as a specific vulnerability in DMG-H3K27M cells in a synthetic lethality screen targeting the whole kinome. The aim of the present study was to elucidate the mechanisms by which VRK3 depletion impact DMG-H3K27M cell fitness. Gene expression studies after VRK3 knockdown emphasized the inhibition of genes involved in G1/S transition of the cell cycle resulting in growth arrest in G1. Additionally, a massive modulation of genes involved in chromosome segregation was observed, concomitantly with a reduction in the level of phosphorylation of serine 10 and serine 28 of histone H3 supporting the regulation of chromatin condensation during cell division. This last effect could be partly due to a concomitant decrease of the chromatin kinase VRK1 in DMG following VRK3 knockdown. Furthermore, a metabolic switch specific to VRK3 function was observed towards increased oxidative phosphorylation without change in mitochondria content, that we hypothesized would represent a cell rescue mechanism. This study further explored the vulnerability of DMG-H3K27M cells to VRK3 depletion suggesting potential therapeutic combinations, e.g. with the mitochondrial ClpP protease activator ONC201.
Collapse
Affiliation(s)
- Virginie Menez
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thomas Kergrohen
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Tal Shasha
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Claudia Silva-Evangelista
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ludivine Le Dret
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lucie Auffret
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chloé Subecz
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Manon Lancien
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yassine Ajlil
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Irma Segoviano Vilchis
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Kévin Beccaria
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Pediatric Neurosurgery, Necker Enfants Malades, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants Malades, Paris, France
| | - Estelle Oberlin
- Inserm UMRS-MD 1197, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - David Castel
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, INSERM, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
17
|
Tang M, Suraweera A, Nie X, Li Z, Lai P, Wells JW, O'Byrne KJ, Woods RJ, Bolderson E, Richard DJ. Mono-phosphorylation at Ser4 of barrier-to-autointegration factor (Banf1) significantly reduces its DNA binding capability by inducing critical changes in its local conformation and DNA binding surface. Phys Chem Chem Phys 2023; 25:24657-24677. [PMID: 37665626 DOI: 10.1039/d3cp02302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.
Collapse
Affiliation(s)
- Ming Tang
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Amila Suraweera
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Xuqiang Nie
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- College of Pharmacy, Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zilin Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Pinglin Lai
- Academy of Orthopedics Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland at the Translational Research Institute Australia, Brisbane, Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
- Princess Alexandra Hospital, Brisbane, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Emma Bolderson
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| | - Derek J Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology at the Translational Research Institute Australia, Brisbane, Australia.
| |
Collapse
|
18
|
Kamikawa Y, Wu Z, Nakazawa N, Ito T, Saito A, Imaizumi K. Impact of cell cycle on repair of ruptured nuclear envelope and sensitivity to nuclear envelope stress in glioblastoma. Cell Death Discov 2023; 9:233. [PMID: 37422516 DOI: 10.1038/s41420-023-01534-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
The nuclear envelope (NE) is often challenged by various stresses (known as "NE stress"), leading to its dysfunction. Accumulating evidence has proven the pathological relevance of NE stress in numerous diseases ranging from cancer to neurodegenerative diseases. Although several proteins involved in the reassembly of the NE after mitosis have been identified as the NE repair factors, the regulatory mechanisms modulating the efficiency of NE repair remain unclear. Here, we showed that response to NE stress varied among different types of cancer cell lines. U251MG derived from glioblastoma exhibited severe nuclear deformation and massive DNA damage at the deformed nuclear region upon mechanical NE stress. In contrast, another cell line derived from glioblastoma, U87MG, only presented mild nuclear deformation without DNA damage. Time-lapse imaging demonstrated that repairing of ruptured NE often failed in U251MG, but not in U87MG. These differences were unlikely to have been due to weakened NE in U251MG because the expression levels of lamin A/C, determinants of the physical property of the NE, were comparable and loss of compartmentalization across the NE was observed just after laser ablation of the NE in both cell lines. U251MG proliferated more rapidly than U87MG concomitant with reduced expression of p21, a major inhibitor of cyclin-dependent kinases, suggesting a correlation between NE stress response and cell cycle progression. Indeed, visualization of cell cycle stages using fluorescent ubiquitination-based cell cycle indicator reporters revealed greater resistance of U251MG to NE stress at G1 phase than at S and G2 phases. Furthermore, attenuation of cell cycle progression by inducing p21 in U251MG counteracted the nuclear deformation and DNA damage upon NE stress. These findings imply that dysregulation of cell cycle progression in cancer cells causes loss of the NE integrity and its consequences such as DNA damage and cell death upon mechanical NE stress.
Collapse
Affiliation(s)
- Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Nayuta Nakazawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Taichi Ito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
19
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
20
|
Terrazzan A, Crudele F, Corrà F, Ancona P, Palatini J, Bianchi N, Volinia S. Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines. Noncoding RNA 2023; 9:ncrna9030032. [PMID: 37218992 DOI: 10.3390/ncrna9030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells.
Collapse
Affiliation(s)
- Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Crudele
- Genetics Unit, Institute for Maternal and Child Health, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Burlo Garofolo, 34137 Trieste, Italy
| | - Fabio Corrà
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Jeffrey Palatini
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Centrum Nauk Biologiczno-Chemicznych (Biological and Chemical Research Centre), University of Warsaw, 02-089 Warsaw, Poland
| |
Collapse
|
21
|
Li Y, Shen Y, Hu Z, Yan R. Structural basis for the assembly of the DNA polymerase holoenzyme from a monkeypox virus variant. SCIENCE ADVANCES 2023; 9:eadg2331. [PMID: 37075110 PMCID: PMC10115419 DOI: 10.1126/sciadv.adg2331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ongoing global pandemic caused by a variant of the monkeypox (or mpox) virus (MPXV) has prompted widespread concern. The MPXV DNA polymerase holoenzyme, consisting of F8, A22, and E4, is vital for replicating the viral genome and represents a crucial target for the development of antiviral drugs. However, the assembly and working mechanism for the DNA polymerase holoenzyme of MPXV remains elusive. Here, we present the cryo-electron microscopy (cryo-EM) structure of the DNA polymerase holoenzyme at an overall resolution of 3.5 Å. Unexpectedly, the holoenzyme is assembled as a dimer of heterotrimers, of which the extra interface between the thumb domain of F8 and A22 shows a clash between A22 and substrate DNA, suggesting an autoinhibition state. Addition of exogenous double-stranded DNA shifts the hexamer into trimer exposing DNA binding sites, potentially representing a more active state. Our findings provide crucial steps toward developing targeted antiviral therapies for MPXV and related viruses.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Ziwei Hu
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China
- Corresponding author.
| |
Collapse
|
22
|
Marcelot A, Rodriguez-Tirado F, Cuniasse P, Joiner ML, Miron S, Soshnev AA, Fang M, Pufall MA, Mathews KD, Moore SA, Zinn-Justin S, Geyer PK. A De Novo Sequence Variant in Barrier-to-Autointegration Factor Is Associated with Dominant Motor Neuronopathy. Cells 2023; 12:847. [PMID: 36980188 PMCID: PMC10099716 DOI: 10.3390/cells12060847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
Barrier-to-autointegration factor (BAF) is an essential component of the nuclear lamina. Encoded by BANF1, this DNA binding protein contributes to the regulation of gene expression, cell cycle progression, and nuclear integrity. A rare recessive BAF variant, Ala12Thr, causes the premature aging syndrome, Néstor-Guillermo progeria syndrome (NGPS). Here, we report the first dominant pathogenic BAF variant, Gly16Arg, identified in a patient presenting with progressive neuromuscular weakness. Although disease variants carry nearby amino acid substitutions, cellular and biochemical properties are distinct. In contrast to NGPS, Gly16Arg patient fibroblasts show modest changes in nuclear lamina structure and increases in repressive marks associated with heterochromatin. Structural studies reveal that the Gly16Arg substitution introduces a salt bridge between BAF monomers, reducing the conformation ensemble available to BAF. We show that this structural change increases the double-stranded DNA binding affinity of BAF Gly16Arg. Together, our findings suggest that BAF Gly16Arg has an increased chromatin occupancy that leads to epigenetic changes and impacts nuclear functions. These observations provide a new example of how a missense mutation can change a protein conformational equilibrium to cause a dominant disease and extend our understanding of mechanisms by which BAF function impacts human health.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.M.); (P.C.); (S.M.)
- Expression Génétique Microbienne, UMR 8261, CNRS, Institut de Biologie Physico-Chimique (IBPC), Université Paris Cité, 75005 Paris, France
| | - Felipe Rodriguez-Tirado
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (F.R.-T.); (M.-l.J.); (M.F.); (M.A.P.)
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.M.); (P.C.); (S.M.)
| | - Mei-ling Joiner
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (F.R.-T.); (M.-l.J.); (M.F.); (M.A.P.)
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.M.); (P.C.); (S.M.)
| | - Alexey A. Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Mimi Fang
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (F.R.-T.); (M.-l.J.); (M.F.); (M.A.P.)
| | - Miles A. Pufall
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (F.R.-T.); (M.-l.J.); (M.F.); (M.A.P.)
| | - Katherine D. Mathews
- Department of Pediatrics and Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven A. Moore
- Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (A.M.); (P.C.); (S.M.)
| | - Pamela K. Geyer
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (F.R.-T.); (M.-l.J.); (M.F.); (M.A.P.)
| |
Collapse
|
23
|
Mendaluk A, Caussinus E, Boutros M, Lehner CF. A genome-wide RNAi screen for genes important for proliferation of cultured Drosophila cells at low temperature identifies the Ball/VRK protein kinase. Chromosoma 2023; 132:31-53. [PMID: 36746786 PMCID: PMC9981717 DOI: 10.1007/s00412-023-00787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.
Collapse
Affiliation(s)
- Anna Mendaluk
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Emmanuel Caussinus
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, BioQuant, Heidelberg, Germany
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Duan T, Thyagarajan S, Amoiroglou A, Rogers GC, Geyer PK. Analysis of a rare progeria variant of Barrier-to-autointegration factor in Drosophila connects centromere function to tissue homeostasis. Cell Mol Life Sci 2023; 80:73. [PMID: 36842139 PMCID: PMC9968693 DOI: 10.1007/s00018-023-04721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Barrier-to-autointegration factor (BAF/BANF) is a nuclear lamina protein essential for nuclear integrity, chromatin structure, and genome stability. Whereas complete loss of BAF causes lethality in multiple organisms, the A12T missense mutation of the BANF1 gene in humans causes a premature aging syndrome, called Néstor-Guillermo Progeria Syndrome (NGPS). Here, we report the first in vivo animal investigation of progeroid BAF, using CRISPR editing to introduce the NGPS mutation into the endogenous Drosophila baf gene. Progeroid BAF adults are born at expected frequencies, demonstrating that this BAF variant retains some function. However, tissue homeostasis is affected, supported by studies of the ovary, a tissue that depends upon BAF for stem cell survival and continuous oocyte production. We find that progeroid BAF causes defects in germline stem cell mitosis that delay anaphase progression and compromise chromosome segregation. We link these defects to decreased recruitment of centromeric proteins of the kinetochore, indicating dysfunction of cenBAF, a localized pool of dephosphorylated BAF produced by Protein Phosphatase PP4. We show that DNA damage increases in progenitor germ cells, which causes germ cell death due to activation of the DNA damage transducer kinase Chk2. Mitotic defects appear widespread, as aberrant chromosome segregation and increased apoptosis occur in another tissue. Together, these data highlight the importance of BAF in establishing centromeric structures critical for mitosis. Further, these studies link defects in cenBAF function to activation of a checkpoint that depletes progenitor reserves critical for tissue homeostasis, aligning with phenotypes of NGPS patients.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Srikantha Thyagarajan
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Pamela K Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, 3135E MERF, Iowa City, IA, 52242, USA.
| |
Collapse
|
25
|
Mishra AK, Hossain MM, Sata TN, Yadav AK, Zadran S, Sah AK, Nayak B, Shalimar, Venugopal SK. Hepatitis B Virus X Protein Inhibits the Expression of Barrier To Autointegration factor1 via Upregulating miR-203 Expression in Hepatic Cells. Microbiol Spectr 2023; 11:e0123522. [PMID: 36519846 PMCID: PMC9927095 DOI: 10.1128/spectrum.01235-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection targets host restriction factors that inhibit its replication and survival. Previous studies have shown that barriers to autointegration factor1 (BANF1) inhibited the replication of herpes simplex virus and vaccinia virus by binding to phosphate backbone of dsDNA. To date, no reports are available for the interplay between BANF1 and HBV. In this study, we elucidated the mechanisms by which HBV inhibit BANF1. First, the effect of HBV on BANF1 was observed in Huh-7, Hep G2, and Hep G2.2.15 cells. Huh-7 cells were transfected with pHBV1.3 or HBx plasmids. The results showed that there was a decreased expression of BANF1 in Hep G2.2.15 cells (P ≤ 0.005) or in HBV/HBx expressing Huh-7 cells (P ≤ 0.005), whereas BANF1 overexpression decreased viral replication (P ≤ 0.05). To study whether phosphorylation/dephosphorylation of BANF1 was responsible for antiviral activity, mutants were created, and it was found that inhibition due to mutants was less significant compared to BANF1 wild type. Previous studies have shown that HBV, at least in part, could regulate the expression of host miRNAs via HBx. It was found that miR-203 expression was high in Hep G2.2.15 cells (P ≤ 0.005) compared to Hep G2 cells. Next, the effect of HBx on miR-203 expression was studied and result showed that HBx upregulated miR-203 expression (P ≤ 0.005). Overexpression of miR-203 downregulated BANF1 expression (P ≤ 0.05) and viral titer was upregulated (P ≤ 0.05), while inhibition of miR-203, reversed these changes. In conclusion, BANF1 downregulated HBV, whereas HBV inhibited BANF1, at least in part, via HBx-mediated miR-203 upregulation in hepatic cells. IMPORTANCE In this study, for the first time, we found that BANF1 inhibited HBV replication and restricted the viral load. However, as previously reported for other viruses, the results in this study showed that BAF1 phosphorylation/dephosphorylation is not involved in its antiviral activity against HBV. HBV infection inhibited the intracellular expression of BANF1, via HBx-mediated upregulation of miR-203 expression. Overexpression of miR-203 downregulated BANF1 and increased the viral titer, while inhibition of miR-203 reversed these changes. This study helped us to understand the molecular mechanisms by which HBV survives and replicates in the host cells.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ajay K. Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Shahidullah Zadran
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Amrendra Kumar Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Baibaswata Nayak
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shalimar
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Senthil Kumar Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| |
Collapse
|
26
|
The Conformation of the Intrinsically Disordered N-Terminal Region of Barrier-to-Autointegration Factor (BAF) is Regulated by pH and Phosphorylation. J Mol Biol 2023; 435:167888. [PMID: 36402223 DOI: 10.1016/j.jmb.2022.167888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Barrier-to-Autointegration Factor (BAF) is a highly conserved DNA binding protein important for genome integrity. Its localization and function are regulated through phosphorylation. Previously reported structures of BAF suggested that it is fully ordered, but our recent NMR analysis revealed that its N-terminal region is flexible in solution and that S4/T3 di-phosphorylation by VRK1 reduces this flexibility. Here, molecular dynamics (MD) simulation was used to unveil the conformational ensembles accessible to the N-terminal region of BAF either unphosphorylated, mono-phosphorylated on S4 or di-phosphorylated on S4/T3 (pBAF) and to reveal the interactions that contribute to define these ensembles. We show that the intrinsic flexibility observed in the N-terminal region of BAF is reduced by S4 phosphorylation and to a larger extent by S4/T3 di-phosphorylation. Thanks to the atomic description offered by MD supported by the NMR study of several BAF mutants, we identified the dynamic network of salt bridge interactions responsible for the conformational restriction involving pS4 and pT3 with residues located in helix α1 and α6. Using MD, we showed that the flexibility in the N-terminal region of BAF depends on the ionic strength and on the pH. We show that the presence of two negative charges of the phosphoryl groups is required for a substantial decrease in flexibility in pBAF. Using MD supported by NMR, we also showed that H7 deprotonation reduces the flexibility in the N-terminal region of BAF. Thus, the conformation of the intrinsically disordered N-terminal region of BAF is highly tunable, likely related to its diverse functions.
Collapse
|
27
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
28
|
Warecki B, Bast I, Tajima M, Sullivan W. Connections between sister and non-sister telomeres of segregating chromatids maintain euploidy. Curr Biol 2023; 33:58-74.e5. [PMID: 36525974 PMCID: PMC9839490 DOI: 10.1016/j.cub.2022.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The complete separation of sister chromatids during anaphase is a fundamental requirement for successful mitosis. Therefore, divisions with either persistent DNA-based connections or lagging chromosome fragments threaten aneuploidy if unresolved. Here, we demonstrate the existence of an anaphase mechanism in normally dividing cells in which pervasive connections between telomeres of segregating chromosomes aid in rescuing lagging chromosome fragments. We observe that in a large proportion of Drosophila melanogaster neuronal stem cell divisions, early anaphase sister and non-sister chromatids remain connected by thin telomeric DNA threads. Normally, these threads are resolved in mid-to-late anaphase via a spatial mechanism. However, we find that the presence of a nearby unrepaired DNA break recruits histones, BubR1 kinase, Polo kinase, Aurora B kinase, and BAF to the telomeric thread of the broken chromosome, stabilizing it. Stabilized connections then aid lagging chromosome rescue. These results suggest a model in which pervasive anaphase telomere-telomere connections that are normally resolved quickly can instead be stabilized to retain wayward chromosome fragments. Thus, the liability of persistent anaphase inter-chromosomal connections in normal divisions may be offset by their ability to maintain euploidy in the face of chromosome damage and genome loss.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Matthew Tajima
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. Evolution of the orthopoxvirus core genome. Virus Res 2023; 323:198975. [PMID: 36280003 PMCID: PMC9586335 DOI: 10.1016/j.virusres.2022.198975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Orthopoxviruses comprise several relevant pathogens, including the causative agent of smallpox and monkeypox virus. Analysis of orthopoxvirus genome evolution mainly focused on gene gains/losses. We instead analyzed core genes, which are conserved in all orthopoxviruses. We show that, despite their strong constraint, some genes involved in viral morphogenesis and transcription/replication were targets of pervasive positive selection, which was relatively uncommon in immunomodulatory genes. However at least three of the positively selected genes, E3L, A24R, and H3L, might have evolved in response to immune selection. Episodic positive selection was particularly common on the internal branches of the orthopox phylogeny and on the monkeypox virus lineage. The latter showed evidence of episodic positive selection at the D14L gene, which encodes a modulator of complement activation (MOPICE). Notably, two genes (B1R and A33R) targeted by episodic selection on more than one branch are involved in forms of intra-genomic conflict. Finally, we found that, in orthopoxvirus proteomes, intrinsically disordered regions (IDRs) tend to be less constrained and are common targets of positive selection. Extension of our analysis to all poxviruses showed no evidence that the IDR fraction differs with host range. Conversely, we found a strong effect of base composition, which was however not sufficient to explain IDR fraction. We thus suggest that, in poxviruses, the IDR fraction is maintained by modulating GC content to accommodate disorder-promoting codons. Overall, our data provide novel insight in orthopoxvirus evolution and provide a list of genes and sites that are expected to modulate viral phenotypes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
30
|
van der Zanden SY, Jongsma MLM, Neefjes ACM, Berlin I, Neefjes J. Maintaining soluble protein homeostasis between nuclear and cytoplasmic compartments across mitosis. Trends Cell Biol 2023; 33:18-29. [PMID: 35778326 DOI: 10.1016/j.tcb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022]
Abstract
The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Anna C M Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
31
|
Kono Y, Adam SA, Sato Y, Reddy KL, Zheng Y, Medalia O, Goldman RD, Kimura H, Shimi T. Nucleoplasmic lamin C rapidly accumulates at sites of nuclear envelope rupture with BAF and cGAS. J Cell Biol 2022; 221:e202201024. [PMID: 36301259 PMCID: PMC9617480 DOI: 10.1083/jcb.202201024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
In mammalian cell nuclei, the nuclear lamina (NL) underlies the nuclear envelope (NE) to maintain nuclear structure. The nuclear lamins, the major structural components of the NL, are involved in the protection against NE rupture induced by mechanical stress. However, the specific role of the lamins in repair of NE ruptures has not been fully determined. Our analyses using immunofluorescence and live-cell imaging revealed that the nucleoplasmic pool of lamin C rapidly accumulated at sites of NE rupture induced by laser microirradiation in mouse embryonic fibroblasts. The accumulation of lamin C at the rupture sites required both the immunoglobulin-like fold domain that binds to barrier-to-autointegration factor (BAF) and a nuclear localization signal. The accumulation of nuclear BAF and cytoplasmic cyclic GMP-AMP synthase (cGAS) at the rupture sites was in part dependent on lamin A/C. These results suggest that nucleoplasmic lamin C, BAF, and cGAS concertedly accumulate at sites of NE rupture for rapid repair.
Collapse
Affiliation(s)
- Yohei Kono
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Karen L. Reddy
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Shields JA, Meier SR, Bandi M, Mulkearns-Hubert EE, Hajdari N, Ferdinez MD, Engel JL, Silver DJ, Shen B, Zhang W, Hubert CG, Mitchell K, Shakya S, Zhao SC, Bejnood A, Zhang M, Tjin Tham Sjin R, Wilker E, Lathia JD, Andersen JN, Chen Y, Li F, Weber B, Huang A, Emmanuel N. VRK1 Is a Synthetic-Lethal Target in VRK2-Deficient Glioblastoma. Cancer Res 2022; 82:4044-4057. [PMID: 36069976 PMCID: PMC9627132 DOI: 10.1158/0008-5472.can-21-4443] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/15/2022] [Accepted: 09/01/2022] [Indexed: 01/07/2023]
Abstract
Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Hajdari
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | - Kelly Mitchell
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sajina Shakya
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | - Fang Li
- Tango Therapeutics, Boston, Massachusetts
| | | | - Alan Huang
- Tango Therapeutics, Boston, Massachusetts
| | - Natasha Emmanuel
- Tango Therapeutics, Boston, Massachusetts.,Corresponding Author: Natasha Emmanuel, Tango Therapeutics, 201 Brookline Avenue, Suite 901, Boston, MA 02215. Phone: 857-320-4900, E-mail:
| |
Collapse
|
33
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
34
|
Janssen A, Marcelot A, Breusegem S, Legrand P, Zinn-Justin S, Larrieu D. The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor-Guillermo progeria syndrome cells. Nucleic Acids Res 2022; 50:9260-9278. [PMID: 36039758 PMCID: PMC9458464 DOI: 10.1093/nar/gkac726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Nestor-Guillermo progeria syndrome (NGPS) is caused by a homozygous alanine-to-threonine mutation at position 12 (A12T) in barrier-to-autointegration factor (BAF). It is characterized by accelerated aging with severe skeletal abnormalities. BAF is an essential protein binding to DNA and nuclear envelope (NE) proteins, involved in NE rupture repair. Here, we assessed the impact of BAF A12T on NE integrity using NGPS-derived patient fibroblasts. We observed a strong defect in lamin A/C accumulation to NE ruptures in NGPS cells, restored upon homozygous reversion of the pathogenic BAF A12T mutation with CRISPR/Cas9. By combining in vitro and cellular assays, we demonstrated that while the A12T mutation does not affect BAF 3D structure and phosphorylation by VRK1, it specifically decreases the interaction between BAF and lamin A/C. Finally, we revealed that the disrupted interaction does not prevent repair of NE ruptures but instead generates weak points in the NE that lead to a higher frequency of NE re-rupturing in NGPS cells. We propose that this NE fragility could directly contribute to the premature aging phenotype in patients.
Collapse
Affiliation(s)
- Anne Janssen
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Sophia Breusegem
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette 91190, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91190, France
| | - Delphine Larrieu
- Department of Clinical Biochemistry, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
35
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
36
|
Cartwright TN, Harris RJ, Meyer SK, Mon AM, Watson NA, Tan C, Marcelot A, Wang F, Zinn-Justin S, Traktman P, Higgins JMG. Dissecting the roles of Haspin and VRK1 in histone H3 phosphorylation during mitosis. Sci Rep 2022; 12:11210. [PMID: 35778595 PMCID: PMC9249732 DOI: 10.1038/s41598-022-15339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.
Collapse
Affiliation(s)
- Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephanie K Meyer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Aye M Mon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Nikolaus A Watson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Cheryl Tan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Fangwei Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
37
|
Linville AC, Rico AB, Teague H, Binsted LE, Smith GL, Albarnaz JD, Wiebe MS. Dysregulation of Cellular VRK1, BAF, and Innate Immune Signaling by the Vaccinia Virus B12 Pseudokinase. J Virol 2022; 96:e0039822. [PMID: 35543552 PMCID: PMC9175622 DOI: 10.1128/jvi.00398-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.
Collapse
Affiliation(s)
- Alexandria C. Linville
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Helena Teague
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy E. Binsted
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonas D. Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
38
|
Abstract
Poxviruses, of which vaccinia virus is the prototype, are a large family of double-stranded DNA viruses that replicate exclusively in the cytoplasm of infected cells. This physical and genetic autonomy from the host cell nucleus necessitates that these viruses encode most, if not all, of the proteins required for replication in the cytoplasm. In this review, we follow the life of the viral genome through space and time to address some of the unique challenges that arise from replicating a 195-kb DNA genome in the cytoplasm. We focus on how the genome is released from the incoming virion and deposited into the cytoplasm; how the endoplasmic reticulum is reorganized to form a replication factory, thereby compartmentalizing and helping to protect the replicating genome from immune sensors; how the cellular milieu is tailored to support high-fidelity replication of the genome; and finally, how newly synthesized genomes are faithfully and specifically encapsidated into new virions. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew D Greseth
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA;
| | - Paula Traktman
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, South Carolina, USA; .,Department of Microbiology and Immunology, The Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
39
|
Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams M, Azzam D, Skrajna A, Koyama Y, Cesmat A, Simmons H, Arteaga E, Strauss J, Kireev D, McGinty R. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 2022; 50:4355-4371. [PMID: 35390161 PMCID: PMC9071384 DOI: 10.1093/nar/gkac198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.
Collapse
Affiliation(s)
| | - Yani Zhao
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Bioinformatics and Analytics Research Collaborative, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Williams
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Dalal N Azzam
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Yuka Koyama
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Andrew P Cesmat
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Holly C Simmons
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Eyla C Arteaga
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Correia Soeiro MDN, Vergoten G, Bailly C. Molecular docking of brazilin and its analogs to barrier‐to‐autointegration factor 1 (BAF1). Ann N Y Acad Sci 2022; 1511:154-163. [DOI: 10.1111/nyas.14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE ‐ U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL) Faculté de Pharmacie Lille France
| | - Christian Bailly
- OncoWitan Scientific Consulting Office Lille (Wasquehal), 59290 France
| |
Collapse
|
41
|
Chen J, Qiao K, Zhang C, Zhou X, Du Q, Deng Y, Cao L. VRK2 activates TNFα/NF-κB signaling by phosphorylating IKKβ in pancreatic cancer. Int J Biol Sci 2022; 18:1288-1302. [PMID: 35173553 PMCID: PMC8771851 DOI: 10.7150/ijbs.66313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKβ, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKβ inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Bailly C, Vergoten G. Interaction of obtusilactone B and related butanolide lactones with the barrier-to-autointegration factor 1 (BAF1). A computational study. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100059. [PMID: 34909681 PMCID: PMC8663951 DOI: 10.1016/j.crphar.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022] Open
Abstract
The barrier-to-autointegration factor 1 (BAF1) protein is a DNA-binding protein implicated in nuclear envelop repair and reformation after mitosis. This nuclear protein is frequently overexpressed in cancer cells and plays a role in the occurrence and development of different tumors. It is a potential therapeutic target for gastric cancer, breast cancer and other malignancies. For this reason, BAF1 inhibitors are searched. The butanolide lactone obtusilactone B (Ob-B) has been found to inhibit VRK1-dependent phosphorylation of BAF1, upon direct binding to the nuclear protein. Taking advantage of the known crystallographic structure of BAF1, we have elaborated molecular models of Ob-B bound to BAF1 to delimit the binding site and binding configuration. The long endoolefinic alkyl side chain of Ob-B extends into a small groove on the protein surface, and the adjacent exomethylene-γ-lactone moiety occupies a pocket comprising to the Ser-4 phosphorylation site of BAF1. Twenty butanolide lactones structurally close to ObB were screened for BAF1 binding. Several natural products with BAF1-binding capacity potentially superior to Ob-B were identified, including mahubanolide, kotomolide B, epilitsenolide D2, and a few other known anticancer plant natural products. Our study provides new ideas to guide the discovery and design of BAF1 inhibitors. Obtusilactone B (Ob-B) is an anticancer inhibitor of VRK1-mediated BAF1 phosphorylation. Molecular models of Ob-B bound to BAF1 have been constructed and the binding site determined. Screening of 20 butanolide lactones led to the identification of new potential BAF1 binders. Mahubanolide, kotomolide B and epilitsenolide D2 emerge as potential BAF1 inhibitors.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
| |
Collapse
|
43
|
Rose M, Bai B, Tang M, Cheong CM, Beard S, Burgess JT, Adams MN, O'Byrne KJ, Richard DJ, Gandhi NS, Bolderson E. The Impact of Rare Human Variants on Barrier-To-Auto-Integration Factor 1 (Banf1) Structure and Function. Front Cell Dev Biol 2021; 9:775441. [PMID: 34820387 PMCID: PMC8606531 DOI: 10.3389/fcell.2021.775441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Barrier-to-Autointegration Factor 1 (Banf1/BAF) is a critical component of the nuclear envelope and is involved in the maintenance of chromatin structure and genome stability. Banf1 is a small DNA binding protein that is conserved amongst multicellular eukaryotes. Banf1 functions as a dimer, and binds non-specifically to the phosphate backbone of DNA, compacting the DNA in a looping process. The loss of Banf1 results in loss of nuclear envelope integrity and aberrant chromatin organisation. Significantly, mutations in Banf1 are associated with the severe premature ageing syndrome, Néstor–Guillermo Progeria Syndrome. Previously, rare human variants of Banf1 have been identified, however the impact of these variants on Banf1 function has not been explored. Here, using in silico modelling, biophysical and cell-based approaches, we investigate the effect of rare human variants on Banf1 structure and function. We show that these variants do not significantly alter the secondary structure of Banf1, but several single amino acid variants in the N- and C-terminus of Banf1 impact upon the DNA binding ability of Banf1, without altering Banf1 localisation or nuclear integrity. The functional characterisation of these variants provides further insight into Banf1 structure and function and may aid future studies examining the potential impact of Banf1 function on nuclear structure and human health.
Collapse
Affiliation(s)
- Maddison Rose
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Bond Bai
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Ming Tang
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Chee Man Cheong
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Sam Beard
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Neha S Gandhi
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia.,School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Queensland University of Technology (QUT), Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Translational Research Institute (TRI), Brisbane, QLD, Australia
| |
Collapse
|
44
|
Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. mBio 2021; 12:e0097221. [PMID: 34225493 PMCID: PMC8406168 DOI: 10.1128/mbio.00972-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases.
Collapse
|
45
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
46
|
Chen J, Horton J, Sagum C, Zhou J, Cheng X, Bedford MT. Histone H3 N-terminal mimicry drives a novel network of methyl-effector interactions. Biochem J 2021; 478:1943-1958. [PMID: 33969871 PMCID: PMC8166343 DOI: 10.1042/bcj20210203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including (1) removal of the initiator methionine residue of H3 to prevent steric interference, (2) a groove where arginine-2 binds, and (3) an aromatic cage that engages methylated lysine-4. We hypothesize that some PHDs might have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ∼3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
- Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, U.S.A
| | - John Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, U.S.A
| |
Collapse
|
47
|
Carrión-Marchante R, Frezza V, Salgado-Figueroa A, Pérez-Morgado MI, Martín ME, González VM. DNA Aptamers against Vaccinia-Related Kinase (VRK) 1 Block Proliferation in MCF7 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14050473. [PMID: 34067799 PMCID: PMC8156982 DOI: 10.3390/ph14050473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer.
Collapse
|
48
|
Marcelot A, Petitalot A, Ropars V, Le Du MH, Samson C, Dubois S, Hoffmann G, Miron S, Cuniasse P, Marquez JA, Thai R, Theillet FX, Zinn-Justin S. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res 2021; 49:3841-3855. [PMID: 33744941 PMCID: PMC8053085 DOI: 10.1093/nar/gkab184] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/05/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ambre Petitalot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | | | - Guillaume Hoffmann
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Jose Antonio Marquez
- High Throughput Crystallization Lab, EMBL Grenoble Outstation, Grenoble Cedex, France
| | | | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
49
|
Halfmann CT, Roux KJ. Barrier-to-autointegration factor: a first responder for repair of nuclear ruptures. Cell Cycle 2021; 20:647-660. [PMID: 33678126 DOI: 10.1080/15384101.2021.1892320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The nuclear envelope (NE) is a critical barrier between the cytosol and nucleus that is key for compartmentalization within the cell and serves an essential role in organizing and protecting genomic DNA. Rupturing of the NE through loss of constitutive NE proteins and/or mechanical force applied to the nucleus results in the unregulated mixing of cytosolic and nuclear compartments, leading to DNA damage and genomic instability. Nuclear rupture has recently gained interest as a mechanism that may participate in various NE-associated diseases as well as cancer. Remarkably, these rupturing events are often transient, with cells being capable of rapidly repairing nuclear ruptures. Recently, we identified Barrier-to-Autointegration Factor (BAF), a DNA-binding protein involved in post-mitotic NE reformation and cytosolic viral regulation, as an essential protein for nuclear rupture repair. During interphase, the highly mobile cytosolic BAF is primed to monitor for a compromised NE by rapidly binding to newly exposed nuclear DNA and subsequently recruiting the factors necessary for NE repair. This review highlights the recent findings of BAF's roles in rupture repair, and offers perspectives on how regulatory factors that control BAF activity may potentially alter the cellular response to nuclear ruptures and how BAF may participate in human disease.
Collapse
Affiliation(s)
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
50
|
Liu X, Han T, Xie H, Fu Z, Yao Q, Lin Z, Zhu H, Zhan D. Evaluation of the relationship between VRK2, rs4380187 polymorphisms, and genetic susceptibility to schizophrenia in the Chinese Han population. J Gene Med 2021; 23:e3313. [PMID: 33522046 DOI: 10.1002/jgm.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a serious hereditary mental disease with a low recovery rate, especially due to the lack of understanding about the cause of the disease. VRK2 is considered to be related to the pathogenesis of schizophrenia. In this study, we analyzed the correlation between VRK2, rs4380187 single-nucleotide polymorphism (SNP), and schizophrenia. METHODS Peripheral blood DNA was extracted using a genomic DNA extraction kit. The DNA samples were genotyped using the Agena MassARRAY platform, and four genetic models were applied to compute the odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression. The p value was obtained by the chi-square and t test for independent samples. RESULTS The C allele of rs4380187 SNP was significantly (p = 0.008) associated with decreased risk of SZ. The AA genotype of rs4380187 showed significantly (p = 0.009) lower frequency in cases with SZ than in controls and was associated with decreased risk of the disease. The frequency of the CA genotype of rs4380187 correlated with a 0.73-fold decreased risk of SZ (p = 0.033). In the co-dominant genetic model, the genotype of rs4380187 was associated with a decreased risk of SZ (p = 0.010). We also found that the log-additive model of rs4380187 significantly reduced the risk of SZ disease (p = 0.007). CONCLUSION This study provides further evidence that rs4380187 SNP is associated with SZ. This genotype variation could be associated with the psychopathology and cognitive function in SZ.
Collapse
Affiliation(s)
- Xianglai Liu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Tianming Han
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hailing Xie
- Institute of Mental Health, Anning Hospital, Hainan Province, China.,The Third Department of Psychiatry, Anning Hospital, Hainan Province, China
| | - Zejuan Fu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Qiankun Yao
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Zhan Lin
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Hong Zhu
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| | - Dafei Zhan
- Institute of Mental Health, Anning Hospital, Hainan Province, China
| |
Collapse
|