1
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
2
|
Braccia C, Christopher JA, Crook OM, Breckels LM, Queiroz RML, Liessi N, Tomati V, Capurro V, Bandiera T, Baldassari S, Pedemonte N, Lilley KS, Armirotti A. CFTR Rescue by Lumacaftor (VX-809) Induces an Extensive Reorganization of Mitochondria in the Cystic Fibrosis Bronchial Epithelium. Cells 2022; 11:1938. [PMID: 35741067 PMCID: PMC9222197 DOI: 10.3390/cells11121938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome. METHODS We used high-resolution mass spectrometry, differential ultracentrifugation, machine learning and bioinformatics to investigate both changes in the expression and localization of the human bronchial epithelium CF model (F508del-CFTR CFBE41o-) proteome following treatment with VX-809 (Lumacaftor), a drug able to improve the trafficking of CFTR. RESULTS The data suggested no stark changes in protein expression, yet subtle localization changes of proteins of the mitochondria and peroxisomes were detected. We then used high-content confocal microscopy to further investigate the morphological and compositional changes of peroxisomes and mitochondria under these conditions, as well as in patient-derived primary cells. We profiled several thousand proteins and we determined the subcellular localization data for around 5000 of them using the LOPIT-DC spatial proteomics protocol. CONCLUSIONS We observed that treatment with VX-809 induces extensive structural and functional remodelling of mitochondria and peroxisomes that resemble the phenotype of healthy cells. Our data suggest additional rescue mechanisms of VX-809 beyond the correction of aberrant folding of F508del-CFTR and subsequent trafficking to the PM.
Collapse
Affiliation(s)
- Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (C.B.); (T.B.)
| | - Josie A. Christopher
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Oliver M. Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
- Department of Statistics, University of Oxford, 29 St Giles’, Oxford OX1 3LB, UK
| | - Lisa M. Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Rayner M. L. Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (C.B.); (T.B.)
| | - Simona Baldassari
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (V.T.); (V.C.); (S.B.)
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; (J.A.C.); (O.M.C.); (L.M.B.); (R.M.L.Q.)
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
3
|
Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways. Cells 2022; 11:cells11050780. [PMID: 35269404 PMCID: PMC8909885 DOI: 10.3390/cells11050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
The Golgi apparatus is a central hub for cellular protein trafficking and signaling. Golgi structure and function is tightly coupled and undergoes dynamic changes in health and disease. A crucial requirement for maintaining Golgi homeostasis is the ability of the Golgi to target aberrant, misfolded, or otherwise unwanted proteins to degradation. Recent studies have revealed that the Golgi apparatus may degrade such proteins through autophagy, retrograde trafficking to the ER for ER-associated degradation (ERAD), and locally, through Golgi apparatus-related degradation (GARD). Here, we review recent discoveries in these mechanisms, highlighting the role of the Golgi in maintaining cellular homeostasis.
Collapse
|
4
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
5
|
Silencing of the ER and Integrative Stress Responses in the Liver of Mice with Error-Prone Translation. Cells 2021; 10:cells10112856. [PMID: 34831079 PMCID: PMC8616113 DOI: 10.3390/cells10112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.
Collapse
|
6
|
Sun Z, Guerriero CJ, Brodsky JL. Substrate ubiquitination retains misfolded membrane proteins in the endoplasmic reticulum for degradation. Cell Rep 2021; 36:109717. [PMID: 34551305 PMCID: PMC8503845 DOI: 10.1016/j.celrep.2021.109717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
To maintain secretory pathway fidelity, misfolded proteins are commonly retained in the endoplasmic reticulum (ER) and selected for ER-associated degradation (ERAD). Soluble misfolded proteins use ER chaperones for retention, but the machinery that restricts aberrant membrane proteins to the ER is unclear. In fact, some misfolded membrane proteins escape the ER and traffic to the lysosome/vacuole. To this end, we describe a model substrate, SZ*, that contains an ER export signal but is also targeted for ERAD. We observe decreased ER retention when chaperone-dependent SZ* ubiquitination is compromised. In addition, appending a linear tetra-ubiquitin motif onto SZ* overrides ER export. By screening known ubiquitin-binding proteins, we then positively correlate SZ* retention with Ubx2 binding. Deletion of Ubx2 also inhibits the retention of another misfolded membrane protein. Our results indicate that polyubiquitination is sufficient to retain misfolded membrane proteins in the ER prior to ERAD. Sun et al. characterize how misfolded membrane proteins are delivered for either ERAD or post-ER degradation in the secretory pathway. By using a model substrate that can access both pathways, they show that substrate retention requires chaperone-dependent substrate ubiquitination and interaction with a conserved ER membrane protein, Ubx2.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Vona B, Mazaheri N, Lin SJ, Dunbar LA, Maroofian R, Azaiez H, Booth KT, Vitry S, Rad A, Rüschendorf F, Varshney P, Fowler B, Beetz C, Alagramam KN, Murphy D, Shariati G, Sedaghat A, Houlden H, Petree C, VijayKumar S, Smith RJH, Haaf T, El-Amraoui A, Bowl MR, Varshney GK, Galehdari H. A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Hum Genet 2021; 140:915-931. [PMID: 33496845 PMCID: PMC8099798 DOI: 10.1007/s00439-020-02254-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany. .,Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lucy A Dunbar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy Institut Pasteur, Institut de L'Audition, INSERM-UMRS1120, Sorbonne Université, 63 rue de Charenton, 75012, Paris, France
| | - Aboulfazl Rad
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Franz Rüschendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ben Fowler
- Imaging & Histology Core, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kumar N Alagramam
- Department of Otolaryngology, School of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Neurosciences, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Genetics and Genomic Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Murphy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Gholamreza Shariati
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnostics Laboratory, East Mihan Ave, Kianpars, Ahvaz, Iran
| | - Alireza Sedaghat
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shruthi VijayKumar
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology and Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy Institut Pasteur, Institut de L'Audition, INSERM-UMRS1120, Sorbonne Université, 63 rue de Charenton, 75012, Paris, France
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK. .,UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Ilie A, Boucher A, Park J, Berghuis AM, McKinney RA, Orlowski J. Assorted dysfunctions of endosomal alkali cation/proton exchanger SLC9A6 variants linked to Christianson syndrome. J Biol Chem 2020; 295:7075-7095. [PMID: 32277048 PMCID: PMC7242699 DOI: 10.1074/jbc.ra120.012614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
9
|
Natural Products Targeting ER Stress, and the Functional Link to Mitochondria. Int J Mol Sci 2020; 21:ijms21061905. [PMID: 32168739 PMCID: PMC7139827 DOI: 10.3390/ijms21061905] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle essential for intracellular homeostasis maintenance, controlling synthesis, the folding of secreted and membrane-bound proteins, and transport of Ca2+. During cellular stress, ER dysfunction leads to the activation of unfolded protein response (UPR) due to accumulated misfolded proteins in the ER. This condition is referred as ER stress. Mitochondria and ER form a site of close contact (the mitochondria-associated membrane, MAM) which is a major platform exerting important physiological roles in the regulation of intracellular Ca2+ homeostasis, lipid metabolism, mitochondrial fission, autophagosome formation, and apoptosis progression. Natural products have been receiving increasing attention for their ability to interfere with ER stress. Research works have focused on the capacity of these bioactive compounds to induce apoptosis by activating ER stress through the ER stress-mediated mitochondrial apoptotic pathway. In this review we discuss the role of natural products in the signaling communication between ER and mitochondria, focusing on the effects induced by ER stress including Ca2+ permeability transition and UPR signaling (protein kinase R-like ER kinase/mitofusin 2).
Collapse
|
10
|
Shcherbakov D, Teo Y, Boukari H, Cortes-Sanchon A, Mantovani M, Osinnii I, Moore J, Juskeviciene R, Brilkova M, Duscha S, Kumar HS, Laczko E, Rehrauer H, Westhof E, Akbergenov R, Böttger EC. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun Biol 2019; 2:381. [PMID: 31637312 PMCID: PMC6797716 DOI: 10.1038/s42003-019-0626-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Translation fidelity is the limiting factor in the accuracy of gene expression. With an estimated frequency of 10-4, errors in mRNA decoding occur in a mostly stochastic manner. Little is known about the response of higher eukaryotes to chronic loss of ribosomal accuracy as per an increase in the random error rate of mRNA decoding. Here, we present a global and comprehensive picture of the cellular changes in response to translational accuracy in mammalian ribosomes impaired by genetic manipulation. In addition to affecting established protein quality control pathways, such as elevated transcript levels for cytosolic chaperones, activation of the ubiquitin-proteasome system, and translational slowdown, ribosomal mistranslation led to unexpected responses. In particular, we observed increased mitochondrial biogenesis associated with import of misfolded proteins into the mitochondria and silencing of the unfolded protein response in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Dmitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Heithem Boukari
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Adrian Cortes-Sanchon
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Ivan Osinnii
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - James Moore
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Reda Juskeviciene
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | | | - Endre Laczko
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zürich und Universität Zürich, 8057 Zurich, Switzerland
| | - Eric Westhof
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zurich, Switzerland
| |
Collapse
|
11
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
12
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
13
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
14
|
Modulation of proteostasis and protein trafficking: a therapeutic avenue for misfolded G protein-coupled receptors causing disease in humans. Emerg Top Life Sci 2019; 3:39-52. [PMID: 33523195 DOI: 10.1042/etls20180055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.
Collapse
|
15
|
Milenkovic A, Milenkovic VM, Wetzel CH, Weber BHF. BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes. Hum Mol Genet 2019; 27:1630-1641. [PMID: 29668979 PMCID: PMC5905664 DOI: 10.1093/hmg/ddy070] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in bestrophin-1 (BEST1) are associated with distinct retinopathies, notably three forms with autosomal dominant inheritance and one condition with an autosomal recessive mode of transmission. The molecular mechanisms underlying their distinct retinal phenotypes are mostly unknown. Although heterozygous missense mutations in BEST1 reveal dominant-negative effects in patients with autosomal dominant Best disease (BD), heterozygous mutations associated with autosomal recessive bestrophinopathy (ARB) display no disease phenotype. Here we show that the recessive mutations trigger a strong and fast protein degradation process in the endoplasmic reticulum (ER), thereby favoring a decreased stoichiometry of mutant versus normal BEST1 subunits in the assembly of the homo-pentameric BEST1 chloride channel. In contrast, dominant mutations escape ER-associated degradation and are subjected to a slightly delayed post-ER degradation via the endo-lysosomal degradation pathway. As a result, increased formation of a non-functional BEST1 channel occurs due to a roughly equimolar incorporation of normal and mutant BEST1 subunits into the channel complex. Taken together, our data provide insight into the molecular pathways of dominantly and recessively acting BEST1 missense mutations suggesting that the site of subcellular protein quality control as well as the rate and degree of mutant protein degradation are ultimately responsible for the distinct retinal disease phenotypes in BD and ARB.
Collapse
Affiliation(s)
- Andrea Milenkovic
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- To whom correspondence should be addressed at: Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany. Tel: +49 9419445400; Fax: +49 9419445402;
| |
Collapse
|
16
|
Ma W, Stroobant V, Heirman C, Sun Z, Thielemans K, Mulder A, van der Bruggen P, Van den Eynde BJ. The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. THE JOURNAL OF IMMUNOLOGY 2018; 202:451-459. [PMID: 30559321 DOI: 10.4049/jimmunol.1800353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
The intracellular pathway of cross-presentation, which allows MHC class I-restricted presentation of peptides derived from exogenous Ags, remains poorly defined and may vary with the nature of the exogenous Ag and the type of APC. It can be cytosolic, characterized by proteasome and TAP dependency, or vacuolar, usually believed to be proteasome and TAP independent. Cross-presentation is particularly effective with long synthetic peptides, and we previously reported that the HLA-A2-restricted cross-presentation of a long peptide derived from melanoma Ag gp100 by human monocyte-derived immature dendritic cells occurred in a vacuolar pathway, making use of newly synthesized HLA-A2 molecules that follow a nonclassical secretion route. In this article, we show that the HLA-A1-restricted cross-presentation of a long peptide derived from tumor Ag MAGE-A3 by human monocyte-derived immature dendritic cells also follows a vacuolar pathway. However, as opposed to the HLA-A2-restricted peptide, cross-presentation of the HLA-A1-restricted peptide is TAP dependent. We show that this paradoxical TAP-dependency is indirect and reflects the need for TAP to load HLA-A1 molecules with peptides in the endoplasmic reticulum, to allow them to escape the endoplasmic reticulum and reach the vacuole, where peptide exchange with the cross-presented peptide likely occurs. Our results confirm and extend the involvement of the vacuolar pathway in the cross-presentation of long peptides, and indicate that TAP-dependency can no longer be used as a key criterion to distinguish the cytosolic from the vacuolar pathway of cross-presentation. They also stress the existence of an alternative secretory route for MHC class I, which will be worthy of further studies.
Collapse
Affiliation(s)
- Wenbin Ma
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Zhaojun Sun
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Arend Mulder
- Laboratory for Transplantation Immunology, Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; .,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| |
Collapse
|
17
|
Durgeau A, Virk Y, Gros G, Voilin E, Corgnac S, Djenidi F, Salmon J, Adam J, de Montpréville V, Validire P, Ferrone S, Chouaib S, Eggermont A, Soria JC, Lemonnier F, Tartour E, Chaput N, Besse B, Mami-Chouaib F. Human preprocalcitonin self-antigen generates TAP-dependent and -independent epitopes triggering optimised T-cell responses toward immune-escaped tumours. Nat Commun 2018; 9:5097. [PMID: 30504837 PMCID: PMC6269466 DOI: 10.1038/s41467-018-07603-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Tumours often evade CD8 T-cell immunity by downregulating TAP. T-cell epitopes associated with impaired peptide processing are immunogenic non-mutated neoantigens that emerge during tumour immune evasion. The preprocalcitonin (ppCT)16-25 neoepitope belongs to this category of antigens. Here we show that most human lung tumours display altered expression of TAP and frequently express ppCT self-antigen. We also show that ppCT includes HLA-A2-restricted epitopes that are processed by TAP-independent and -dependent pathways. Processing occurs in either the endoplasmic reticulum, by signal peptidase and signal peptide peptidase, or in the cytosol after release of a signal peptide precursor or retrotranslocation of a procalcitonin substrate by endoplasmic-reticulum-associated degradation. Remarkably, ppCT peptide-based immunotherapy induces efficient T-cell responses toward antigen processing and presenting machinery-impaired tumours transplanted into HLA-A*0201-transgenic mice and in NOD-scid-Il2rγnull mice adoptively transferred with human PBMC. Thus, ppCT-specific T lymphocytes are promising effectors for treatment of tumours that have escaped immune recognition.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,ElyssaMed, Paris Biotech Santé, 75014, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Voilin
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Fayçal Djenidi
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Jérôme Salmon
- CNRS (Centre National de la Recherche Scientifique) UMR 8122, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Julien Adam
- INSERM U 981, Gustave Roussy, Faculté de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Service d'Anatomie Pathologique, Centre Chirurgical Marie-Lannelongue, 92350, Le-Plessis-Robinson, France
| | - Pierre Validire
- Service d'Anatomie Pathologique, Institut Mutualiste Montsouris, 75014, Paris, France
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Thumbay Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, UAE
| | - Alexander Eggermont
- Cancer Institute, Gustave Roussy Cancer Campus, Grand Paris, 94805, Villejuif, France
| | - Jean-Charles Soria
- Department of Drug Development (DITEP), Gustave Roussy, 94805, Villejuif, France
| | - François Lemonnier
- Département Endocrinologie, Métabolisme et Diabète, Equipe Immunologie des Diabètes, INSERM U1016, 75014, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Centre, Université Paris-Descartes, Sorbonne Paris Cité, Equipe Labellisée Ligue Contre le Cancer, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015, Paris, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, and CNRS-UMS 3655 and INSERM-US23, Gustave Roussy Cancer Campus, Villejuif, France.,Faculté de Pharmacie, University Paris-Sud, F-92296, Chatenay-Malabry, France
| | - Benjamin Besse
- Département de Médecine, Gustave Roussy, 94805, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumour Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine, Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
18
|
Kelu JJ, Webb SE, Galione A, Miller AL. Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Dev Biol 2018; 445:211-225. [PMID: 30447180 DOI: 10.1016/j.ydbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Sarah E Webb
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Andrew L Miller
- Division of Life Science&State Key Laboratory of Molecular Neuroscience, HKUST, Hong Kong.
| |
Collapse
|
19
|
The role and mechanism of chaperones Calnexin/Calreticulin in which ALLN selectively rescues the trafficking defective of HERG-A561V mutation. Biosci Rep 2018; 38:BSR20171269. [PMID: 29752336 PMCID: PMC6127669 DOI: 10.1042/bsr20171269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Long QT (LQT) type 2 (LQT2) is caused by HERG mutation. L539fs/47 encodes a truncated protein, and its mechanisms in HERG mutation are unknown. HERG mutation plasmids were overexpressed in HEK293T cells, respectively, followed by analyzing lysates with Western blot. Transfected HEK293T cells were treated with or without N-acetyl-l-leucyl-l-leucyl-l-norleucinal (ALLN) and Propranolol (Prop) at 24 or 48 h. HERG-WT, HERG-A561V, WT/A561V, HERG-L539fs/47, WT/L539fs/47, and Calnexin (CNX)/Calreticulin (CRT) protein expression and their interactions were detected by Western blot and immunoprecipitation. Each group with HERG currents (Ikr) were detected by Patch-clamp technique. Treated with ALLN, the expression of mature HERG protein and the CNX/CRT protein increased. The interaction of HERG-A561V and WT/A561V protein with the chaperone CNX/CRT increased significantly. The maximum peak currents and tail currents density increased by 70% and 73%, respectively, while maximal peak currents density (24%) and tail currents density (19%) were slight increased in WT-HERG cells. Treated with Prop, the expression and interaction of mature HERG and chaperones CNX/CRT had no difference in each group. The maximal currents and tail currents density were slight increased. CNX/CRT might play a crucial role in the trafficking-deficient process and degradation of HERG-A561V mutant protein, however they had no effect on L539fs/47 HERG due to protein transport deletion. ALLN can restore HERG-A561V mutant protein trafficking process and rescue the dominant negative suppression of WT-HERG.
Collapse
|
20
|
Shaheen A. Effect of the unfolded protein response on ER protein export: a potential new mechanism to relieve ER stress. Cell Stress Chaperones 2018; 23:797-806. [PMID: 29730847 PMCID: PMC6111102 DOI: 10.1007/s12192-018-0905-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 02/04/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.
Collapse
Affiliation(s)
- Alaa Shaheen
- Kafr El-Sharakwa Medical Center, Aga, Dakahlia, Egypt.
| |
Collapse
|
21
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
22
|
Sun Z, Brodsky JL. The degradation pathway of a model misfolded protein is determined by aggregation propensity. Mol Biol Cell 2018; 29:1422-1434. [PMID: 29688814 PMCID: PMC6014095 DOI: 10.1091/mbc.e18-02-0117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein homeostasis in the secretory pathway is maintained by a hierarchy of quality control checkpoints, including endoplasmic reticulum–associated degradation (ERAD), which leads to the destruction of misfolded proteins in the ER, as well as post-ER proteolysis. Although most aberrant proteins are degraded by ERAD, some misfolded proteins escape the ER and are degraded instead by lysosomal/vacuolar proteases. To date, it remains unclear how misfolded membrane proteins are selected for these different fates. Here we designed a novel model substrate, SZ*, to investigate how substrate selection is mediated in yeast. We discovered that SZ* is degraded by both the proteasome and vacuolar proteases, the latter of which occurs after ER exit and requires the multivesicular body pathway. By interrogating how various conditions affect the fate of SZ*, we also discovered that heat-shock and substrate overexpression increase ERAD targeting. These conditions also increase substrate aggregation. We next found that aggregation of the membrane-free misfolded domain in SZ* is concentration dependent, and fusion of this misfolded domain to a post-ER quality control substrate instead targets the substrate for ERAD. Our data indicate that a misfolded membrane protein with a higher aggregation propensity is preferentially retained in the ER and targeted for ERAD.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
23
|
Shin Y, Vavra U, Veit C, Strasser R. The glycan-dependent ERAD machinery degrades topologically diverse misfolded proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:246-259. [PMID: 29396984 PMCID: PMC5900737 DOI: 10.1111/tpj.13851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.
Collapse
Affiliation(s)
- Yun‐Ji Shin
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesMuthgasse 18ViennaA‐1190Austria
| |
Collapse
|
24
|
Ma W, Goldberg E, Goldberg J. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. eLife 2017; 6. [PMID: 28594326 PMCID: PMC5464768 DOI: 10.7554/elife.26624] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Native cargo proteins exit the endoplasmic reticulum (ER) in COPII-coated vesicles, whereas resident and misfolded proteins are substantially excluded from vesicles by a retention mechanism that remains unresolved. We probed the ER retention process using the proteostasis regulator 4-phenylbutyrate (4-PBA), which we show targets COPII protein to reduce the stringency of retention. 4-PBA competes with p24 proteins to bind COPII. When p24 protein uptake is blocked, COPII vesicles package resident proteins and an ER-trapped mutant LDL receptor. We further show that 4-PBA triggers the secretion of a KDEL-tagged luminal resident, implying that a compromised retention mechanism causes saturation of the KDEL retrieval system. The results indicate that stringent ER retention requires the COPII coat machinery to actively sort biosynthetic cargo from diffusible misfolded and resident ER proteins. DOI:http://dx.doi.org/10.7554/eLife.26624.001
Collapse
Affiliation(s)
- Wenfu Ma
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Elena Goldberg
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jonathan Goldberg
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
25
|
Sikorska N, Lemus L, Aguilera-Romero A, Manzano-Lopez J, Riezman H, Muñiz M, Goder V. Limited ER quality control for GPI-anchored proteins. J Cell Biol 2017; 213:693-704. [PMID: 27325793 PMCID: PMC4915193 DOI: 10.1083/jcb.201602010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Sikorska et al. find that remodeling of a GPI anchor after its attachment to proteins inside the ER strongly promotes ER export but occurs independently of protein folding, thereby effectively limiting ER quality control, potentially including ER-associated degradation of all GPI-anchored proteins. Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.
Collapse
Affiliation(s)
- Natalia Sikorska
- Department of Genetics, University of Seville, 41012 Seville, Spain
| | - Leticia Lemus
- Department of Genetics, University of Seville, 41012 Seville, Spain
| | - Auxiliadora Aguilera-Romero
- National Centre of Competence in Research, Chemical Biology, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland Department of Biochemistry, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland
| | - Javier Manzano-Lopez
- Department of Cell Biology, University of Seville, 41012 Seville, Spain Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Howard Riezman
- National Centre of Competence in Research, Chemical Biology, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland Department of Biochemistry, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Veit Goder
- Department of Genetics, University of Seville, 41012 Seville, Spain
| |
Collapse
|
26
|
Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis. Sci Rep 2017; 7:1575. [PMID: 28484241 PMCID: PMC5431546 DOI: 10.1038/s41598-017-01805-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
Collapse
|
27
|
Briant K, Johnson N, Swanton E. Transmembrane domain quality control systems operate at the endoplasmic reticulum and Golgi apparatus. PLoS One 2017; 12:e0173924. [PMID: 28384259 PMCID: PMC5383021 DOI: 10.1371/journal.pone.0173924] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/28/2017] [Indexed: 01/14/2023] Open
Abstract
Multiple protein quality control systems operate to ensure that misfolded proteins are efficiently cleared from the cell. While quality control systems that assess the folding status of soluble domains have been extensively studied, transmembrane domain (TMD) quality control mechanisms are poorly understood. Here, we have used chimeras based on the type I plasma membrane protein CD8 in which the endogenous TMD was substituted with transmembrane sequences derived from different polytopic membrane proteins as a mode to investigate the quality control of unassembled TMDs along the secretory pathway. We find that the three TMDs examined prevent trafficking of CD8 to the cell surface via potentially distinct mechanisms. CD8 containing two distinct non-native transmembrane sequences escape the ER and are subsequently retrieved from the Golgi, possibly via Rer1, leading to ER localisation at steady state. A third chimera, containing an altered transmembrane domain, was predominantly localised to the Golgi at steady state, indicating the existence of an additional quality control checkpoint that identifies non-native transmembrane domains that have escaped ER retention and retrieval. Preliminary experiments indicate that protein retained by quality control mechanisms at the Golgi are targeted to lysosomes for degradation.
Collapse
Affiliation(s)
- Kit Briant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicholas Johnson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eileithyia Swanton
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
29
|
Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads. Mol Cell Biol 2016; 36:3058-3074. [PMID: 27697863 DOI: 10.1128/mcb.00411-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3βHSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.
Collapse
|
30
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
31
|
Evangelinos M, Martzoukou O, Chorozian K, Amillis S, Diallinas G. BsdA(Bsd2) -dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy. Mol Microbiol 2016; 100:893-911. [PMID: 26917498 DOI: 10.1111/mmi.13358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Transmembrane proteins translocate cotranslationally in the endoplasmic reticulum (ER) membrane and traffic as vesicular cargoes, via the Golgi, in their final membrane destination. Misfolding in the ER leads to protein degradation basically through the ERAD/proteasome system. Here, we use a mutant version of the purine transporter UapA (ΔR481) to show that specific misfolded versions of plasma membrane cargoes undergo vacuolar turnover prior to localization in the plasma membrane. We show that non-endocytic vacuolar turnover of ΔR481 is dependent on BsdA(Bsd2) , an ER transmembrane adaptor of HulA(Rsp5) ubiquitin ligase. We obtain in vivo evidence that BsdA(Bsd2) interacts with HulA(Rsp5) and ΔR481, primarily in the ER. Importantly, accumulation of ΔR481 in the ER triggers delivery of the selective autophagy marker Atg8 in vacuoles along with ΔR481. Genetic block of autophagy (atg9Δ, rabO(ts) ) reduces, but does not abolish, sorting of ΔR481 in the vacuoles, suggesting that a fraction of the misfolded transporter might be redirected for vacuolar degradation via the Golgi. Our results support that multiple routes along the secretory pathway operate for the detoxification of Aspergillus nidulans cells from misfolded membrane proteins and that BsdA is a key factor for marking specific misfolded cargoes.
Collapse
Affiliation(s)
- Minoas Evangelinos
- Faculty of Biology, University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - Olga Martzoukou
- Faculty of Biology, University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - Koar Chorozian
- Faculty of Biology, University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - Sotiris Amillis
- Faculty of Biology, University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - George Diallinas
- Faculty of Biology, University of Athens, Panepistimioupolis, 15784, Athens, Greece
| |
Collapse
|
32
|
Power JHT, Barnes OL, Chegini F. Lewy Bodies and the Mechanisms of Neuronal Cell Death in Parkinson's Disease and Dementia with Lewy Bodies. Brain Pathol 2016; 27:3-12. [PMID: 26667592 DOI: 10.1111/bpa.12344] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
Neuronal loss in specific brain regions and neurons with intracellular inclusions termed Lewy bodies are the pathologic hallmark in both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Lewy bodies comprise of aggregated intracellular vesicles and proteins and α-synuclein is reported to be a major protein component. Using human brain tissue from control, PD and DLB and light and confocal immunohistochemistry with antibodies to superoxide dismutase 2 as a marker for mitochondria, α-synuclein for Lewy bodies and βIII Tubulin for microtubules we have examined the relationship between Lewy bodies and mitochondrial loss. We have shown microtubule regression and mitochondrial and nuclear degradation in neurons with developing Lewy bodies. In PD, multiple Lewy bodies were often observed with α-synuclein interacting with DNA to cause marked nuclear degradation. In DLB, the mitochondria are drawn into the Lewy body and the mitochondrial integrity is lost. This work suggests that Lewy bodies are cytotoxic. In DLB, we suggest that microtubule regression and mitochondrial loss results in decreased cellular energy and axonal transport that leads to cell death. In PD, α-synuclein aggregations are associated with intact mitochondria but interacts with and causes nuclear degradation which may be the major cause of cell death.
Collapse
Affiliation(s)
- John H T Power
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Olivia L Barnes
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| | - Fariba Chegini
- Department of Human Physiology, Flinders Medical Science and Technology, School of Medicine, Flinders University, South Australia
| |
Collapse
|
33
|
Margulis NG, Wilson JD, Bentivoglio CM, Dhungel N, Gitler AD, Barlowe C. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins. Traffic 2016; 17:191-210. [PMID: 26650540 DOI: 10.1111/tra.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.
Collapse
Affiliation(s)
- Neil G Margulis
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Joshua D Wilson
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Nripesh Dhungel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Present address: Singer Instruments, Roadwater, Watchet, Somerset, TA23 0RE, UK
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| |
Collapse
|
34
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
35
|
John A, Kizhakkedath P, Al-Gazali L, Ali BR. Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension. Gene 2015; 561:148-56. [PMID: 25688877 DOI: 10.1016/j.gene.2015.02.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/26/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
Familial pulmonary arterial hypertension (FPAH) is a relatively rare but fatal disorder characterized by elevated arterial pressure caused by abnormal proliferation of endothelial cells of the arteries, which eventually leads to heart failure and death. FPAH is inherited as an autosomal dominant trait and is caused by heterozygous mutations in the BMPR2 gene encoding the bone morphogenetic protein type II receptor (BMPR2). BMPR2 belongs to the TGF β/BMP super-family of receptors involved in a signal transduction cascade via the SMAD signaling pathway. The BMPR2 polypeptide is composed of 1038 amino acids and consists of a ligand binding domain, a kinase domain and a cytoplasmic tail. To investigate the cellular and functional consequence of BMPR2 mutations, C-terminally FLAG-tagged constructs of eighteen pathogenic BMPR2 missense mutants were generated by site directed mutagenesis and expressed in HeLa and HEK-293T cell lines. The subcellular localizations of the mutant proteins were investigated using immunostaining and confocal microscopy. Post-translational modifications of the proteins were analyzed by Endoglycosidase H deglycosylation assay. Our results indicated that mutations in the ligand binding domain affecting highly conserved cysteine residues resulted in retention of the mutant proteins in the endoplasmic reticulum (ER), as evident from their co-localization with the ER resident protein calnexin. The kinase domain mutants showed both ER and plasma membrane (PM) distributions, while the cytoplasmic tail domain variants were localized exclusively to the PM. The subcellular localizations of the mutants were further confirmed by their characteristic glycosylation profiles. In conclusion, our results indicate that ER quality control (ERQC) is involved in the pathological mechanism of several BMPR2 receptor missense mutations causing FPAH, which can be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Anne John
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
36
|
Suyama K, Hori M, Gomi K, Shintani T. Fusion of an intact secretory protein permits a misfolded protein to exit from the endoplasmic reticulum in yeast. Biosci Biotechnol Biochem 2014; 78:49-59. [PMID: 25036483 DOI: 10.1080/09168451.2014.877185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Upon exit from the endoplasmic reticulum (ER), the nascent polypeptides of secretory proteins undergo sorting events. If properly folded, they are directly or indirectly recognized by the coat proteins of budding vesicles for forward transport, while unfolded or misfolded proteins are retained in the ER by a quality control mechanism. To gain insight into the interplay between ER export and ER quality control, we fused a secretory protein invertase to the C-terminus of mutated carboxypeptidase Y (CPY*), a model ER-associated degradation (ERAD) substrate in Saccharomyces cerevisiae. This substrate, designated CPY*-Inv, was largely exported from the ER, although it was fully recognized by the ERAD-related lectin, Yos9, and hence degraded by the ERAD when it remained in the ER. CPY*-Inv relied primarily on the p24 complex, a putative ER export receptor for invertase, for escape from ERAD, suggesting that the ERAD and the ER export of soluble secretory proteins are competitive.
Collapse
Affiliation(s)
- Kengo Suyama
- a Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | | | | | | |
Collapse
|
37
|
Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, Nakano A, Jiang L. Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in Arabidopsis. THE PLANT CELL 2014; 26:2080-2097. [PMID: 24824487 PMCID: PMC4079370 DOI: 10.1105/tpc.114.123141] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
Rab GTPases serve as multifaceted organizers during vesicle trafficking. Rab7, a member of the Rab GTPase family, has been shown to perform various essential functions in endosome trafficking and in endosome-to-lysosome trafficking in mammalian systems. The Arabidopsis thaliana genome encodes eight putative Rab7 homologs; however, the detailed function and activation mechanism of Rab7 in plants remain unknown. Here, we demonstrate that Arabidopsis RABG3f, a member of the plant Rab7 small GTPase family, localizes to prevacuolar compartments (PVCs) and the tonoplast. The proper activation of Rab7 is essential for both PVC-to-vacuole trafficking and vacuole biogenesis. Expression of a dominant-negative Rab7 mutant (RABG3fT22N) induces the formation of enlarged PVCs and affects vacuole morphology in plant cells. We also identify Arabidopsis MON1 (MONENSIN SENSITIVITY1) and CCZ1 (CALCIUM CAFFEINE ZINC SENSITIVITY1) proteins as a dimeric complex that functions as the Rab7 guanine nucleotide exchange factor. The MON1-CCZ1 complex also serves as the Rab5 effector to mediate Rab5-to-Rab7 conversion on PVCs. Loss of functional MON1 causes the formation of enlarged Rab5-positive PVCs that are separated from Rab7-positive endosomes. Similar to the dominant-negative Rab7 mutant, the mon1 mutants show pleiotropic growth defects, fragmented vacuoles, and altered vacuolar trafficking. Thus, Rab7 activation by the MON1-CCZ1 complex is critical for vacuolar trafficking, vacuole biogenesis, and plant growth.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
38
|
Tischer A, Madde P, Blancas-Mejia LM, Auton M. A molten globule intermediate of the von Willebrand factor A1 domain firmly tethers platelets under shear flow. Proteins 2013; 82:867-78. [PMID: 24265179 DOI: 10.1002/prot.24464] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 02/02/2023]
Abstract
Clinical mutations in patients diagnosed with Type 2A von Willebrand disease (VWD) have been identified that break the single disulfide bond linking N- and C-termini in the vWF A1 domain. We have modeled the effect of these mutations on the disulfide-bonded structure of A1 by reducing and carboxy-amidating these cysteines. Solution biophysical studies show that loss of this disulfide bond induces a molten globule conformational state lacking global tertiary structure but retaining residual secondary structure. The conformational dependence of platelet adhesion to these native and molten globule states of A1 is quantitatively compared using real-time high-speed video microscopy analysis of platelet translocation dynamics under shear flow in a parallel plate microfluidic flow chamber. While normal platelets translocating on surface-captured native A1 domain retain the catch-bond character of pause times that increase as a function of shear rate at low shear and decrease as a function of shear rate at high shear, platelets that interact with A1 lacking the disulfide bond remain stably attached and do not translocate. Based on these findings, we propose that the shear stress-sensitive regulation of the A1-GPIb interaction is due to folding the tertiary structure of this domain. Removal of the tertiary structure by disrupting the disulfide bond destroys this regulatory mechanism resulting in high-strength interactions between platelets and vWF A1 that are dependent only on residual secondary structure elements present in the molten globule conformation.
Collapse
Affiliation(s)
- Alexander Tischer
- Departments of Internal Medicine Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
39
|
Kolb AR, Needham PG, Rothenberg C, Guerriero CJ, Welling PA, Brodsky JL. ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell 2013; 25:276-89. [PMID: 24227888 PMCID: PMC3890348 DOI: 10.1091/mbc.e13-07-0394] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Kir2.1 potassium channel is targeted by endoplasmic reticulum–associated degradation in yeast. To identify other Kir2.1 quality control factors, a novel yeast screen was performed. ESCRT components were among the strongest hits from the screen. Consistent with these data, ESCRT also regulates Kir2.1 stability in human cells. Protein quality control (PQC) is required to ensure cellular health. PQC is recognized for targeting the destruction of defective polypeptides, whereas regulated protein degradation mechanisms modulate the concentration of specific proteins in concert with physiological demands. For example, ion channel levels are physiologically regulated within tight limits, but a system-wide approach to define which degradative systems are involved is lacking. We focus on the Kir2.1 potassium channel because altered Kir2.1 levels lead to human disease and Kir2.1 restores growth on low-potassium medium in yeast mutated for endogenous potassium channels. Using this system, first we find that Kir2.1 is targeted for endoplasmic reticulum–associated degradation (ERAD). Next a synthetic gene array identifies nonessential genes that negatively regulate Kir2.1. The most prominent gene family that emerges from this effort encodes members of endosomal sorting complex required for transport (ESCRT). ERAD and ESCRT also mediate Kir2.1 degradation in human cells, with ESCRT playing a more prominent role. Thus multiple proteolytic pathways control Kir2.1 levels at the plasma membrane.
Collapse
Affiliation(s)
- Alexander R Kolb
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15261 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | |
Collapse
|
40
|
Morada M, Pendyala L, Wu G, Merali S, Yarlett N. Cryptosporidium parvum induces an endoplasmic stress response in the intestinal adenocarcinoma HCT-8 cell line. J Biol Chem 2013; 288:30356-30364. [PMID: 23986438 DOI: 10.1074/jbc.m113.459735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N(1)-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N(1)-acetylspermine and N(1)-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N(1)-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase.
Collapse
Affiliation(s)
| | - Lakhsmi Pendyala
- the Roswell Park Cancer Research Institute, Buffalo, New York 14263, and
| | - Gang Wu
- From Haskins Laboratories and
| | - Salim Merali
- the Fels Institute of Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Nigel Yarlett
- From Haskins Laboratories and; the Department of Chemistry and Physical Sciences, Pace University, New York, New York 10038,.
| |
Collapse
|
41
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
42
|
Affiliation(s)
- Amy R. Wyatt
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia;
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Justin J. Yerbury
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia;
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia;
| | - Mark R. Wilson
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia;
| |
Collapse
|
43
|
Pan S, Cheng X, Sifers RN. Golgi-situated endoplasmic reticulum α-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with γ-COP. Mol Biol Cell 2013; 24:1111-21. [PMID: 23427261 PMCID: PMC3623633 DOI: 10.1091/mbc.e12-12-0886] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Endoplasmic reticulum (ER) α-1, 2-mannosidase and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ER-associated protein degradation substrates back to the ER. Endoplasmic reticulum (ER) α-1, 2-mannosidase (ERManI) contributes to ER-associated protein degradation (ERAD) by initiating the formation of degradation signals on misfolded N-linked glycoproteins. Despite its inferred intracellular location, we recently discovered that the mammalian homologue is actually localized to the Golgi complex. In the present study, the functional role of Golgi-situated ERManI was investigated. Mass spectrometry analysis and coimmunoprecipitation (co-IP) identified a direct interaction between ERManI and γ-COP, the gamma subunit of coat protein complex I (COPI) that is responsible for Golgi-to-ER retrograde cargo transport. The functional relationship was validated by the requirement of both ERManI and γ-COP to support efficient intracellular clearance of the classical ERAD substrate, null Hong Kong (NHK). In addition, site-directed mutagenesis of suspected γ-COP–binding motifs in the cytoplasmic tail of ERManI was sufficient to disrupt the physical interaction and ablate NHK degradation. Moreover, a physical interaction between NHK, ERManI, and γ-COP was identified by co-IP and Western blotting. RNA interference–mediated knockdown of γ-COP enhanced the association between ERManI and NHK, while diminishing the efficiency of ERAD. Based on these findings, a model is proposed in which ERManI and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ERAD substrates back to the ER.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
44
|
Thibault G, Ng DTW. The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 2012; 4:4/12/a013193. [PMID: 23209158 DOI: 10.1101/cshperspect.a013193] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein misfolding is a common cellular event that can produce intrinsically harmful products. To reduce the risk, quality control mechanisms are deployed to detect and eliminate misfolded, aggregated, and unassembled proteins. In the secretory pathway, it is mainly the endoplasmic reticulum-associated degradation (ERAD) pathways that perform this role. Here, specialized factors are organized to monitor and process the folded states of nascent polypeptides. Despite the complex structures, topologies, and posttranslational modifications of client molecules, the ER mechanisms are the best understood among all protein quality-control systems. This is the result of convergent and sometimes serendipitous discoveries by researchers from diverse fields. Although major advances in ER quality control and ERAD came from all model organisms, this review will focus on the discoveries culminating from the simple budding yeast.
Collapse
Affiliation(s)
- Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
45
|
Abstract
From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.
Collapse
Affiliation(s)
- Jason A MacGurn
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
46
|
Izawa T, Nagai H, Endo T, Nishikawa SI. Yos9p and Hrd1p mediate ER retention of misfolded proteins for ER-associated degradation. Mol Biol Cell 2012; 23:1283-93. [PMID: 22298424 PMCID: PMC3315801 DOI: 10.1091/mbc.e11-08-0722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yos9p is involved in ER-associated degradation (ERAD) of misfolded glycoproteins. This study shows that Yos9p is required for ER retention of ERAD substrates by targeting them to the Hrd1p E3 ligase. This ER retention is independent of the glycan degradation signal on substrates and is separable from the later degradation step. The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.
Collapse
Affiliation(s)
- Toshiaki Izawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
47
|
Hüttner S, Strasser R. Endoplasmic reticulum-associated degradation of glycoproteins in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:67. [PMID: 22645596 PMCID: PMC3355801 DOI: 10.3389/fpls.2012.00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 05/20/2023]
Abstract
In all eukaryotes the endoplasmic reticulum (ER) has a central role in protein folding and maturation of secretory and membrane proteins. Upon translocation into the ER polypeptides are immediately subjected to folding and modifications involving the formation of disulfide bridges, assembly of subunits to multi-protein complexes, and glycosylation. During these processes incompletely folded, terminally misfolded, and unassembled proteins can accumulate which endanger the cellular homeostasis and subsequently the survival of cells and tissues. Consequently, organisms have developed a quality control system to cope with this problem and remove the unwanted protein load from the ER by a process collectively referred to as ER-associated degradation (ERAD) pathway. Recent studies in Arabidopsis have identified plant ERAD components involved in the degradation of aberrant proteins and evidence was provided for a specific role in abiotic stress tolerance. In this short review we discuss our current knowledge about this important cellular pathway.
Collapse
Affiliation(s)
- Silvia Hüttner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Richard Strasser, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria. e-mail:
| |
Collapse
|
48
|
Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 2011; 3:a004424. [PMID: 21813400 PMCID: PMC3181038 DOI: 10.1101/cshperspect.a004424] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.
Collapse
Affiliation(s)
- Jyoti D Malhotra
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
49
|
Sandefur CI, Schnell S. A model of threshold behavior reveals rescue mechanisms of bystander proteins in conformational diseases. Biophys J 2011; 100:1864-73. [PMID: 21504722 DOI: 10.1016/j.bpj.2011.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 02/06/2023] Open
Abstract
Conformational diseases result from the failure of a specific protein to fold into its correct functional state. The misfolded proteins can lead to the toxic aggregation of proteins. Protein misfolding in conformational diseases often displays a threshold behavior characterized by a sudden shift between nontoxic to toxic levels of misfolded proteins. In some conformational diseases, evidence suggests that misfolded proteins interact with bystander proteins (unfolded and native folded proteins), eliciting a misfolded phenotype. These bystander isomers would follow their normal physiological pathways in absence of misfolded proteins. In this article, we present a general mechanism of bystander and misfolded protein interaction which we have used to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. Using a continuous flow reactor model of the endoplasmic reticulum, we found that slight changes in the bystander protein residence time in the endoplasmic reticulum or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding. Our analysis reveals three mechanisms to rescue bystander proteins in conformational diseases. The results of our model can now help direct experiments to understand the threshold behavior and develop therapeutic strategies targeting the modulation of conformational diseases.
Collapse
Affiliation(s)
- Conner I Sandefur
- Center for Computational Medicine & Bioinformatics, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
50
|
Wang S, Thibault G, Ng DTW. Routing misfolded proteins through the multivesicular body (MVB) pathway protects against proteotoxicity. J Biol Chem 2011; 286:29376-29387. [PMID: 21708947 DOI: 10.1074/jbc.m111.233346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The secretory pathway maintains multiple quality control checkpoints. Initially, endoplasmic reticulum-associated degradation pathways monitor protein folding to retain and eliminate aberrant products. Despite its broad client range, some molecules escape detection and traffic to Golgi membranes. There, a poorly understood mechanism termed Golgi quality control routes aberrant proteins for lysosomal/vacuolar degradation. To better understand Golgi quality control, we examined the processing of the obligate substrate Wsc1p. Misfolded Wsc1p does not use routes of typical vacuolar membrane proteins. Instead, it partitions into intralumenal vesicles of the multivesicular body (MVB) pathway, mediated by the E3 ubiquitin ligase Rsp5p. Its subsequent transport to the vacuolar lumen is essential for complete molecule breakdown. Surprisingly, the transport mode plays a second crucial function in neutralizing potential substrate toxicity. Eliminating the MVB sorting signal diverted molecules to the vacuolar limiting membrane, resulting in the generation of toxic by-products. These data demonstrate a new role of the MVB pathway in protein quality control.
Collapse
Affiliation(s)
- Songyu Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore
| | - Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|