1
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
2
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
3
|
SWI/SNF chromatin remodeler complex within the reward pathway is required for behavioral adaptations to stress. Nat Commun 2022; 13:1807. [PMID: 35379786 PMCID: PMC8980038 DOI: 10.1038/s41467-022-29380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
Enduring behavioral changes upon stress exposure involve changes in gene expression sustained by epigenetic modifications in brain circuits, including the mesocorticolimbic pathway. Brahma (BRM) and Brahma Related Gene 1 (BRG1) are ATPase subunits of the SWI/SNF complexes involved in chromatin remodeling, a process essential to enduring plastic changes in gene expression. Here, we show that in mice, social defeat induces changes in BRG1 nuclear distribution. The inactivation of the Brg1/Smarca4 gene within dopamine-innervated regions or the constitutive inactivation of the Brm/Smarca2 gene leads to resilience to repeated social defeat and decreases the behavioral responses to cocaine without impacting midbrain dopamine neurons activity. Within striatal medium spiny neurons, Brg1 gene inactivation reduces the expression of stress- and cocaine-induced immediate early genes, increases levels of heterochromatin and at a global scale decreases chromatin accessibility. Altogether these data demonstrate the pivotal function of SWI/SNF complexes in behavioral and transcriptional adaptations to salient environmental challenges. Repeated exposure to social stressors in rodents results in behavioural changes. Here the authors show that behavioural adaptations to stress are associated with nuclear organization changes through SWI/SNF chromatin remodeler in specific neuronal populations of the mesolimbic system.
Collapse
|
4
|
Tilly BC, Chalkley GE, van der Knaap JA, Moshkin YM, Kan TW, Dekkers DH, Demmers JA, Verrijzer CP. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 2021; 10:69424. [PMID: 34313222 PMCID: PMC8352592 DOI: 10.7554/elife.69424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.
Collapse
Affiliation(s)
- Ben C Tilly
- Department of Biochemistry, Rotterdam, Netherlands
| | | | | | | | | | - Dick Hw Dekkers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Aa Demmers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
5
|
Wolff MR, Schmid A, Korber P, Gerland U. Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. eLife 2021; 10:58394. [PMID: 33666171 PMCID: PMC8004102 DOI: 10.7554/elife.58394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.
Collapse
Affiliation(s)
| | - Andrea Schmid
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Philipp Korber
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ulrich Gerland
- Department of Physics, Technical University of Munich, Garching, Germany
| |
Collapse
|
6
|
Nagarajan S, Rao SV, Sutton J, Cheeseman D, Dunn S, Papachristou EK, Prada JEG, Couturier DL, Kumar S, Kishore K, Chilamakuri CSR, Glont SE, Archer Goode E, Brodie C, Guppy N, Natrajan R, Bruna A, Caldas C, Russell A, Siersbæk R, Yusa K, Chernukhin I, Carroll JS. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet 2020; 52:187-197. [PMID: 31913353 PMCID: PMC7116647 DOI: 10.1038/s41588-019-0541-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens to understand endocrine drug resistance, we discovered ARID1A and other SWI/SNF complex components as the factors most critically required for response to two classes of estrogen receptor-alpha (ER) antagonists. In this context, SWI/SNF-specific gene deletion resulted in drug resistance. Unexpectedly, ARID1A was also the top candidate in regard to response to the bromodomain and extraterminal domain inhibitor JQ1, but in the opposite direction, with loss of ARID1A sensitizing breast cancer cells to bromodomain and extraterminal domain inhibition. We show that ARID1A is a repressor that binds chromatin at ER cis-regulatory elements. However, ARID1A elicits repressive activity in an enhancer-specific, but forkhead box A1-dependent and active, ER-independent manner. Deletion of ARID1A resulted in loss of histone deacetylase 1 binding, increased histone 4 lysine acetylation and subsequent BRD4-driven transcription and growth. ARID1A mutations are more frequent in treatment-resistant disease, and our findings provide mechanistic insight into this process while revealing rational treatment strategies for these patients.
Collapse
Affiliation(s)
| | - Shalini V Rao
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joseph Sutton
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Danya Cheeseman
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Sanjeev Kumar
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | | | - Cara Brodie
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alejandra Bruna
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alasdair Russell
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Rasmus Siersbæk
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Hinxton, UK
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Igor Chernukhin
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jason S Carroll
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Ho PJ, Lloyd SM, Bao X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 2019; 146:146/19/dev178780. [PMID: 31570369 DOI: 10.1242/dev.178780] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Department of Dermatology, Northwestern University, Evanston, IL 60208, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Hoffmeister H, Fuchs A, Strobl L, Sprenger F, Gröbner-Ferreira R, Michaelis S, Hoffmann P, Nazet J, Merkl R, Längst G. Elucidation of the functional roles of the Q and I motifs in the human chromatin-remodeling enzyme BRG1. J Biol Chem 2019; 294:3294-3310. [PMID: 30647132 DOI: 10.1074/jbc.ra118.005685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
The Snf2 proteins, comprising 53 different enzymes in humans, belong to the SF2 family. Many Snf2 enzymes possess chromatin-remodeling activity, requiring a functional ATPase domain consisting of conserved motifs named Q and I-VII. These motifs form two recA-like domains, creating an ATP-binding pocket. Little is known about the function of the conserved motifs in chromatin-remodeling enzymes. Here, we characterized the function of the Q and I (Walker I) motifs in hBRG1 (SMARCA4). The motifs are in close proximity to the bound ATP, suggesting a role in nucleotide binding and/or hydrolysis. Unexpectedly, when substituting the conserved residues Gln758 (Q motif) or Lys785 (I motif) of both motifs, all variants still bound ATP and exhibited basal ATPase activity similar to that of wildtype BRG1 (wtBRG1). However, all mutants lost the nucleosome-dependent stimulation of the ATPase domain. Their chromatin-remodeling rates were impaired accordingly, but nucleosome binding was retained and still comparable with that of wtBRG1. Interestingly, a cancer-relevant substitution, L754F (Q motif), displayed defects similar to the Gln758 variant(s), arguing for a comparable loss of function. Because we excluded a mutual interference of ATP and nucleosome binding, we postulate that both motifs stimulate the ATPase and chromatin-remodeling activities upon binding of BRG1 to nucleosomes, probably via allosteric mechanisms. Furthermore, mutations of both motifs similarly affect the enzymatic functionality of BRG1 in vitro and in living cells. Of note, in BRG1-deficient H1299 cells, exogenously expressed wtBRG1, but not BRG1 Q758A and BRG1 K785R, exhibited a tumor suppressor-like function.
Collapse
Affiliation(s)
| | | | | | - Frank Sprenger
- the Institute of Biochemistry, Genetics and Microbiology, Cell Cycle Control
| | | | - Stefanie Michaelis
- Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien, Fraunhofer Research Institution for Microsystems and Solid State Technologies, c/o Institute of Analytical Chemistry, Chemo- and Biosensors, and
| | - Petra Hoffmann
- the Department of Internal Medicine III, University Hospital Regensburg, 93059 Regensburg, Germany.,the Central FACS Facility, Regensburg Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany, and
| | | | | | | |
Collapse
|
9
|
Jubb AW, Boyle S, Hume DA, Bickmore WA. Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci. Cell Rep 2018; 21:3022-3031. [PMID: 29241532 PMCID: PMC5745231 DOI: 10.1016/j.celrep.2017.11.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/01/2017] [Accepted: 11/15/2017] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoids act by binding to the glucocorticoid receptor (GR), which binds to specific motifs within enhancers of target genes to activate transcription. Previous studies have suggested that GRs can promote interactions between gene promoters and distal elements within target loci. In contrast, we demonstrate here that glucocorticoid addition to mouse bone-marrow-derived macrophages produces very rapid chromatin unfolding detectable by fluorescence in situ hybridization (FISH) at loci associated with GR binding. Rapid chromatin decompaction was generally not dependent on transcription at those loci that are known to be inducible in both mouse and human macrophages and was sustained for up to 5 days following ligand removal. Chromatin decompaction was not dependent upon persistent GR binding, which decayed fully after 24 hr. We suggest that sustained large-scale chromatin reorganization forms an important part of the response to glucocorticoid and might contribute to glucocorticoid sensitivity and resistance. Glucocorticoids can induce rapid and persistent chromatin decompaction Transcription is not essential for chromatin decompaction Large-scale chromatin organization may modulate the glucocorticoid response
Collapse
Affiliation(s)
- Alasdair W Jubb
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; Department of Medicine, University of Cambridge, Box 93, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; Mater Research-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
10
|
Morgan MD, Marioni JC. CpG island composition differences are a source of gene expression noise indicative of promoter responsiveness. Genome Biol 2018; 19:81. [PMID: 29945659 PMCID: PMC6020341 DOI: 10.1186/s13059-018-1461-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/04/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Population phenotypic variation can arise from genetic differences between individuals, or from cellular heterogeneity in an isogenic group of cells or organisms. The emergence of gene expression differences between genetically identical cells is referred to as gene expression noise, the sources of which are not well understood. RESULTS In this work, by studying gene expression noise between multiple cell lineages and mammalian species, we find consistent evidence of a role for CpG islands as sources of gene expression noise. Variation in noise among CpG island promoters can be partially attributed to differences in island size, in which short islands have noisier gene expression. Building on these findings, we investigate the potential for short CpG islands to act as fast response elements to environmental stimuli. Specifically, we find that these islands are enriched amongst primary response genes in SWI/SNF-independent stimuli, suggesting that expression noise is an indicator of promoter responsiveness. CONCLUSIONS Thus, through the integration of single-cell RNA expression profiling, chromatin landscape and temporal gene expression dynamics, we have uncovered a role for short CpG island promoters as fast response elements.
Collapse
Affiliation(s)
- Michael D Morgan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Li Ka Shing Centre, Cambridge, CB2 0RE, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
11
|
Hoffman JA, Trotter KW, Ward JM, Archer TK. BRG1 governs glucocorticoid receptor interactions with chromatin and pioneer factors across the genome. eLife 2018; 7:e35073. [PMID: 29792595 PMCID: PMC5967868 DOI: 10.7554/elife.35073] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
The Glucocorticoid Receptor (GR) alters transcriptional activity in response to hormones by interacting with chromatin at GR binding sites (GBSs) throughout the genome. Our work in human breast cancer cells identifies three classes of GBSs with distinct epigenetic characteristics and reveals that BRG1 interacts with GBSs prior to hormone exposure. The GBSs pre-occupied by BRG1 are more accessible and transcriptionally active than other GBSs. BRG1 is required for a proper and robust transcriptional hormone response and knockdown of BRG1 blocks recruitment of the pioneer factors FOXA1 and GATA3 to GBSs. Finally, GR interaction with FOXA1 and GATA3 binding sites was restricted to sites pre-bound by BRG1. These findings demonstrate that BRG1 establishes specialized chromatin environments that define multiple classes of GBS. This in turn predicts that GR and other transcriptional activators function via multiple distinct chromatin-based mechanisms to modulate the transcriptional response.
Collapse
Affiliation(s)
- Jackson A Hoffman
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthNorth CarolinaUnited States
| | - Kevin W Trotter
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthNorth CarolinaUnited States
| | - James M Ward
- Integrative BioinformaticsNational Institute of Environmental Health Sciences, National Institutes of HealthNorth CarolinaUnited States
| | - Trevor K Archer
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthNorth CarolinaUnited States
| |
Collapse
|
12
|
Le Dily F, Beato M. Signaling by Steroid Hormones in the 3D Nuclear Space. Int J Mol Sci 2018; 19:E306. [PMID: 29360755 PMCID: PMC5855546 DOI: 10.3390/ijms19020306] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/30/2023] Open
Abstract
Initial studies showed that ligand-activated hormone receptors act by binding to the proximal promoters of individual target genes. Genome-wide studies have now revealed that regulation of transcription by steroid hormones mainly depends on binding of the receptors to distal regulatory elements. Those distal elements, either enhancers or silencers, act on the regulation of target genes by chromatin looping to the gene promoters. In the nucleus, this level of chromatin folding is integrated within dynamic higher orders of genome structures, which are organized in a non-random fashion. Terminally differentiated cells exhibit a tissue-specific three-dimensional (3D) organization of the genome that favors or restrains the activity of transcription factors and modulates the function of steroid hormone receptors, which are transiently activated upon hormone exposure. Conversely, integration of the hormones signal may require modifications of the 3D organization to allow appropriate transcriptional outcomes. In this review, we summarize the main levels of organization of the genome, review how they can modulate the response to steroids in a cell specific manner and discuss the role of receptors in shaping and rewiring the structure in response to hormone. Taking into account the dynamics of 3D genome organization will contribute to a better understanding of the pleiotropic effects of steroid hormones in normal and cancer cells.
Collapse
Affiliation(s)
- François Le Dily
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
13
|
Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 2017; 25:61-72. [PMID: 29323272 PMCID: PMC5909405 DOI: 10.1038/s41594-017-0007-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/09/2017] [Indexed: 01/03/2023]
Abstract
Mutation of SMARCA4 (BRG1), the ATPase of BAF (mSWI/SNF) and PBAF complexes, contributes to a range of malignancies and neurologic disorders. Unfortunately, the effects of SMARCA4 missense mutations have remained uncertain. Here we show that SMARCA4 cancer missense mutations target conserved ATPase surfaces and disrupt the mechanochemical cycle of remodeling. We find that heterozygous expression of mutants alters the open chromatin landscape at thousands of sites across the genome. Loss of DNA accessibility does not directly overlap with Polycomb accumulation, but is enriched in 'A compartments' at active enhancers, which lose H3K27ac but not H3K4me1. Affected positions include hundreds of sites identified as superenhancers in many tissues. Dominant-negative mutation induces pro-oncogenic expression changes, including increased expression of Myc and its target genes. Together, our data suggest that disruption of enhancer accessibility represents a key source of altered function in disorders with SMARCA4 mutations in a wide variety of tissues.
Collapse
|
14
|
Padilla-Benavides T, Nasipak BT, Paskavitz AL, Haokip DT, Schnabl JM, Nickerson JA, Imbalzano AN. Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition. J Biol Chem 2017; 292:18592-18607. [PMID: 28939766 PMCID: PMC5682968 DOI: 10.1074/jbc.m117.799676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/06/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation is modulated in part by chromatin-remodeling enzymes that control gene accessibility by altering chromatin compaction or nucleosome positioning. Brahma-related gene 1 (Brg1), a catalytic subunit of the mammalian SWI/SNF chromatin-remodeling enzymes, is required for both myoblast proliferation and differentiation, and the control of Brg1 phosphorylation by calcineurin, PKCβ1, and p38 regulates the transition to differentiation. However, we hypothesized that Brg1 activity might be regulated by additional kinases. Here, we report that Brg1 is also a target of casein kinase 2 (CK2), a serine/threonine kinase, in proliferating myoblasts. We found that CK2 interacts with Brg1, and mutation of putative phosphorylation sites to non-phosphorylatable (Ser to Ala, SA) or phosphomimetic residues (Ser to Glu, SE) reduced Brg1 phosphorylation by CK2. Although BRG1-deleted myoblasts that ectopically express the SA-Brg1 mutant proliferated similarly to the parental cells or cells ectopically expressing wild-type (WT) Brg1, ectopic expression of the SE-Brg1 mutant reduced proliferation and increased cell death, similar to observations from cells lacking Brg1. Moreover, pharmacological inhibition of CK2 increased myoblast proliferation. Furthermore, the Pax7 promoter, which controls expression of a key transcription factor required for myoblast proliferation, was in an inaccessible chromatin state in the SE-Brg1 mutant, suggesting that hyperphosphorylated Brg1 cannot remodel chromatin. WT-, SA-, and SE-Brg1 exhibited distinct differences in interacting with and affecting expression of the SWI/SNF subunits Baf155 and Baf170 and displayed differential sub-nuclear localization. Our results indicate that CK2-mediated phosphorylation of Brg1 regulates myoblast proliferation and provides insight into one mechanism by which composition of the mammalian SWI/SNF enzyme complex is regulated.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Brian T Nasipak
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Amanda L Paskavitz
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Dominic T Haokip
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jake M Schnabl
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jeffrey A Nickerson
- the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anthony N Imbalzano
- From the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| |
Collapse
|
15
|
Archacki R, Yatusevich R, Buszewicz D, Krzyczmonik K, Patryn J, Iwanicka-Nowicka R, Biecek P, Wilczynski B, Koblowska M, Jerzmanowski A, Swiezewski S. Arabidopsis SWI/SNF chromatin remodeling complex binds both promoters and terminators to regulate gene expression. Nucleic Acids Res 2017; 45:3116-3129. [PMID: 27994035 PMCID: PMC5389626 DOI: 10.1093/nar/gkw1273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets.
Collapse
Affiliation(s)
- Rafal Archacki
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ruslan Yatusevich
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel Buszewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Katarzyna Krzyczmonik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Jacek Patryn
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,College of Inter-FacultyIndividual Studies in Mathematics and Natural Sciences, Warsaw 02-089, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Przemyslaw Biecek
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Warsaw 02-097, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | - Bartek Wilczynski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics,University of Warsaw, Warsaw 02-097, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw 02-096, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
16
|
Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL, Levitt P, Mazza D, Morisaki T, Karpova TS, Hager GL. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat Commun 2017. [PMID: 28635963 PMCID: PMC5482060 DOI: 10.1038/ncomms15896] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Population-based assays have been employed extensively to investigate the interactions of transcription factors (TFs) with chromatin and are often interpreted in terms of static and sequential binding. However, fluorescence microscopy techniques reveal a more dynamic binding behaviour of TFs in live cells. Here we analyse the strengths and limitations of in vivo single-molecule tracking and performed a comprehensive analysis on the intranuclear dwell times of four steroid receptors and a number of known cofactors. While the absolute residence times estimates can depend on imaging acquisition parameters due to sampling bias, our results indicate that only a small proportion of factors are specifically bound to chromatin at any given time. Interestingly, the glucocorticoid receptor and its cofactors affect each other’s dwell times in an asymmetric manner. Overall, our data indicate transient rather than stable TF-cofactors chromatin interactions at response elements at the single-molecule level. Transcription factors (TFs) are thought to regulate gene expression by stably binding to target DNA elements. Here, the authors use single-molecule tracking to analyse the dynamic behaviour of steroid receptors TFs and show that most specific interactions with chromatin are transient and dynamic.
Collapse
Affiliation(s)
- Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Peter Levitt
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale e Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Tatsuya Morisaki
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
17
|
Miller EL, Hargreaves DC, Kadoch C, Chang CY, Calarco JP, Hodges C, Buenrostro JD, Cui K, Greenleaf WJ, Zhao K, Crabtree GR. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol 2017; 24:344-352. [PMID: 28250416 PMCID: PMC5395302 DOI: 10.1038/nsmb.3384] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
Resolution and formation of facultative heterochromatin is essential to development, reprogramming, and oncogenesis. The mechanisms underlying these changes are poorly understood due to the inability to study heterochromatin dynamics and structure in vivo. We devised an in vivo approach to investigate these mechanisms and found that topoisomerase II (TOP2), but not TOP1, synergizes with BAF (mSWI/SNF) ATP-dependent chromatin remodeling complexes genome-wide to resolve facultative heterochromatin to accessible chromatin independent of transcription, indicating that changes in DNA topology through (de-)catenation rather than release of torsional stress through swiveling is necessary for heterochromatin resolution. In turn, TOP2 and BAF cooperate to recruit pluripotency factors, explaining some of the instructive roles of BAF complexes. Unexpectedly, we found that TOP2, also plays a role in the reformation of facultative heterochromatin, suggesting that facultative heterochromatin and accessible chromatin exist at different states of catenation or other topologies, which may be critical to their structures.
Collapse
Affiliation(s)
- Erik L Miller
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Diana C Hargreaves
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Chiung-Ying Chang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph P Calarco
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Courtney Hodges
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
18
|
Hsp90 and p23 Molecular Chaperones Control Chromatin Architecture by Maintaining the Functional Pool of the RSC Chromatin Remodeler. Mol Cell 2016; 64:888-899. [PMID: 27818141 DOI: 10.1016/j.molcel.2016.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/11/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Molecular chaperones govern protein homeostasis, being allied to the beginning (folding) and ending (degradation) of the protein life cycle. Yet, the Hsp90 system primarily associates with native factors, including fully assembled complexes. The significance of these connections is poorly understood. To delineate why Hsp90 and its cochaperone p23 interact with a mature structure, we focused on the RSC chromatin remodeler. Both Hsp90 and p23 triggered the release of RSC from DNA or a nucleosome. Although Hsp90 only freed bound RSC, p23 enhanced nucleosome remodeling prior to discharging the complex. In vivo, RSC mobility and remodeling function were chaperone dependent. Our results suggest Hsp90 and p23 contribute to proteostasis by chaperoning mature factors through energetically unfavorable events, thereby maintaining the cellular pool of active native proteins. In the case of RSC, p23 and Hsp90 promote a dynamic action, allowing a limited number of remodelers to effectively maintain chromatin in a pliable state.
Collapse
|
19
|
Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 2016; 38:1150-1157. [PMID: 27633730 DOI: 10.1002/bies.201600137] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor (TF) signaling regulates gene transcription and requires a complex network of proteins. This network includes co-activators, co-repressors, multiple TFs, histone-modifying complexes, and the basal transcription machinery. It has been widely appreciated that pioneer factors, such as FoxA1 and GATA1, play an important role in opening closed chromatin regions, thereby allowing binding of a secondary factor. In this review we will focus on a newly proposed model wherein multiple TFs, such as steroid receptors (SRs), can function in a pioneering role. This model, termed dynamic assisted loading, integrates data from widely divergent methodologies, including genome wide ChIP-Seq, digital genomic footprinting, DHS-Seq, live cell protein dynamics, and biochemical studies of ATP-dependent remodeling complexes, to present a real time view of TF chromatin interactions. Under this view, many TFs can act as initiating factors for chromatin landscape programming. Furthermore, enhancer and promoter states are more accurately described as energy-dependent, non-equilibrium steady states.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
20
|
Romero OA, Verdura S, Torres-Diz M, Gomez A, Moran S, Condom E, Esteller M, Villanueva A, Sanchez-Cespedes M. Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming. Oncogene 2016; 36:1287-1296. [PMID: 27593925 DOI: 10.1038/onc.2016.296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Components of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC. The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their therapeutic potential in lung cancer is not well established. Here we aimed to determine the possible therapeutic effects of azacytidine and SAHA (A/S) alone or in combination with GC plus RA (GC/RA) in lung cancers with either BRG1 inactivation or MYC amplification. In vitro, responses to GC/RA treatment were more effective in MYC-amplified cells. These effects were mediated by BRG1 and involved a reprogramming towards prodifferentiation gene expression signatures and downregulation of MYC. In MYC-amplified cells, administration of GC/RA enhanced the cell growth inhibitory effects of A/S which, in turn, accentuated the prodifferentiation features promoted by GC/RA. Finally, these treatments improved overall survival of mice orthotopically implanted with MYC-amplified, but not BRG1-mutant, cells and reduced tumor cell viability and proliferation. We propose that the combination of epigenetic treatments with retinoids and corticoids of MYC-driven lung tumors constitute a strategy for therapeutic intervention in this otherwise incurable disease.
Collapse
Affiliation(s)
- O A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - S Verdura
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - M Torres-Diz
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - A Gomez
- Cancer Epigenetics Groups, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - S Moran
- Cancer Epigenetics Groups, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - E Condom
- Pathology Department, Bellvitge Hospital, Barcelona, Spain
| | - M Esteller
- Cancer Epigenetics Groups, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - A Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - M Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| |
Collapse
|
21
|
DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc Natl Acad Sci U S A 2016; 113:8236-41. [PMID: 27382178 DOI: 10.1073/pnas.1606774113] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors.
Collapse
|
22
|
Garvin LM, Chen Y, Damsker JM, Rose MC. A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone. Pulm Pharmacol Ther 2016; 38:17-26. [PMID: 27133900 DOI: 10.1016/j.pupt.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/09/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex.
Collapse
Affiliation(s)
- Lindsay M Garvin
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Yajun Chen
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | | | - Mary C Rose
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
23
|
Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T. Imaging Transcription: Past, Present, and Future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:1-8. [PMID: 26763984 DOI: 10.1101/sqb.2015.80.027201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.
Collapse
Affiliation(s)
- Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | - Xavier Darzacq
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert Tjian
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461 HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | | |
Collapse
|
24
|
Abstract
Mammals have at least 210 histologically diverse cell types (Alberts, Molecular biology of the cell. Garland Science, New York, 2008) and the number would be even higher if functional differences are taken into account. The genome in each of these cell types is differentially programmed to express the specific set of genes needed to fulfill the phenotypical requirements of the cell. Furthermore, in each of these cell types, the gene program can be differentially modulated by exposure to external signals such as hormones or nutrients. The basis for the distinct gene programs relies on cell type-selective activation of transcriptional enhancers, which in turn are particularly sensitive to modulation. Until recently we had only fragmented insight into the regulation of a few of these enhancers; however, the recent advances in high-throughput sequencing technologies have enabled the development of a large number of technologies that can be used to obtain genome-wide insight into how genomes are reprogrammed during development and in response to specific external signals. By applying such technologies, we have begun to reveal the cross-talk between metabolism and the genome, i.e., how genomes are reprogrammed in response to metabolites, and how the regulation of metabolic networks is coordinated at the genomic level.
Collapse
Affiliation(s)
- Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
25
|
Padilla-Benavides T, Nasipak BT, Imbalzano AN. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts. J Cell Physiol 2015; 230:2990-7. [PMID: 26036967 DOI: 10.1002/jcp.25031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/29/2022]
Abstract
Brg1 (Brahma-related gene 1) is a catalytic component of the evolutionarily conserved mammalian SWI/SNF ATP-dependent chromatin remodeling enzymes that disrupt histone-DNA contacts on the nucleosome. While the requirement for the SWI/SNF enzymes in cell differentiation has been extensively studied, its role in precursor cell proliferation and survival is not as well defined. Muscle satellite cells constitute the stem cell pool that sustains and regenerates myofibers in adult skeletal muscle. Here, we show that deletion of Brg1 in primary mouse myoblasts derived from muscle satellite cells cultured ex vivo leads to a cell proliferation defect and apoptosis. We determined that Brg1 regulates cell proliferation and survival by controlling chromatin remodeling and activating transcription at the Pax7 promoter, which is expressed during somite development and is required for controlling viability of the satellite cell population. Reintroduction of catalytically active Brg1 or of Pax7 into Brg1-deficient satellite cells rescued the apoptotic phenotype and restored proliferation. These data demonstrate that Brg1 functions as a positive regulator for cellular proliferation and survival of primary myoblasts. Therefore, the regulation of gene expression through Brg1-mediated chromatin remodeling is critical not just for skeletal muscle differentiation but for maintaining the myoblast population as well.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
26
|
De Angelis RW, Maluf NK, Yang Q, Lambert JR, Bain DL. Glucocorticoid Receptor-DNA Dissociation Kinetics Measured in Vitro Reveal Exchange on the Second Time Scale. Biochemistry 2015; 54:5306-14. [PMID: 26267475 DOI: 10.1021/acs.biochem.5b00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. Recent live cell imaging studies have revealed that interactions of GR with chromatin are highly dynamic, with average receptor residence times of only seconds. These findings were surprising because early kinetic studies found that GR-DNA interactions in vitro were much slower, having calculated residence times of minutes to hours. However, these latter analyses were conducted at a time when it was possible to work with only either partially purified holoreceptor or its purified but isolated DNA binding domain. Noting these limitations, we reexamined GR-DNA dissociation kinetics using a highly purified holoreceptor shown to be amenable to rigorous study. We first observe that GR-DNA interactions in vitro are not slow as previously thought but converge with in vivo behavior, having residence times of only seconds to tens of seconds. This rapid exchange is seen at six individual response elements and the multisite MMTV promoter used in live cell imaging. Second, GR dissociation rates are identical for all response elements. Thus, previously observed differences in receptor affinity toward these sequences are not due to differences in off rate but in on rate. Finally, dissociation kinetics are biphasic in character. A minimal kinetic model consistent with the data is that in which DNA-bound GR interconverts between states on a second time scale, with dissociation occurring via a multistep process. We speculate that receptor interconversion in this time frame can be recognized by the coregulatory proteins that interact with GR, leading to unique transcriptional responses.
Collapse
Affiliation(s)
- Rolando W De Angelis
- Department of Pharmaceutical Sciences and ‡Department of Pathology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Nasib K Maluf
- Department of Pharmaceutical Sciences and ‡Department of Pathology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Qin Yang
- Department of Pharmaceutical Sciences and ‡Department of Pathology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - James R Lambert
- Department of Pharmaceutical Sciences and ‡Department of Pathology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - David L Bain
- Department of Pharmaceutical Sciences and ‡Department of Pathology, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
27
|
Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, Sif S, Shaffer SA, Ohkawa Y, Imbalzano AN. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nat Commun 2015; 6:7441. [PMID: 26081415 PMCID: PMC4530624 DOI: 10.1038/ncomms8441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/06/2015] [Indexed: 01/03/2023] Open
Abstract
Calcium signaling is important for differentiation-dependent gene expression, but is also involved in other cellular functions. Therefore mechanisms must exist to distinguish calcium signaling relevant to differentiation. Calcineurin is a calcium-regulated phosphatase that is required for myogenic gene expression and skeletal muscle differentiation. Here, we demonstrate that inhibition of calcineurin blocks chromatin remodeling and that the Brg1 ATPase of the SWI/SNF chromatin remodeling enzyme, which is required for the activation of myogenic gene expression, is a calcineurin substrate. Furthermore, we identify the calcium-regulated classical protein kinase C beta (PKCβ) as a repressor of myogenesis and as the enzyme that opposes calcineurin function. Replacement of endogenous Brg1 with a phosphomimetic mutant in primary myoblasts inhibits myogenesis, while replacement with a non-phosphorylatable mutant allows myogenesis despite inhibition of calcineurin signaling, demonstrating the functionality of calcineurin/PKC modified residues. Thus the Brg1 chromatin remodeling enzyme integrates two antagonistic calcium-dependent signaling pathways that control myogenic differentiation.
Collapse
Affiliation(s)
- Brian T Nasipak
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Teresita Padilla-Benavides
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Karin M Green
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - John D Leszyk
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Wenjie Mao
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Silvana Konda
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Saïd Sif
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Yasuyuki Ohkawa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.,Department Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi Fukuoka 812-8582, Japan
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| |
Collapse
|
28
|
Chromatin Remodelers: From Function to Dysfunction. Genes (Basel) 2015; 6:299-324. [PMID: 26075616 PMCID: PMC4488666 DOI: 10.3390/genes6020299] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022] Open
Abstract
Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.
Collapse
|
29
|
Le Dily F, Beato M. TADs as modular and dynamic units for gene regulation by hormones. FEBS Lett 2015; 589:2885-92. [DOI: 10.1016/j.febslet.2015.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
|
30
|
Koster M, Snel B, Timmers H. Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell 2015; 161:724-36. [DOI: 10.1016/j.cell.2015.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/15/2022]
|
31
|
Meijsing SH. Mechanisms of Glucocorticoid-Regulated Gene Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215990 DOI: 10.1007/978-1-4939-2895-8_3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One fascinating aspect of glucocorticoid signaling is their broad range of physiological and pharmacological effects. These effects are at least in part a consequence of transcriptional regulation by the glucocorticoid receptor (GR). Activation of GR by glucocorticoids results in tissue-specific changes in gene expression levels with some genes being activated whereas others are repressed. This raises two questions: First, how does GR regulate different subsets of target genes in different tissues? And second, how can GR both activate and repress the expression of genes?To answer these questions, this chapter will describe the function of the various "components" and how they cooperate to mediate the transcriptional responses to glucocorticoids. The first "component" is GR itself. The second "component" is the chromatin and its role in specifying where in the genome GR binds. Binding to the genome however is just the first step in regulating the expression of genes and transcriptional regulation by GR depends on the recruitment of coregulator proteins that either directly or indirectly influence the recruitment and or activity of RNA polymerase II. Ultimately, the integration of inputs including GR isoform, DNA sequence, chromatin and cooperation with coregulators determines which genes are regulated and the direction of their regulation.
Collapse
Affiliation(s)
- Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Biology, Ihnestrasse 63-73, Berlin, 14195, Germany,
| |
Collapse
|
32
|
Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2014; 125:273-83. [PMID: 25336632 DOI: 10.1182/blood-2014-05-576470] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids are critical components of combination chemotherapy regimens in pediatric acute lymphoblastic leukemia (ALL). The proapoptotic BIM protein is an important mediator of glucocorticoid-induced apoptosis in normal and malignant lymphocytes, whereas the antiapoptotic BCL2 confers resistance. The signaling pathways regulating BIM and BCL2 expression in glucocorticoid-treated lymphoid cells remain unclear. In this study, pediatric ALL patient-derived xenografts (PDXs) inherently sensitive or resistant to glucocorticoids were exposed to dexamethasone in vivo. Microarray analysis showed that KLF13 and MYB gene expression changes were significantly greater in dexamethasone-sensitive than -resistant PDXs. Chromatin immunoprecipitation (ChIP) analysis detected glucocorticoid receptor (GR) binding at the KLF13 promoter to trigger KLF13 expression only in sensitive PDXs. Next, KLF13 bound to the MYB promoter, deactivating MYB expression only in sensitive PDXs. Sustained MYB expression in resistant PDXs resulted in maintenance of BCL2 expression and inhibition of apoptosis. ChIP sequencing analysis revealed a novel GR binding site in a BIM intronic region (IGR) that was engaged only in dexamethasone-sensitive PDXs. The absence of GR binding at the BIM IGR was associated with BIM silencing and dexamethasone resistance. This study has identified novel mechanisms of opposing BCL2 and BIM gene regulation that control glucocorticoid-induced apoptosis in pediatric ALL cells in vivo.
Collapse
|
33
|
Seth-Vollenweider T, Joshi S, Dhawan P, Sif S, Christakos S. Novel mechanism of negative regulation of 1,25-dihydroxyvitamin D3-induced 25-hydroxyvitamin D3 24-hydroxylase (Cyp24a1) Transcription: epigenetic modification involving cross-talk between protein-arginine methyltransferase 5 and the SWI/SNF complex. J Biol Chem 2014; 289:33958-70. [PMID: 25324546 DOI: 10.1074/jbc.m114.583302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex facilitates gene transcription by remodeling chromatin using the energy of ATP hydrolysis. Recent studies have indicated an interplay between the SWI/SNF complex and protein-arginine methyltransferases (PRMTs). Little is known, however, about the role of SWI/SNF and PRMTs in vitamin D receptor (VDR)-mediated transcription. Using SWI/SNF-defective cells, we demonstrated that Brahma-related gene 1 (BRG1), an ATPase that is a component of the SWI/SNF complex, plays a fundamental role in induction by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) of the transcription of Cyp24a1 encoding the enzyme 25-hydroxyvitamin D3 24-hydroxylase involved in the catabolism of 1,25(OH)2D3. BRG1 was found to associate with CCAAT-enhancer-binding protein (C/EBP) β and cooperate with VDR and C/EBPβ in regulating Cyp24a1 transcription. PRMT5, a type II PRMT that interacts with BRG1, repressed Cyp24a1 transcription and mRNA expression. Our findings indicate the requirement of the C/EBP site for the inhibitory effect of PRMT5 via its methylation of H3R8 and H4R3. These findings indicate that the SWI/SNF complex and PRMT5 may be key factors involved in regulation of 1,25(OH)2D3 catabolism and therefore in the maintenance of calcium homeostasis by vitamin D. These studies also define epigenetic events linked to a novel mechanism of negative regulation of VDR-mediated transcription.
Collapse
Affiliation(s)
- Tanya Seth-Vollenweider
- From the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey 07103 and
| | - Sneha Joshi
- From the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey 07103 and
| | - Puneet Dhawan
- From the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey 07103 and
| | - Said Sif
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210
| | - Sylvia Christakos
- From the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey 07103 and
| |
Collapse
|
34
|
Wang Y, Liu F, Li J, Wang W. Reconciling the concurrent fast and slow cycling of proteins on gene promoters. J R Soc Interface 2014; 11:20140253. [PMID: 24806708 DOI: 10.1098/rsif.2014.0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
During gene transcription, proteins appear to cycle on and off some gene promoters with both long (tens of minutes) and short periods (no more than several minutes). The essence of these phenomena still remains unclear. Here, we propose a stochastic model for the state evolution of promoters in terms of DNA-protein interactions. The model associates the characteristics of microscopic molecular interactions with macroscopic measurable quantities. Through theoretical derivation, we reconcile the contradictory viewpoints on the concurrent fast and slow cycling; both the cycling phenomena are further reproduced by fitting simulation results to the experimental data on the pS2 gene. Our results suggest that the fast cycling dictates how the proteins behave on the promoter and that stable binding hardly occurs. Different kinds of proteins rapidly bind/unbind the promoter at distinct transcriptional stages fulfilling specific functions; this feature is essentially manifested as the slow cycling of proteins when detected by chromatin immunoprecipitation assays. Thus, the slow cycling represents neither stable binding of proteins nor external modulation of the fast cycling. This work also reveals the relationship between the essence and measurement of transcriptional dynamics.
Collapse
Affiliation(s)
- Yaolai Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, , Nanjing 210093, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Dominance of the strongest: inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev 2013; 25:21-33. [PMID: 24412262 DOI: 10.1016/j.cytogfr.2013.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 02/08/2023]
Abstract
Pro-inflammatory cytokines are involved in the pathogenesis of many inflammatory diseases, and the excessive expression of many of them is normally counteracted by glucocorticoids (GCs), which are steroids that bind to the glucocorticoid receptor (GR). Hence, GCs are potent inhibitors of inflammation, and they are widely used to treat inflammatory diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease. However, despite the success of GC therapy, many patients show some degree of GC unresponsiveness, called GC resistance (GCR). This is a serious problem because it limits the full therapeutic exploitation of the anti-inflammatory power of GCs. Patients with reduced GC responses often have higher cytokine levels, and there is a complex interplay between GCs and cytokines: GCs downregulate pro-inflammatory cytokines while cytokines limit GC action. Treatment of inflammatory diseases with GCs is successful when GCs dominate. But when cytokines overrule the anti-inflammatory actions of GCs, patients become GC insensitive. New insights into the molecular mechanisms of GR-mediated actions and GCR are needed for the design of more effective GC-based therapies.
Collapse
|
36
|
MAX Inactivation in Small Cell Lung Cancer Disrupts MYC–SWI/SNF Programs and Is Synthetic Lethal with BRG1. Cancer Discov 2013; 4:292-303. [DOI: 10.1158/2159-8290.cd-13-0799] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Morris SA, Baek S, Sung MH, John S, Wiench M, Johnson TA, Schiltz RL, Hager GL. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 2013; 21:73-81. [PMID: 24317492 PMCID: PMC3947387 DOI: 10.1038/nsmb.2718] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 10/17/2013] [Indexed: 12/24/2022]
Abstract
ATP-dependent chromatin remodeling is an essential process required for the dynamic organization of chromatin structure. Here we describe the genome-wide location and activity of three remodeler proteins with diverse physiological functions in the mouse genome: Brg1, Chd4, and Snf2h. The localization patterns of all three proteins significantly overlap with one another and with regions of accessible chromatin. Furthermore, using inducible mutant variants, we demonstrate that the catalytic activity of these proteins contributes to the remodeling of chromatin genome-wide, and that each of these remodelers can independently regulate chromatin reorganization at distinct sites. Many regions require the activity of more than one remodeler to regulate accessibility. These findings provide a dynamic view of chromatin organization, and highlight the differential contributions of remodelers to chromatin maintenance in higher eukaryotes.
Collapse
Affiliation(s)
- Stephanie A Morris
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sam John
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Malgorzata Wiench
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Miranda TB, Morris SA, Hager GL. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor. Mol Cell Endocrinol 2013; 380:16-24. [PMID: 23499945 PMCID: PMC3724757 DOI: 10.1016/j.mce.2013.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/26/2013] [Accepted: 03/03/2013] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.
Collapse
|
39
|
Lalmansingh AS, Arora K, Demarco RA, Hager GL, Nagaich AK. High-throughput RNA FISH analysis by imaging flow cytometry reveals that pioneer factor Foxa1 reduces transcriptional stochasticity. PLoS One 2013; 8:e76043. [PMID: 24073287 PMCID: PMC3779185 DOI: 10.1371/journal.pone.0076043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Genes are regulated at the single-cell level. Here, we performed RNA FISH of thousands of cells by flow cytometry (flow-RNA FISH) to gain insight into transcriptional variability between individual cells. These experiments utilized the murine adenocarcinoma 3134 cell line with 200 copies of the MMTV-Ras reporter integrated at a single genomic locus. The MMTV array contains approximately 800-1200 binding sites for the glucocorticoid receptor (GR) and 600 binding sites for the pioneer factor Foxa1. Hormone activation of endogenous GR by dexamethasone treatment resulted in highly variable changes in the RNA FISH intensity (25-300 pixel intensity units) and size (1.25-15 µm), indicative of probabilistic or stochastic mechanisms governing GR and cofactor activation of the MMTV promoter. Exogenous expression of the pioneer factor Foxa1 increased the FISH signal intensity and size as expected for a chromatin remodeler that enhances transcriptional competence through increased chromatin accessibility. In addition, specific analysis of Foxa1-enriched cell sub-populations showed that low and high Foxa1 levels substantially lowered the cell-to-cell variability in the FISH intensity as determined by a noise calculation termed the % coefficient of variation. These results suggest that an additional function of the pioneer factor Foxa1 may be to decrease transcriptional noise.
Collapse
Affiliation(s)
- Avin S Lalmansingh
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
40
|
Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet 2013; 14:572-84. [PMID: 23835438 DOI: 10.1038/nrg3484] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time- and energy-dependence at the molecular level.
Collapse
|
41
|
The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene 2013; 33:2681-9. [PMID: 23752187 DOI: 10.1038/onc.2013.227] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 12/26/2022]
Abstract
Our rapidly growing knowledge about cancer genetics attests to the widespread occurrence of alterations at genes encoding different components of the SWI/SNF complex. This reveals an important new feature that sustains cancer development: the blockade of chromatin remodeling. Here, we provide an overview of our current knowledge on the gene alterations of chromatin-remodeling factors, and how they relate to cancer and human developmental diseases. We also consider the functional repercussions, particularly how the inactivation of the SWI/SNF complex impairs the appropriate cell response to nuclear receptor signaling, which, in turn, prevents cell differentiation and sustains cell growth independently of the environment.
Collapse
|
42
|
Trebble PJ, Woolven JM, Saunders KA, Simpson KD, Farrow SN, Matthews LC, Ray DW. A ligand-specific kinetic switch regulates glucocorticoid receptor trafficking and function. J Cell Sci 2013; 126:3159-69. [PMID: 23687373 DOI: 10.1242/jcs.124784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ubiquitously expressed glucocorticoid receptor (GR) is a major drug target for inflammatory disease, but issues of specificity and target tissue sensitivity remain. We now identify high potency, non-steroidal GR ligands, GSK47867A and GSK47869A, which induce a novel conformation of the GR ligand-binding domain (LBD) and augment the efficacy of cellular action. Despite their high potency, GSK47867A and GSK47869A both induce surprisingly slow GR nuclear translocation, followed by prolonged nuclear GR retention, and transcriptional activity following washout. We reveal that GSK47867A and GSK47869A specifically alter the GR LBD structure at the HSP90-binding site. The alteration in the HSP90-binding site was accompanied by resistance to HSP90 antagonism, with persisting transactivation seen after geldanamycin treatment. Taken together, our studies reveal a new mechanism governing GR intracellular trafficking regulated by ligand binding that relies on a specific surface charge patch within the LBD. This conformational change permits extended GR action, probably because of altered GR-HSP90 interaction. This chemical series may offer anti-inflammatory drugs with prolonged duration of action due to altered pharmacodynamics rather than altered pharmacokinetics.
Collapse
Affiliation(s)
- Peter J Trebble
- Manchester Centre for Nuclear Hormone Research in Disease, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Grøntved L, John S, Baek S, Liu Y, Buckley JR, Vinson C, Aguilera G, Hager GL. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J 2013; 32:1568-83. [PMID: 23665916 DOI: 10.1038/emboj.2013.106] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/10/2013] [Indexed: 01/22/2023] Open
Abstract
Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocorticoid injection. Upon activation of the glucocorticoid receptor (GR), proximal regions of activated and repressed genes are remodelled, and these remodelling events correlate with RNA polymerase II occupancy of regulated genes. GR is exclusively associated with accessible chromatin and 62% percent of GR-binding sites are occupied by C/EBPβ. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPβ for GR recruitment. Disruption of C/EBPβ binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell-specific priming proteins and chromatin remodellers.
Collapse
Affiliation(s)
- Lars Grøntved
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zalachoras I, Houtman R, Meijer OC. Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience 2013; 242:97-109. [PMID: 23545270 DOI: 10.1016/j.neuroscience.2013.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/22/2022]
Abstract
Glucocorticoid hormones exert crucial effects on the brain in relation to physiology, endocrine regulation, mood and cognition. Their two receptor types, glucocorticoid and mineralocorticoid receptors (GR and MR), are members of the nuclear receptor superfamily and act in large measure as transcription factors. The outcome of MR/GR action on the genome depends on interaction with members from different protein families, which are of crucial importance for cross-talk with other neuronal and hormonal signals that impinge on the glucocorticoid sensitive circuitry. Relevant interacting proteins include other transcription factors that may either tether the receptor to the DNA, or that bind in the vicinity of GR and MR to tune the transcriptional response. In addition, transcriptional coregulator proteins constitute the actual signal transduction pathway to the transcription machinery. We review the current evidence for involvement of individual coregulators in GR-dependent effects on stress responses, and learning and memory. We discuss the use of in vitro and in silico tools to predict those coregulators that are of importance for particular brain processes. Finally, we discuss the potential of selective receptor modulators that may only allow a subset of all interactions, thus allowing more selective targeting of glucocorticoid-dependent processes in the brain.
Collapse
Affiliation(s)
- I Zalachoras
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
45
|
Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 2013; 24:109-19. [PMID: 23312823 PMCID: PMC3667973 DOI: 10.1016/j.tem.2012.11.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
Glucocorticoids are essential for maintaining homeostasis and regulate a wide variety of physiological processes. Therapeutically, synthetic glucocorticoids are widely prescribed for the treatment of inflammation, autoimmune disorders, and malignancies of lymphoid origin. In this review we examine emerging evidence highlighting both proinflammatory and anti-inflammatory actions of glucocorticoids on both the innate and adaptive immune systems. We incorporate these findings into the more traditional anti-inflammatory role attributed to glucocorticoids, and propose how the two seemingly disparate processes seamlessly work together to resolve cellular responses to inflammatory stimuli. These ideas provide a framework by which glucocorticoids ready and reinforce the innate immune system, and repress the adaptive immune system, to help to resolve inflammation and restore homeostasis.
Collapse
Affiliation(s)
- John M Busillo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
46
|
Endo M, Yasui K, Zen Y, Gen Y, Zen K, Tsuji K, Dohi O, Mitsuyoshi H, Tanaka S, Taniwaki M, Nakanuma Y, Arii S, Yoshikawa T. Alterations of the SWI/SNF chromatin remodelling subunit-BRG1 and BRM in hepatocellular carcinoma. Liver Int 2013; 33:105-17. [PMID: 23088494 DOI: 10.1111/liv.12005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The SWI/SNF chromatin remodelling complex, which contains either brahma-related gene-1 (BRG1) or brahma (BRM) as the catalytic ATPase, functions as a master regulator of gene expression. AIMS To examine alterations of BRG1 and BRM in hepatocellular carcinoma (HCC). METHODS We investigated DNA copy number aberrations in human HCC cell lines using a high-density oligonucleotide microarray. We determined DNA copy numbers and expression levels of BRG1 and BRM genes in primary HCC tumours, and conducted further searches for mutations in BRG1 and BRM genes. RESULTS Homozygous deletion of the BRG1 gene was found in HCC cell line SNU398. Copy number losses of BRG1 and BRM genes were observed in 14 (26%) and 7 (13%) of 54 primary HCC tumours respectively. We found four somatic missense mutations in the BRG1 gene in two of 36 primary HCC tumours, but no mutations in BRM gene. Expression of BRM mRNA, but not BRG1 mRNA, was significantly reduced in primary HCC tumours, compared to non-tumour tissue counterparts. Immunohistochemical analyses of non-tumour liver tissues showed that BRM protein was expressed in hepatocytes and bile-duct epithelial cells, whereas BRG1 protein was expressed in bile-duct epithelial cells, but not in hepatocytes. BRM protein expression was lost in nine (22.5%) of 40 HCC tumours. Loss of BRM protein expression was significantly associated with poor overall survival. CONCLUSION Reduced expression of BRM may contribute to the carcinogenesis of HCC. Although deletions and mutations in BRG1 gene were identified, the role of BRG1 in HCC tumourigenesis remains unclear.
Collapse
Affiliation(s)
- Mio Endo
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guertin MJ, Lis JT. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev 2012; 23:116-23. [PMID: 23266217 DOI: 10.1016/j.gde.2012.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022]
Abstract
Transcription factors (TF) bind DNA sequence motifs, but the presence of a consensus DNA element is not sufficient to direct TF binding to chromatin. Recent genomic data have revealed that accessibility, as measured by DNase sensitivity and the presence of active histone marks, is necessary for TF binding. DNA sequence provides the initial specification of the accessibility of DNA elements within chromatin that permits TF binding. In yeast, it is known that poly(dA-dT) tracts directly encode low-nucleosome occupancy at promoters. Recent evidence suggests that CpG islands in mammals are inherently refractory to higher-order chromatin structure and remain accessible, despite favoring nucleosome formation in vitro. Taken together, these studies support a model for how accessibility originates and then propagates throughout regulatory cascades and development.
Collapse
Affiliation(s)
- Michael J Guertin
- Department of Molecular Biology and Genetics, Cornell University, United States.
| | | |
Collapse
|
48
|
Chen Y, Watson AM, Williamson CD, Rahimi M, Liang C, Colberg-Poley AM, Rose MC. Glucocorticoid receptor and histone deacetylase-2 mediate dexamethasone-induced repression of MUC5AC gene expression. Am J Respir Cell Mol Biol 2012; 47:637-44. [PMID: 22798432 PMCID: PMC3547101 DOI: 10.1165/rcmb.2012-0009oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/09/2012] [Indexed: 01/05/2023] Open
Abstract
Airway occlusion in obstructive airway diseases is caused in part by the overproduction of secretory mucin glycoproteins through the up-regulation of mucin (MUC) genes by inflammatory mediators. Some pharmacological agents, including the glucocorticoid dexamethasone (Dex), repress mucin concentrations in lung epithelial cancer cells. Here, we show that Dex reduces the expression of MUC5AC, a major airway mucin gene, in primary differentiated normal human bronchial epithelial (NHBE) cells in a dose-dependent and time-dependent manner, and that the Dex-induced repression is mediated by the glucocorticoid receptor (GR) and two glucocorticoid response elements (GREs) in the MUC5AC promoter. The pre-exposure of cells to RU486, a GR antagonist, and mutations in either the GRE3 or GRE5 cis-sites abolished the Dex-induced repression. Chromatin immunoprecipitation (ChIP) assays showed a rapid temporal recruitment of GR to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in NHBE and in A549 cells. Immunofluorescence showed nuclear colocalization of GR and histone deacetylase-2 (HDAC2) in MUC5AC-expressing NHBE cells. ChIP also showed a rapid temporal recruitment of HDAC2 to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in both cell types. The knockdown of HDAC2 by HDAC2-specific short interfering RNA prevented the Dex-induced repression of MUC5AC in NHBE and A549 cells. These data demonstrate that GR and HDAC2 are recruited to the GRE3 and GRE5 cis-sites in the MUC5AC promoter and mediate the Dex-induced cis repression of MUC5AC gene expression. A better understanding of the mechanisms whereby glucocorticoids repress MUC5AC gene expression may be useful in formulating therapeutic interventions in chronic lung diseases.
Collapse
Affiliation(s)
- Yajun Chen
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
| | - Alan M. Watson
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
| | | | - Michael Rahimi
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
| | - Chong Liang
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
| | - Anamaris M. Colberg-Poley
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
- Department of Biochemistry and Molecular Biology
- Department of Integrative Systems Biology, and
- Department of Pediatrics, George Washington University, Washington, DC
| | - Mary C. Rose
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC; and
- Department of Biochemistry and Molecular Biology
- Department of Integrative Systems Biology, and
- Department of Pediatrics, George Washington University, Washington, DC
| |
Collapse
|
49
|
Stavreva DA, Varticovski L, Hager GL. Complex dynamics of transcription regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:657-66. [PMID: 22484099 PMCID: PMC3371156 DOI: 10.1016/j.bbagrm.2012.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/10/2012] [Accepted: 03/15/2012] [Indexed: 01/10/2023]
Abstract
Transcription is a tightly regulated cellular function which can be triggered by endogenous (intrinsic) or exogenous (extrinsic) signals. The development of novel techniques to examine the dynamic behavior of transcription factors and the analysis of transcriptional activity at the single cell level with increased temporal resolution has revealed unexpected elements of stochasticity and dynamics of this process. Emerging research reveals a complex picture, wherein a wide range of time scales and temporal transcription patterns overlap to generate transcriptional programs. The challenge now is to develop a perspective that can guide us to common underlying mechanisms, and consolidate these findings. Here we review the recent literature on temporal dynamics and stochastic gene regulation patterns governed by intrinsic or extrinsic signals, utilizing the glucocorticoid receptor (GR)-mediated transcriptional model to illustrate commonality of these emerging concepts. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, Building 41, B507, 41 Library Dr., National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
50
|
Romero OA, Setien F, John S, Gimenez-Xavier P, Gómez-López G, Pisano D, Condom E, Villanueva A, Hager GL, Sanchez-Cespedes M. The tumour suppressor and chromatin-remodelling factor BRG1 antagonizes Myc activity and promotes cell differentiation in human cancer. EMBO Mol Med 2012; 4:603-16. [PMID: 22407764 PMCID: PMC3407948 DOI: 10.1002/emmm.201200236] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/30/2022] Open
Abstract
BRG1, a member of the SWI/SNF complex, is mutated in cancer, but it is unclear how it promotes tumourigenesis. We report that re-expression of BRG1 in lung cancer cells up-regulates lung-specific transcripts, restoring the gene expression signature of normal lung. Using cell lines from several cancer types we found that those lacking BRG1 do not respond to retinoic acid (RA) or glucocorticoids (GC), while restoration of BRG1 restores sensitivity. Conversely, in SH-SY5Y cells, a paradigm of RA-dependent differentiation, abrogation of BRG1 prevented the response to RA. Further, our data suggest an antagonistic functional connection between BRG1 and MYC, whereby, refractoriness to RA and GC by BRG1 inactivation involves deregulation of MYC activity. Mechanistically, some of these effects are mediated by BRG1 binding to MYC and MYC-target promoters. The BRG1-MYC antagonism was also evident in primary tumours. Finally, BRG1 restoration significantly dampened invasion and progression and decreased MYC in lung cancer cells orthotopically implanted in nude mice. Thus, BRG1 inactivation enables cancer cells to sustain undifferentiated gene expression programs and prevent its response to environmental stimuli.
Collapse
Affiliation(s)
- Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program-PEBC, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|