1
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Krämer L, Dalheimer N, Räschle M, Storchová Z, Pielage J, Boos F, Herrmann JM. MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol. EMBO J 2023; 42:e112309. [PMID: 36704946 PMCID: PMC10068336 DOI: 10.15252/embj.2022112309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Lena Krämer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Niko Dalheimer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Cellular BiochemistryMax Planck Institute of BiochemistryMartinsriedGermany
| | - Markus Räschle
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Zuzana Storchová
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Jan Pielage
- Zoology and NeurobiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | | |
Collapse
|
3
|
Burns GD, Hilal OE, Sun Z, Reutter KR, Preston GM, Augustine AA, Brodsky JL, Guerriero CJ. Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function. FEBS Lett 2021; 595:2383-2394. [PMID: 34358326 DOI: 10.1002/1873-3468.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022]
Abstract
Maintenance of the proteome (proteostasis) is essential for cellular homeostasis and prevents cytotoxic stress responses that arise from protein misfolding. However, little is known about how different types of misfolded proteins impact homeostasis, especially when protein degradation pathways are compromised. We examined the effects of misfolded protein expression on yeast growth by characterizing a suite of substrates possessing the same aggregation-prone domain but engaging different quality control pathways. We discovered that treatment with a proteasome inhibitor was more toxic in yeast expressing misfolded membrane proteins, and this growth defect was mirrored in yeast lacking a proteasome-specific transcription factor, Rpn4p. These results highlight weaknesses in the proteostasis network's ability to handle the stress arising from an accumulation of misfolded membrane proteins.
Collapse
Affiliation(s)
- Grace D Burns
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Olivia E Hilal
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | |
Collapse
|
4
|
Schlagowski AM, Knöringer K, Morlot S, Sánchez Vicente A, Flohr T, Krämer L, Boos F, Khalid N, Ahmed S, Schramm J, Murschall LM, Haberkant P, Stein F, Riemer J, Westermann B, Braun RJ, Winklhofer KF, Charvin G, Herrmann JM. Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO J 2021; 40:e107913. [PMID: 34191328 PMCID: PMC8365258 DOI: 10.15252/embj.2021107913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation‐prone polyQ protein derived from human huntingtin. Expression of Q97‐GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97‐GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97‐GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post‐translational import of mitochondrial precursor proteins into mitochondria competes with aggregation‐prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate‐limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.
Collapse
Affiliation(s)
| | | | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ana Sánchez Vicente
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Nabeel Khalid
- German Research Center for Artificial Intelligence DFKI, Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence DFKI, Kaiserslautern, Germany
| | - Jana Schramm
- Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Jan Riemer
- Biochemistry, University of Cologne, Cologne, Germany
| | | | - Ralf J Braun
- Cell Biology, University of Bayreuth, Bayreuth, Germany.,Neurodegeneration, Danube Private University, Krems/Donau, Austria
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
5
|
Schnell HM, Jochem M, Micoogullari Y, Riggs CL, Ivanov P, Welsch H, Ravindran R, Anderson P, Robinson LC, Tatchell K, Hanna J. Reg1 and Snf1 regulate stress-induced relocalization of protein phosphatase-1 to cytoplasmic granules. FEBS J 2021; 288:4833-4848. [PMID: 33682330 DOI: 10.1111/febs.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
The compartmentalization of cellular function is achieved largely through the existence of membrane-bound organelles. However, recent work suggests a novel mechanism of compartmentalization mediated by membraneless structures that have liquid droplet-like properties and arise through phase separation. Cytoplasmic stress granules (SGs) are the best characterized and are induced by various stressors including arsenite, heat shock, and glucose deprivation. Current models suggest that SGs play an important role in protein homeostasis by mediating reversible translation attenuation. Protein phosphatase-1 (PP1) is a central cellular regulator responsible for most serine/threonine dephosphorylation. Here, we show that upon arsenite stress, PP1's catalytic subunit Glc7 relocalizes to punctate cytoplasmic granules. This altered localization requires PP1's recently described maturation pathway mediated by the multifunctional ATPase Cdc48 and PP1's regulatory subunit Ypi1. Glc7 relocalization is mediated by its regulatory subunit Reg1 and its target Snf1, the AMP-dependent protein kinase. Surprisingly, Glc7 granules are highly specific to arsenite and appear distinct from canonical SGs. Arsenite induces potent translational inhibition, and translational recovery is strongly dependent on Glc7, but independent of Glc7's well-established role in regulating eIF2α. These results suggest a novel form of stress-induced cytoplasmic granule and a new mode of translational control by Glc7.
Collapse
Affiliation(s)
- Helena Maria Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Marco Jochem
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Yagmur Micoogullari
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Claire Louise Riggs
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Pavel Ivanov
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Hendrik Welsch
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paul Anderson
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lucy Christina Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Weisman CM, Murray AW, Eddy SR. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol 2020; 18:e3000862. [PMID: 33137085 PMCID: PMC7660931 DOI: 10.1371/journal.pbio.3000862] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/12/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Genes for which homologs can be detected only in a limited group of evolutionarily related species, called “lineage-specific genes,” are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group’s total genes. Lineage-specific genes are often interpreted as “novel” genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study. Lineage-specific gene families may arise from evolutionary innovations such as de novo gene origination, or may simply mean that a similarity search program failed to identify more distant homologs. A new computational method for modeling the expected decay of similarity search scores with evolutionary distance allows distinction between the two explanations.
Collapse
Affiliation(s)
- Caroline M. Weisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Andrew W. Murray
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean R. Eddy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zöller E, Laborenz J, Krämer L, Boos F, Räschle M, Alexander RT, Herrmann JM. The intermembrane space protein Mix23 is a novel stress-induced mitochondrial import factor. J Biol Chem 2020; 295:14686-14697. [PMID: 32826315 PMCID: PMC7586232 DOI: 10.1074/jbc.ra120.014247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
The biogenesis of mitochondria requires the import of hundreds of precursor proteins. These proteins are transported post-translationally with the help of chaperones, meaning that the overproduction of mitochondrial proteins or the limited availability of chaperones can lead to the accumulation of cytosolic precursor proteins. This imposes a severe challenge to cytosolic proteostasis and triggers a specific transcription program called the mitoprotein-induced stress response, which activates the proteasome system. This coincides with the repression of mitochondrial proteins, including many proteins of the intermembrane space. In contrast, herein we report that the so-far-uncharacterized intermembrane space protein Mix23 is considerably up-regulated when mitochondrial import is perturbed. Mix23 is evolutionarily conserved and a homolog of the human protein CCDC58. We found that, like the subunits of the proteasome, Mix23 is under control of the transcription factor Rpn4. It is imported into mitochondria by the mitochondrial disulfide relay. Mix23 is critical for the efficient import of proteins into the mitochondrial matrix, particularly if the function of the translocase of the inner membrane 23 is compromised such as in temperature-sensitive mutants of Tim17. Our observations identify Mix23 as a novel regulator or stabilizer of the mitochondrial protein import machinery that is specifically up-regulated upon mitoprotein-induced stress conditions.
Collapse
Affiliation(s)
- Eva Zöller
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Janina Laborenz
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Lena Krämer
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
8
|
Neal S, Syau D, Nejatfard A, Nadeau S, Hampton RY. HRD Complex Self-Remodeling Enables a Novel Route of Membrane Protein Retrotranslocation. iScience 2020; 23:101493. [PMID: 32891886 PMCID: PMC7481253 DOI: 10.1016/j.isci.2020.101493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
ER-associated degradation (ERAD) targets misfolded ER proteins for degradation. Retrotranslocation, a key feature of ERAD, entails removal of ubiquitinated substrates into the cytosol for proteasomal destruction. Recently, it has been shown that the Hrd1 E3 ligase forms a retrotranslocation channel for luminal (ERAD-L) substrates. Conversely, our studies found that integral membrane (ERAD-M) substrates exit the ER through a distinct pathway mediated by the Dfm1 rhomboid protein. Those studies also revealed a second, Hrd1-dependent pathway of ERAD-M retrotranslocation can arise in dfm1Δ null. Here we show that, in the dfm1Δ null, the HRD complex undergoes remodeling to a form that mediates ERAD-M retrotranslocation. Specifically, Hrd1's normally present stochiometric partner Hrd3 is efficiently removed during suppressive remodeling, allowing Hrd1 to function in this novel capacity. Neither Hrd1 autoubiquitination nor its cytosolic domain is required for suppressive ERAD-M retrotranslocation. Thus, the HRD complex displays remarkable functional flexibility in response to ER stress.
Collapse
Affiliation(s)
- Sonya Neal
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Della Syau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anahita Nejatfard
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Samantha Nadeau
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
10
|
Schmidt RM, Schessner JP, Borner GH, Schuck S. The proteasome biogenesis regulator Rpn4 cooperates with the unfolded protein response to promote ER stress resistance. eLife 2019; 8:43244. [PMID: 30865586 PMCID: PMC6415940 DOI: 10.7554/elife.43244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) activate the unfolded protein response (UPR), which enhances protein folding to restore homeostasis. Additional pathways respond to ER stress, but how they help counteract protein misfolding is incompletely understood. Here, we develop a titratable system for the induction of ER stress in yeast to enable a genetic screen for factors that augment stress resistance independently of the UPR. We identify the proteasome biogenesis regulator Rpn4 and show that it cooperates with the UPR. Rpn4 abundance increases during ER stress, first by a post-transcriptional, then by a transcriptional mechanism. Induction of RPN4 transcription is triggered by cytosolic mislocalization of secretory proteins, is mediated by multiple signaling pathways and accelerates clearance of misfolded proteins from the cytosol. Thus, Rpn4 and the UPR are complementary elements of a modular cross-compartment response to ER stress.
Collapse
Affiliation(s)
- Rolf M Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, Heidelberg, Germany
| | - Julia P Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Georg Hh Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Cluster of Excellence, Heidelberg, Germany
| |
Collapse
|
11
|
Van Dalfsen KM, Hodapp S, Keskin A, Otto GM, Berdan CA, Higdon A, Cheunkarndee T, Nomura DK, Jovanovic M, Brar GA. Global Proteome Remodeling during ER Stress Involves Hac1-Driven Expression of Long Undecoded Transcript Isoforms. Dev Cell 2018; 46:219-235.e8. [PMID: 30016623 PMCID: PMC6140797 DOI: 10.1016/j.devcel.2018.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/16/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Cellular stress responses often require transcription-based activation of gene expression to promote cellular adaptation. Whether general mechanisms exist for stress-responsive gene downregulation is less clear. A recently defined mechanism enables both up- and downregulation of protein levels for distinct gene sets by the same transcription factor via coordinated induction of canonical mRNAs and long undecoded transcript isoforms (LUTIs). We analyzed parallel gene expression datasets to determine whether this mechanism contributes to the conserved Hac1-driven branch of the unfolded protein response (UPRER), indeed observing Hac1-dependent protein downregulation accompanying the upregulation of ER-related proteins that typifies UPRER activation. Proteins downregulated by Hac1-driven LUTIs include those with electron transport chain (ETC) function. Abrogated ETC function improves the fitness of UPRER-activated cells, suggesting functional importance to this regulation. We conclude that the UPRER drives large-scale proteome remodeling, including coordinated up- and downregulation of distinct protein classes, which is partly mediated by Hac1-induced LUTIs.
Collapse
Affiliation(s)
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Abdurrahman Keskin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - George Maxwell Otto
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Charles Andrew Berdan
- Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Andrea Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Tia Cheunkarndee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel Koji Nomura
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Mohler K, Mann R, Bullwinkle TJ, Hopkins K, Hwang L, Reynolds NM, Gassaway B, Aerni HR, Rinehart J, Polymenis M, Faull K, Ibba M. Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:3985-3996. [PMID: 28168297 PMCID: PMC5397148 DOI: 10.1093/nar/gkx077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by Gcn2p. Ablation of PheRS editing caused accumulation of Tyr-tRNAPhe (5%), but not deacylated tRNAPhe during amino acid starvation, limiting Gcn2p kinase activity and suppressing Gcn4p-dependent gene expression. While the PheRS-editing ablated strain grew 50% slower and displayed a 27-fold increase in the rate of mistranslation of Phe codons as Tyr compared to wild type, the increase in mistranslation was insufficient to activate an unfolded protein stress response. These findings show that during amino acid starvation a primary role of aaRS quality control is to help the cell mount an effective stress response, independent of the role of editing in maintaining translational accuracy.
Collapse
Affiliation(s)
- Kyle Mohler
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Rebecca Mann
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Tammy J Bullwinkle
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Kyle Hopkins
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Noah M Reynolds
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - Brandon Gassaway
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hans-Rudolf Aerni
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Michael Polymenis
- Biochemistry and Biophysics, Texas A&M University, Rm 333, 2128 TAMU, College Station, TX 77843, USA
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Carija A, Navarro S, de Groot NS, Ventura S. Protein aggregation into insoluble deposits protects from oxidative stress. Redox Biol 2017; 12:699-711. [PMID: 28410533 PMCID: PMC5390671 DOI: 10.1016/j.redox.2017.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Protein misfolding and aggregation have been associated with the onset of neurodegenerative disorders. Recent studies demonstrate that the aggregation process can result in a high diversity of protein conformational states, however the identity of the specific species responsible for the cellular damage is still unclear. Here, we use yeast as a model to systematically analyse the intracellular effect of expressing 21 variants of the amyloid-ß-peptide, engineered to cover a continuous range of intrinsic aggregation propensities. We demonstrate the existence of a striking negative correlation between the aggregation propensity of a given variant and the oxidative stress it elicits. Interestingly, each variant generates a specific distribution of protein assemblies in the cell. This allowed us to identify the aggregated species that remain diffusely distributed in the cytosol and are unable to coalesce into large protein inclusions as those causing the highest levels of oxidative damage. Overall, our results indicate that the formation of large insoluble aggregates may act as a protective mechanism to avoid cellular oxidative stress.
Collapse
Affiliation(s)
- Anita Carija
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Weisshaar N, Welsch H, Guerra-Moreno A, Hanna J. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Mol Biol Cell 2017; 28:716-725. [PMID: 28100635 PMCID: PMC5349779 DOI: 10.1091/mbc.e16-10-0717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
Protein misfolding is toxic to cells and is believed to underlie many human diseases, including many neurodegenerative diseases. Accordingly, cells have developed stress responses to deal with misfolded proteins. The transcription factor Rpn4 mediates one such response and is best known for regulating the abundance of the proteasome, the complex multisubunit protease that destroys proteins. Here we identify Lpl1 as an unexpected target of the Rpn4 response. Lpl1 is a phospholipase and a component of the lipid droplet. Lpl1 has dual functions: it is required for both efficient proteasome-mediated protein degradation and the dynamic regulation of lipid droplets. Lpl1 shows a synthetic genetic interaction with Hac1, the master regulator of a second proteotoxic stress response, the unfolded protein response (UPR). The UPR has long been known to regulate phospholipid metabolism, and Lpl1's relationship with Hac1 appears to reflect Hac1's role in stimulating phospholipid synthesis under stress. Thus two distinct proteotoxic stress responses control phospholipid metabolism. Furthermore, these results provide a direct link between the lipid droplet and proteasomal protein degradation and suggest that dynamic regulation of lipid droplets is a key aspect of some proteotoxic stress responses.
Collapse
Affiliation(s)
- Nina Weisshaar
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Hendrik Welsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Sharafi G, Khosravi AR, Vahedi G, Yahyaraeyat R, Abbasi T. A comparative study of the timecourse of the expression of the thermo‑inducible HSP70 gene in clinical and environmental isolates of Aspergillus fumigatus. Mol Med Rep 2016; 13:4513-21. [PMID: 27035559 DOI: 10.3892/mmr.2016.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
The internal environment within animals or humans provides different conditions to invading saprophytic fungal pathogens, requiring the differential regulation of genes in comparison to environmental conditions. Understanding the mechanisms by which pathogens regulate genes within the host may be key in determining pathogen behavior within the host and may additionally facilitate further investigation into novel therapeutic agents. The heat shock protein (HSP)70 gene and its associated proteins have been frequently reported to be among the most highly expressed and dominant proteins present within various locations at physiological temperatures. The present study examined relative gene expression levels of the HSP70 gene in Aspergillus fumigatus isolates from both clinical and environmental origins, at a range of temperature points (20, 30, 37 and 42˚C) over five days, using reverse transcription‑quantitative polymerase chain reaction, comparing with a standard A. fumigatus strain incubated at 25˚C. The results indicated a differential gene expression pattern for the environmental and clinical isolates. During the five days, the HSP70 expression levels in the clinical samples were higher than in the environmental samples. However, the difference in the expression levels between the two groups at 42˚C was reduced. The mean HSP70 expression level over the five incubation days demonstrated a gradual and continual increasing trend by temperature elevation in both groups at 30, 37 and 42˚C, however, at 20˚C both groups demonstrated reduced expression. The temperature shift from 20 to 42˚C resulted in HSP70 induction and up to a 10‑ and 8.6‑fold change in HSP70 expression levels on the fifth day of incubation in the clinical and environmental groups, respectively. In conclusion, incubation at 37 and 42˚C resulted in the highest expression levels in both experimental groups, with these temperature points important for the induction of HSP70 expression in A. fumigatus.
Collapse
Affiliation(s)
- Golnaz Sharafi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ali Reza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ghasem Vahedi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ramak Yahyaraeyat
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Teimur Abbasi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| |
Collapse
|
16
|
Sanchez de Groot N, Gomes RA, Villar-Pique A, Babu MM, Coelho AV, Ventura S. Proteome response at the edge of protein aggregation. Open Biol 2015; 5:140221. [PMID: 25673330 PMCID: PMC4345283 DOI: 10.1098/rsob.140221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteins adopt defined structures and are crucial to most cellular functions. Their misfolding and aggregation is associated with numerous degenerative human disorders such as type II diabetes, Huntington's or Alzheimer's diseases. Here, we aim to understand why cells promote the formation of protein foci. Comparison of two amyloid-β-peptide variants, mostly insoluble but differently recruited by the cell (inclusion body versus diffused), reveals small differences in cell fitness and proteome response. We suggest that the levels of oxidative stress act as a sensor to trigger protein recruitment into foci. Our data support a common cytoplasmic response being able to discern and react to the specific properties of polypeptides.
Collapse
Affiliation(s)
- Natalia Sanchez de Groot
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ricardo A Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Anna Villar-Pique
- Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Waldweg 33, Goettingen, Germany
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
17
|
Buck TM, Jordan R, Lyons-Weiler J, Adelman JL, Needham PG, Kleyman TR, Brodsky JL. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae. Physiol Genomics 2015; 47:198-214. [PMID: 25759377 DOI: 10.1152/physiolgenomics.00101.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rick Jordan
- GPCL Bioinformatics Analysis Core, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - James Lyons-Weiler
- GPCL Bioinformatics Analysis Core, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Joshua L Adelman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|
18
|
Roy J, Mitra S, Sengupta K, Mandal AK. Hsp70 clears misfolded kinases that partitioned into distinct quality-control compartments. Mol Biol Cell 2015; 26:1583-600. [PMID: 25739454 PMCID: PMC4436772 DOI: 10.1091/mbc.e14-08-1262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
Hsp70 facilitates maturation of newly synthesized kinases and assists degradation of kinases under normal and stressed conditions. Hsp70 degrades misfolded kinases that partition into different quality-control compartments by promoting their ubiquitination, thus protecting cells from proteotoxic stress. Hsp70 aids in protein folding and directs misfolded proteins to the cellular degradation machinery. We describe discrete roles of Hsp70,SSA1 as an important quality-control machinery that switches functions to ameliorate the cellular environment. SSA1 facilitates folding/maturation of newly synthesized protein kinases by aiding their phosphorylation process and also stimulates ubiquitylation and degradation of kinases in regular protein turnover or during stress when kinases are denatured or improperly folded. Significantly, while kinases accumulate as insoluble inclusions upon SSA1 inhibition, they form soluble inclusions upon Hsp90 inhibition or stress foci during heat stress. This suggests formation of inclusion-specific quality-control compartments under various stress conditions. Up-regulation of SSA1 results in complete removal of these inclusions by the proteasome. Elevation of the cellular SSA1 level accelerates kinase turnover and protects cells from proteotoxic stress. Upon overexpression, SSA1 targets heat-denatured kinases toward degradation, which could enable them to recover their functional state under physiological conditions. Thus active participation of SSA1 in the degradation of misfolded proteins establishes an essential role of Hsp70 in deciding client fate during stress.
Collapse
Affiliation(s)
- Joydeep Roy
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Sahana Mitra
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | - Atin K Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
19
|
Distinct activation of an E2 ubiquitin-conjugating enzyme by its cognate E3 ligases. Proc Natl Acad Sci U S A 2015; 112:E625-32. [PMID: 25646477 DOI: 10.1073/pnas.1415621112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A significant portion of ubiquitin (Ub)-dependent cellular protein quality control takes place at the endoplasmic reticulum (ER) in a process termed "ER-associated degradation" (ERAD). Yeast ERAD employs two integral ER membrane E3 Ub ligases: Hrd1 (also termed "Der3") and Doa10, which recognize a distinct set of substrates. However, both E3s bind to and activate a common E2-conjugating enzyme, Ubc7. Here we describe a novel feature of the ERAD system that entails differential activation of Ubc7 by its cognate E3s. We found that residues within helix α2 of Ubc7 that interact with donor Ub were essential for polyUb conjugation. Mutagenesis of these residues inhibited the in vitro activity of Ubc7 by preventing the conjugation of donor Ub to the acceptor. Unexpectedly, Ub chain formation by mutant Ubc7 was restored selectively by the Hrd1 RING domain but not by the Doa10 RING domain. In agreement with the in vitro data, Ubc7 α2 helix mutations selectively impaired the in vivo degradation of Doa10 substrates but had no apparent effect on the degradation of Hrd1 substrates. To our knowledge, this is the first example of distinct activation requirements of a single E2 by two E3s. We propose a model in which the RING domain activates Ub transfer by stabilizing a transition state determined by noncovalent interactions between the α2 helix of Ubc7 and Ub and that this transition state may be stabilized further by some E3 ligases, such as Hrd1, through additional interactions outside the RING domain.
Collapse
|
20
|
Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EHK, Scharf KD, Schleiff E. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. MOLECULAR PLANT 2015; 8:228-41. [PMID: 25619681 DOI: 10.1016/j.molp.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 05/09/2023]
Abstract
Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response.
Collapse
Affiliation(s)
- Bodo Tillmann
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Sascha Röth
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Aguiar TQ, Ribeiro O, Arvas M, Wiebe MG, Penttilä M, Domingues L. Investigation of protein secretion and secretion stress in Ashbya gossypii. BMC Genomics 2014; 15:1137. [PMID: 25523110 PMCID: PMC4320514 DOI: 10.1186/1471-2164-15-1137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/20/2014] [Indexed: 11/27/2022] Open
Abstract
Background Ashbya gossypii is a filamentous Saccharomycete used for the industrial production of riboflavin that has been recently explored as a host system for recombinant protein production. To gain insight into the protein secretory pathway of this biotechnologically relevant fungus, we undertook genome-wide analyses to explore its secretome and its transcriptional responses to protein secretion stress. Results A computational pipeline was used to predict the inventory of proteins putatively secreted by A. gossypii via the general secretory pathway. The proteins actually secreted by this fungus into the supernatants of submerged cultures in minimal and rich medium were mapped by two-dimensional gel electrophoresis, revealing that most of the A. gossypii secreted proteins have an isoelectric point between 4 and 6, and a molecular mass above 25 kDa. These analyses together indicated that 1-4% of A. gossypii proteins are likely to be secreted, of which less than 33% are putative hydrolases. Furthermore, transcriptomic analyses carried out in A. gossypii cells under recombinant protein secretion conditions and dithiothreitol-induced secretion stress unexpectedly revealed that a conventional unfolded protein response (UPR) was not activated in any of the conditions, as the expression levels of several well-known UPR target genes (e.g. IRE1, KAR2, HAC1 and PDI1 homologs) remained unaffected. However, several other genes involved in protein unfolding, endoplasmatic reticulum-associated degradation, proteolysis, vesicle trafficking, vacuolar protein sorting, secretion and mRNA degradation were up-regulated by dithiothreitol-induced secretion stress. Conversely, the transcription of several genes encoding secretory proteins, such as components of the glycosylation pathway, was severely repressed by dithiothreitol Conclusions This study provides the first insights into the secretion stress response of A. gossypii, as well as a basic understanding of its protein secretion potential, which is more similar to that of yeast than to that of other filamentous fungi. Contrary to what has been widely described for yeast and fungi, a conventional UPR was not observed in A. gossypii, but alternative protein quality control mechanisms enabled it to cope with secretion stress. These data will help provide strategies for improving heterologous protein secretion in A. gossypii. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1137) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
22
|
Damon JR, Pincus D, Ploegh HL. tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2014; 26:270-82. [PMID: 25392298 PMCID: PMC4294674 DOI: 10.1091/mbc.e14-06-1145] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The URM1 pathway functions in a tRNA thiolation reaction that is required for synthesis of the mcm5s2U34 nucleoside found in tRNAs. Growth of Saccharomyces cerevisiae cells at an elevated temperature results in altered levels of modification enzymes, and this leads to decreased levels of tRNA thiolation. tRNA thiolation is tied to cellular stress responses. Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGluUUC, tGlnUUG, and tLysUUU in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.
Collapse
Affiliation(s)
- Jadyn R Damon
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| |
Collapse
|
23
|
Abstract
The 26S proteasome is responsible for most regulated protein turnover and for the degradation of aberrant proteins in eukaryotes. The assembly of this ~2.5 MDa multicatalytic protease requires several dedicated chaperones and, once assembled, substrate selectivity is mediated by ubiquitin conjugation. After modification with ubiquitin, substrates are escorted to the proteasome by myriad factors, including Cdc48 (cell-division cycle 48). Cdc48 also associates with numerous cofactors, but, to date, it is unclear whether each cofactor facilitates proteasome delivery. We discovered that yeast lacking a conserved Cdc48 cofactor, Vms1 [VCP (valosin-containing protein)/Cdc48-associated mitochondrial stress-responsive], accumulate proteasome-targeted ubiquitinated proteins. Vms1 mutant cells also contain elevated levels of unassembled 20S proteasome core particles and select 19S cap subunits. In addition, we found that the ability of Vms1 to support 26S proteasome assembly requires Cdc48 interaction, and that the loss of Vms1 reduced 26S proteasome levels and cell viability after prolonged culture in the stationary phase. The results of the present study highlight an unexpected link between the Cdc48-Vms1 complex and the preservation of proteasome architecture, and indicate how perturbed proteasome assembly affects the turnover of ubiquitinated proteins and maintains viability in aging cells.
Collapse
|
24
|
Low YS, Bircham PW, Maass DR, Atkinson PH. Kinetochore genes are required to fully activate secretory pathway expansion in S. cerevisiae under induced ER stress. MOLECULAR BIOSYSTEMS 2014; 10:1790-802. [PMID: 24722431 DOI: 10.1039/c3mb70414a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basal ER stress occurs when proteins misfold in normal physiological conditions and are corrected by the unfolded protein response (UPR). Elevated ER stress occurs when misfolding is refractory as found in numerous diseases such as atherosclerosis, Type II diabetes and some cancers. In elevated ER stress it is unclear whether cells utilise the same or different networks of genes as in basal levels of ER stress. To probe this question, we used secretory pathway reporters Yip3p-GFP, Erv29p-GFP, Orm2p-GFP and UPREpr-GFP placed on the yeast deletion mutant array (DMA) genetic background. The reporter's expression levels, measured by automated microscopy, at basal versus elevated ER stress induced by the over-expression of CPY* were compared. A novel group of kinetochore genes (CTF19 complex) were found to be uniquely required for full induction of all four ER stress reporters in elevated stress. A follow-up reporter screen was developed by mating the ctf19Δ kinetochore gene deletion strain into the genome-wide XXXp-GFP tagged library then testing with over-expressed CPY*. This screen identified Bcy1p and Bfr1p as possible signalling points that down-regulate the UPR and secretory pathway when kinetochore proteins are absent under elevated stress conditions. Bfr1p appears to be a checkpoint that monitors the integrity of kinetochores at increased levels of ER stress. This study concludes that functional kinetochores are required for full activation of the secretory pathway in elevated ER stress and that the responses to basal and elevated levels of ER stress require different networks of genes.
Collapse
Affiliation(s)
- Yee S Low
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand.
| | | | | | | |
Collapse
|
25
|
To Sense or Die: Mechanisms of Temperature Sensing in Fungal Pathogens. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Hou J, Tang H, Liu Z, Österlund T, Nielsen J, Petranovic D. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Res 2013; 14:481-94. [PMID: 24237754 DOI: 10.1111/1567-1364.12125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects the cell from stresses. Here, we find that a constitutive activation of the HSR could increase ER stress resistance in both wild-type and UPR-deficient cells. Activation of HSR decreased UPR activation in the WT (as shown by the decreased HAC1 mRNA splicing). We analyzed the genome-wide transcriptional response in order to propose regulatory mechanisms that govern the interplay between UPR and HSR and followed up for the hypotheses by experiments in vivo and in vitro. Interestingly, we found that the regulation of ER stress response via HSR is (1) only partially dependent on over-expression of Kar2p (ER resident chaperone induced by ER stress); (2) does not involve the increase in protein turnover via the proteasome activity; (3) is related to the oxidative stress response. From the transcription data, we also propose that HSR enhances ER stress resistance mainly through facilitation of protein folding and secretion. We also find that HSR coordinates multiple stress-response pathways, including the repression of the overall transcription and translation.
Collapse
Affiliation(s)
- Jin Hou
- Novo Nordisk Foundation Center for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden; State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
27
|
Guerriero CJ, Weiberth KF, Brodsky JL. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J Biol Chem 2013; 288:18506-20. [PMID: 23653356 DOI: 10.1074/jbc.m113.475905] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of misfolded proteins in cellular compartments can result in stress-induced cell death. In the endoplasmic reticulum (ER), ER-associated degradation clears aberrant proteins from the secretory pathway. In the cytoplasm and nucleus, this job is left to the cytoplasmic quality control (CytoQC) machinery. Both processes utilize chaperones and the ubiquitin-proteasome system to aid in protein elimination. Previous studies in yeast have drawn comparisons between these processes using data from structurally and topologically different substrates. We sought to draw a direct comparison between ERAD and CytoQC by studying the elimination of a single misfolded domain that, depending on its residence, is disposed by either of these pathways. The truncated, second nucleotide binding domain (NBD2*) from a yeast ERAD substrate, Ste6p*, resides at the cytoplasmic face of the ER. We show that a soluble form of NBD2* is cytoplasmic and unlike wild-type NBD2 is targeted for proteasome-mediated degradation. In contrast to Ste6p*, which employs the ER-localized Doa10p ubiquitin ligase, NBD2* is ubiquitinated by a nuclear E3 ligase San1p, a factor that is also required for its degradation. Although the yeast cytoplasmic Hsp70 chaperone, Ssa1p, has been thought to facilitate the nuclear import or to maintain the solubility of most CytoQC substrates, we discovered that Ssa1p facilitates the interaction between San1p and NBD2*, demonstrating that chaperones can aid in substrate recognition and San1p-dependent protein degradation. These results emphasize the diverse action of molecular chaperones during CytoQC.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
28
|
Merulla J, Fasana E, Soldà T, Molinari M. Specificity and Regulation of the Endoplasmic Reticulum-Associated Degradation Machinery. Traffic 2013; 14:767-77. [DOI: 10.1111/tra.12068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/18/2013] [Accepted: 03/23/2013] [Indexed: 02/05/2023]
Affiliation(s)
| | - Elisa Fasana
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | - Tatiana Soldà
- Institute for Research in Biomedicine; Protein Folding and Quality Control; CH-6500; Bellinzona; Switzerland
| | | |
Collapse
|
29
|
|
30
|
Hou J, Osterlund T, Liu Z, Petranovic D, Nielsen J. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012. [PMID: 23208612 DOI: 10.1007/s00253-012-4596-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high level over-expression of HSF1-R206S increased heterologous α-amylase yield 25 and 70 % when glucose was fully consumed, and 37 and 62 % at the end of the ethanol phase, respectively. Moderate and high level over-expression also improved endogenous invertase yield 118 and 94 %, respectively. However, human insulin precursor was only improved slightly and this only by high level over-expression of HSF1-R206S, supporting our previous findings that the production of this protein in S. cerevisiae is not limited by secretion. Our results provide an effective strategy to improve protein secretion and demonstrated an approach that can induce ER and cytosolic chaperones simultaneously.
Collapse
Affiliation(s)
- Jin Hou
- Novo Nordisk Foundation Center for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
31
|
Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 2012; 192:319-60. [PMID: 23028185 PMCID: PMC3454868 DOI: 10.1534/genetics.112.140467] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/28/2012] [Indexed: 12/14/2022] Open
Abstract
Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Helle D. Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
32
|
Thibault G, Shui G, Kim W, McAlister GC, Ismail N, Gygi SP, Wenk MR, Ng DTW. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol Cell 2012; 48:16-27. [PMID: 23000174 DOI: 10.1016/j.molcel.2012.08.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 06/06/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells.
Collapse
Affiliation(s)
- Guillaume Thibault
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Theodoraki MA, Nillegoda NB, Saini J, Caplan AJ. A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. J Biol Chem 2012; 287:23911-22. [PMID: 22593585 DOI: 10.1074/jbc.m112.341164] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quality control ubiquitin ligases promote degradation of misfolded proteins by the proteasome. If the capacity of the ubiquitin/proteasome system is exceeded, then misfolded proteins accumulate in aggregates that are cleared by the autophagic system. To identify components of the ubiquitin/proteasome system that protect against aggregation, we analyzed a GFP-tagged protein kinase, Ste11ΔN(K444R)-GFP, in yeast strains deleted for 14 different ubiquitin ligases. We show that deletion of almost all of these ligases affected the proteostatic balance in untreated cells such that Ste11ΔN(K444R)-GFP aggregation was changed significantly compared with the levels found in wild type cells. By contrast, aggregation was increased significantly in only six E3 deletion strains when Ste11ΔN(K444R)-GFP folding was impaired due to inhibition of the molecular chaperone Hsp90 with geldanamycin. The increase in aggregation of Ste11ΔN(K444R)-GFP due to deletion of UBR1 and UFD4 was partially suppressed by deletion of UBR2 due to up-regulation of Rpn4, which controls proteasome activity. Deletion of UBR1 in combination with LTN1, UFD4, or DOA10 led to a marked hypersensitivity to azetidine 2-carboxylic acid, suggesting some redundancy in the networks of quality control ubiquitin ligases. Finally, we show that Ubr1 promotes clearance of protein aggregates when the autophagic system is inactivated. These results provide insight into the mechanics by which ubiquitin ligases cooperate and provide feedback regulation in the clearance of misfolded proteins.
Collapse
Affiliation(s)
- Maria A Theodoraki
- Department of Biology, City College of New York, New York, New York 10031, USA
| | | | | | | |
Collapse
|
34
|
Identification of mammalian protein quality control factors by high-throughput cellular imaging. PLoS One 2012; 7:e31684. [PMID: 22363705 PMCID: PMC3282772 DOI: 10.1371/journal.pone.0031684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
Protein Quality Control (PQC) pathways are essential to maintain the equilibrium between protein folding and the clearance of misfolded proteins. In order to discover novel human PQC factors, we developed a high-content, high-throughput cell-based assay to assess PQC activity. The assay is based on a fluorescently tagged, temperature sensitive PQC substrate and measures its degradation relative to a temperature insensitive internal control. In a targeted screen of 1591 siRNA genes involved in the Ubiquitin-Proteasome System (UPS) we identified 25 of the 33 genes encoding for 26S proteasome subunits and discovered several novel PQC factors. An unbiased genome-wide siRNA screen revealed the protein translation machinery, and in particular the EIF3 translation initiation complex, as a novel key modulator of misfolded protein stability. These results represent a comprehensive unbiased survey of human PQC components and establish an experimental tool for the discovery of genes that are required for the degradation of misfolded proteins under conditions of proteotoxic stress.
Collapse
|
35
|
Arslan MA, Chikina M, Csermely P, Soti C. Misfolded proteins inhibit proliferation and promote stress-induced death in SV40-transformed mammalian cells. FASEB J 2011; 26:766-77. [PMID: 22049061 DOI: 10.1096/fj.11-186197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein misfolding is implicated in neurodegenerative diseases and occurs in aging. However, the contribution of the misfolded ensembles to toxicity remains largely unknown. Here we introduce 2 primate cell models of destabilized proteins devoid of specific cellular functions and interactors, as bona fide misfolded proteins, allowing us to isolate the gain-of-function of non-native structures. Both GFP-degron and a mutant chloramphenicol-acetyltransferase fused to GFP (GFP-Δ9CAT) form perinuclear aggregates, are degraded by the proteasome, and colocalize with and induce the chaperone Hsp70 (HSPA1A/B) in COS-7 cells. We find that misfolded proteins neither significantly compromise chaperone-mediated folding capacity nor induce cell death. However, they do induce growth arrest in cells that are unable to degrade them and promote stress-induced death upon proteasome inhibition by MG-132 and heat shock. Finally, we show that overexpression of all heat-shock factor-1 (HSF1) and Hsp70 proteins, as well as wild-type and deacetylase-deficient (H363Y) SIRT1, rescue survival upon stress, implying a noncatalytic action of SIRT1 in response to protein misfolding. Our study establishes a novel model and extends our knowledge on the mechanism of the function-independent proteotoxicity of misfolded proteins in dividing cells.
Collapse
|
36
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Park S, Kim W, Tian G, Gygi SP, Finley D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 2011; 286:36652-66. [PMID: 21878652 DOI: 10.1074/jbc.m111.285924] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Ciplys E, Samuel D, Juozapaitis M, Sasnauskas K, Slibinskas R. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae. Microb Cell Fact 2011; 10:37. [PMID: 21595909 PMCID: PMC3120639 DOI: 10.1186/1475-2859-10-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant proteins induces the UPR's cytosolic counterpart, the UPR-Cyto, which represent a subset of proteins involved in the heat-shock response. The involvement of eEF1A may explain the mechanism by which only large chaperones, but not small Hsps are upregulated during this stress response. Our study highlights important differences between viral surface protein expression in yeast and mammalian cells at the first stage of secretory pathway.
Collapse
Affiliation(s)
- Evaldas Ciplys
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
39
|
Xie Y. Feedback regulation of proteasome gene expression and its implications in cancer therapy. Cancer Metastasis Rev 2011; 29:687-93. [PMID: 20835843 DOI: 10.1007/s10555-010-9255-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteasomal protein degradation is one of the major regulatory mechanisms in the cell. Aberrant proteasome activity is directly related to the pathogenesis of many human diseases including cancers. How proteasome homeostasis is controlled is a fundamental question toward our understanding of proteasome dysregulation in cancer cells. The recent discovery of the Rpn4-proteasome negative feedback circuit provides mechanistic insight into the regulation of proteasome gene expression. This finding also has important implications in cancer therapy that uses small molecule inhibitors to target the proteasome.
Collapse
Affiliation(s)
- Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 E Warren Ave, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
Shechtman CF, Henneberry AL, Seimon TA, Tinkelenberg AH, Wilcox LJ, Lee E, Fazlollahi M, Munkacsi AB, Bussemaker HJ, Tabas I, Sturley SL. Loss of subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and activates the unfolded protein response. J Biol Chem 2011; 286:11951-9. [PMID: 21266578 DOI: 10.1074/jbc.m110.215038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.
Collapse
Affiliation(s)
- Caryn F Shechtman
- Institute of Human Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A 2010; 108:680-5. [PMID: 21187411 DOI: 10.1073/pnas.1017570108] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolving lineages face a constant intracellular threat: most new coding sequence mutations destabilize the folding of the encoded protein. Misfolded proteins form insoluble aggregates and are hypothesized to be intrinsically cytotoxic. Here, we experimentally isolate a fitness cost caused by toxicity of misfolded proteins. We exclude other costs of protein misfolding, such as loss of functional protein or attenuation of growth-limiting protein synthesis resources, by comparing growth rates of budding yeast expressing folded or misfolded variants of a gratuitous protein, YFP, at equal levels. We quantify a fitness cost that increases with misfolded protein abundance, up to as much as a 3.2% growth rate reduction when misfolded YFP represents less than 0.1% of total cellular protein. Comparable experiments on variants of the yeast gene orotidine-5'-phosphate decarboxylase (URA3) produce similar results. Quantitative proteomic measurements reveal that, within the cell, misfolded YFP induces coordinated synthesis of interacting cytosolic chaperone proteins in the absence of a wider stress response, providing evidence for an evolved modular response to misfolded proteins in the cytosol. These results underscore the distinct and evolutionarily relevant molecular threat of protein misfolding, independent of protein function. Assuming that most misfolded proteins impose similar costs, yeast cells express almost all proteins at steady-state levels sufficient to expose their encoding genes to selection against misfolding, lending credibility to the recent suggestion that such selection imposes a global constraint on molecular evolution.
Collapse
|
42
|
Kawaguchi S, Hsu CL, Ng DTW. Interplay of substrate retention and export signals in endoplasmic reticulum quality control. PLoS One 2010; 5:e15532. [PMID: 21151492 PMCID: PMC2991357 DOI: 10.1371/journal.pone.0015532] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/05/2010] [Indexed: 11/19/2022] Open
Abstract
Background Endoplasmic reticulum (ER) quality control mechanisms are part of a comprehensive system to manage cell stress. The flux of molecules is monitored to retain folding intermediates and target misfolded molecules to ER-associated degradation (ERAD) pathways. The mechanisms of sorting remain unclear. While some proteins are retained statically, the classical model substrate CPY* is found in COPII transport vesicles, suggesting a retrieval mechanism for retention. However, its management can be even more dynamic. If ERAD is saturated under stress, excess CPY* traffics to the vacuole for degradation. These observations suggest that misfolded proteins might display different signals for their management. Methodology/Principal Findings Here, we report the existence of a functional ER exit signal in the pro-domain of CPY*. Compromising its integrity causes ER retention through exclusion from COPII vesicles. The signal co-exists with other signals used for retention and degradation. Physiologically, the export signal is important for stress tolerance. Disabling it converts a benign protein into one that is intrinsically cytotoxic. Conclusions/Significance These data reveal the remarkable interplay between opposing signals embedded within ERAD substrate molecules and the mechanisms that decipher them. Our findings demonstrate the diversity of mechanisms deployed for protein quality control and maintenance of protein homeostasis.
Collapse
Affiliation(s)
- Shinichi Kawaguchi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chia-Ling Hsu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Davis T. W. Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Ecm29 Fulfils Quality Control Functions in Proteasome Assembly. Mol Cell 2010; 38:879-88. [DOI: 10.1016/j.molcel.2010.06.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/05/2010] [Accepted: 06/09/2010] [Indexed: 01/17/2023]
|
44
|
Xie W, Ng DTW. ERAD substrate recognition in budding yeast. Semin Cell Dev Biol 2010; 21:533-9. [PMID: 20178855 DOI: 10.1016/j.semcdb.2010.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/15/2010] [Indexed: 11/17/2022]
Abstract
During protein synthesis, the orderly progression of folding, modification, and assembly is paramount to function and vis-à-vis cellular viability. Accordingly, sophisticated quality control mechanisms have evolved to monitor protein maturation throughout the cell. Proteins failing at any step are segregated and degraded as a preventative measure against potential toxicity. Although protein quality control is generally poorly understood, recent research advances in endoplasmic reticulum-associated degradation (ERAD) pathways have provided the most detailed view so far. The discovery of distinct substrate processing sites established a biochemical basis for genetic profiles of model misfolded proteins. Detailed mechanisms for substrate recognition were recently uncovered. For some proteins, sequential glycan trimming steps set a time window for folding. Proteins still unfolded at the final stage expose a specific degradation signal recognized by the ERAD machinery. Through this mechanism, the system does not in fact know that a molecule is "misfolded". Instead, it goes by the premise that proteins past due have veered off their normal folding pathways and therefore aberrant.
Collapse
Affiliation(s)
- Wei Xie
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | |
Collapse
|
45
|
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St. Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Hin Yan Tong A, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. The genetic landscape of a cell. Science 2010; 327:425-31. [PMID: 20093466 PMCID: PMC5600254 DOI: 10.1126/science.1180823] [Citation(s) in RCA: 1596] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
Collapse
Affiliation(s)
- Michael Costanzo
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anastasia Baryshnikova
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jeremy Bellay
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungil Kim
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric D. Spear
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Carolyn S. Sevier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Huiming Ding
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Judice L.Y. Koh
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kiana Toufighi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sara Mostafavi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Jeany Prinz
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Robert P. St. Onge
- Department of Biochemistry, Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taras Makhnevych
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Franco J. Vizeacoumar
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Solmaz Alizadeh
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sondra Bahr
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Renee L. Brost
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yiqun Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Murat Cokol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhijian Li
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Wendy Liang
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michaela Marback
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jadine Paw
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Ermira Shuteriqi
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Nydia van Dyk
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Iain M. Wallace
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Pharmacy, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Joseph A. Whitney
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Matthew T. Weirauch
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Guoqing Zhong
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Hongwei Zhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael Brudno
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Sasan Ragibizadeh
- S&P Robotics, Inc., 1181 Finch Avenue West, North York, Ontario M3J 2V8, Canada
| | - Balázs Papp
- Institute of Biochemistry, Biological Research Center, H-6701 Szeged, Hungary
| | - Csaba Pál
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute of Biochemistry, Biological Research Center, H-6701 Szeged, Hungary
| | - Frederick P. Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Guri Giaever
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Pharmacy, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Corey Nislow
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Olga G. Troyanskaya
- Department of Computer Science, Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Howard Bussey
- Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Gary D. Bader
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Quaid D. Morris
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
| | - Philip M. Kim
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Chris A. Kaiser
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brenda J. Andrews
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
46
|
Freigassner M, Pichler H, Glieder A. Tuning microbial hosts for membrane protein production. Microb Cell Fact 2009; 8:69. [PMID: 20040113 PMCID: PMC2807855 DOI: 10.1186/1475-2859-8-69] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022] Open
Abstract
The last four years have brought exciting progress in membrane protein research. Finally those many efforts that have been put into expression of eukaryotic membrane proteins are coming to fruition and enable to solve an ever-growing number of high resolution structures. In the past, many skilful optimization steps were required to achieve sufficient expression of functional membrane proteins. Optimization was performed individually for every membrane protein, but provided insight about commonly encountered bottlenecks and, more importantly, general guidelines how to alleviate cellular limitations during microbial membrane protein expression. Lately, system-wide analyses are emerging as powerful means to decipher cellular bottlenecks during heterologous protein production and their use in microbial membrane protein expression has grown in popularity during the past months. This review covers the most prominent solutions and pitfalls in expression of eukaryotic membrane proteins using microbial hosts (prokaryotes, yeasts), highlights skilful applications of our basic understanding to improve membrane protein production. Omics technologies provide new concepts to engineer microbial hosts for membrane protein production.
Collapse
Affiliation(s)
- Maria Freigassner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | | | | |
Collapse
|
47
|
Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics 2009; 184:695-706. [PMID: 20038635 DOI: 10.1534/genetics.109.111419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway eliminates aberrant proteins from the ER. The key role of Cdc48p-Ufd1p-Npl4p is indicated by impaired ERAD in Saccharomyces cerevisiae with mutations in any of this complex's genes. We identified SSZ1 in genetic screens for cdc48-10 suppressors and show that it upregulates Cdc48p via the pleiotropic drug resistance (PDR) network. A pSSZ1 plasmid restored impaired ERAD-M of 6myc-Hmg2 in cdc48-10, ufd1-2, and npl4-1, while SSZ1 deletion had no effect. Ssz1p activates Pdr1p, the PDR master regulator. Indeed, plasmids of PDR1 or its target gene RPN4 increased cdc48-10p levels and restored ERAD-M in cdc48-10. Rpn4p regulates transcription of proteasome subunits and CDC48, thus RPN4 deletion abolished ERAD. However, the diminished proteasome level in Deltarpn4 was sufficient for degrading a cytosolic substrate, whereas the impaired ERAD-M was the result of diminished Cdc48p and was restored by expression of pCDC48. The corrected ERAD-M in the hypomorphic strains of the Cdc48 partners ufd1-2 and npl4-1 by the pCDC48 plasmid, and in cdc48-10 cells by the pcdc48-10 plasmid, combined with the finding that neither pSSZ1 nor pcdc48-10 restored ERAD-L of CPY*-HA, support our conclusion that Ssz1p suppressing effects is brought about by upregulating Cdc48p.
Collapse
|
48
|
Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics 2009; 184:335-42. [PMID: 19933873 DOI: 10.1534/genetics.109.112227] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback loop in which the transcription factor Rpn4 induces the proteasome genes and is rapidly degraded by the assembled proteasome. In addition to the proteasome genes, Rpn4 regulates numerous other genes involved in a wide range of cellular pathways. Therefore, the Rpn4-proteasome negative feedback circuit not only controls proteasome abundance, but also gauges the expression of other Rpn4 target genes. Our previous work has shown that Rpn4-induced gene expression is critical for cell viability under stressed conditions. Here we investigate whether proteasomal degradation of Rpn4 is also important for cell survival in response to stress. To this end, we generate a stabilized Rpn4 mutant (Rpn4*) that retains its transcription activity. We find that expression of Rpn4* severely reduces cell viability in response to various genotoxic and proteotoxic agents. This detrimental effect can be eliminated by a point mutation that abolishes the transcription activity of Rpn4*, suggesting that overexpression of some Rpn4 target genes weakens the cell's ability to cope with stress. Moreover, we demonstrate that inhibition of Rpn4 degradation causes synthetic growth defects when combined with proteasome impairment resulting from mutation of a proteasome gene or accumulation of misfolded endoplasmic reticulum membrane proteins. Rpn4 thus represents an important stress-responsive mediator whose degradation as well as availability are critical for cell survival under stressed conditions.
Collapse
|