1
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
4
|
Kumari S, Tevatiya S, Rani J, Das De T, Chauhan C, Sharma P, Sah R, Singh S, Pandey KC, Pande V, Dixit R. A testis-expressing heme peroxidase HPX12 regulates male fertility in the mosquito Anopheles stephensi. Sci Rep 2022; 12:2597. [PMID: 35173215 PMCID: PMC8850455 DOI: 10.1038/s41598-022-06531-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
In vertebrates dysregulation of the antioxidant defense system has a detrimental impact on male fertility and reproductive physiology. However, in insects, especially mosquitoes the importance of sperm quality has been poorly studied. Since long-term storage of healthy and viable sperm earmarks male reproductive competency, we tested whether the heme peroxidase, a member of antioxidant enzyme family proteins, and abundantly expressed in the testis, also influence male fertility in the mosquito An. stephensi. Here, we show that a heme peroxidase 12 (HPX12), is an important cellular factor to protect the sperms from oxidative stress, and maintains semen quality in the male mosquito reproductive organ. We demonstrate that knockdown of the HPX12 not only impairs the sperm parameters such as motility, viability but also causes a significant down-regulation of MAG expressing transcripts such as ASTEI02706, ASTEI00744, ASTEI10266, likely encoding putative Accessory gland proteins. Mating with HPX12 knockdown male mosquitoes, resulted in ~ 50% reduction in egg-laying, coupled with diminished larval hatchability of a gravid female mosquito. Our data further outlines that increased ROS in the HPX12 mRNA depleted mosquitoes is the ultimate cause of sperm disabilities both qualitatively as well as quantitatively. Our data provide evidence that testis expressing AsHPX12 is crucial for maintaining optimal homeostasis for storing and protecting healthy sperms in the male mosquito's reproductive organs. Since, high reproductive capacity directly influences the mosquito population, manipulating male mosquito reproductive physiology could be an attractive tool to combat vector-borne diseases.
Collapse
Affiliation(s)
- Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Rajkumar Sah
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
5
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
6
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
7
|
Kitamura E, Cowell JK, Chang CS, Hawthorn L. Variant profiles of genes mapping to chromosome 16q loss in Wilms tumors reveals link to cilia-related genes and pathways. Genes Cancer 2020; 11:137-153. [PMID: 33488951 PMCID: PMC7805536 DOI: 10.18632/genesandcancer.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Wilms tumor is the most common pediatric renal tumor and the fourth most common malignancy in children. Chromosome 16q deletion(del) or loss of heterozygosity (LOH) has been correlated with recurrence and overall poor prognosis, such that patients with 16qLOH and 1p allelic loss are treated with more aggressive chemotherapeutic regimens. Methods: In the present study, we have compared the variant profiles of Wilms tumors with and without 16q del/LOH using both data available from the TARGET database (42 samples) and tumors procured from our legacy collection (8 samples). Exome-Seq data was analyzed for tumor specific variants mapping to 16q. Whole exome analysis was also performed. An unbiased approach for somatic variant analysis was used to detect tumor-specific, somatic variants. Results: Of the 72 genes mapping to 16q, 42% were cilia-related genes and 28% of these were found to carry somatic variants specific to those tumors with 16qdel/LOH. Whole exome analyses further revealed that 30% of cilia-related genes across the genome carried alterations in tumors both with and without 16qdel/LOH. Additional pathway analyses revealed that many cilia-related pathway members also carried deleterious variant in these tumors including Sonic Hedgehog (SHh), Wnt, and Notch signaling pathways. Conclusions: The data suggest that cilia-related genes and pathways are compromised in Wilms tumors. The genes on chromosome 16q that carry deleterious variants in cilia-related genes may account for the more aggressive nature of tumors with 16q del/LOH.
Collapse
Affiliation(s)
- Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | |
Collapse
|
8
|
Li S, Lin G, Fang W, Gao D, Huang J, Xie J, Lu J. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream ( Acanthopagrus Latus). Int J Mol Sci 2020; 21:E5690. [PMID: 32784462 PMCID: PMC7461063 DOI: 10.3390/ijms21165690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus) is a commercially important fish in Asian coastal waters. Although natural sex reversal has been described in yellowfin seabream, the mechanisms underlying sexual differentiation and gonadal development in this species remain unclear. MicroRNAs (miRNAs) have been shown to play crucial roles in gametogenesis and gonadal development. Here, two libraries of small RNAs, constructed from the testes and ovaries of yellowfin seabream, were sequenced. Across both gonads, we identified 324 conserved miRNAs and 92 novel miRNAs: 67 ovary-biased miRNAs, including the miR-200 families, the miR-29 families, miR-21, and miR-725; and 88 testis-biased miRNAs, including the let-7 families, the miR-10 families, miR-7, miR-9, and miR-202-3p. GO (Gene Ontology) annotations and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses of putative target genes indicated that many target genes were significantly enriched in the steroid biosynthesis pathway and in the reproductive process. Our integrated miRNA-mRNA analysis demonstrated a putative negatively correlated expression pattern in yellowfin seabream gonads. This study profiled the expression patterns of sex-biased miRNAs in yellowfin seabream gonads, and provided important molecular resources that will help to clarify the miRNA-mediated post-transcriptional regulation of sexual differentiation and gonadal development in this species.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (S.L.); (G.L.); (W.F.); (D.G.); (J.H.); (J.X.)
- Southern Marine Sciences and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
9
|
Morohoshi A, Miyata H, Shimada K, Nozawa K, Matsumura T, Yanase R, Shiba K, Inaba K, Ikawa M. Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice. PLoS Genet 2020; 16:e1008585. [PMID: 31961863 PMCID: PMC6994161 DOI: 10.1371/journal.pgen.1008585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 12/29/2019] [Indexed: 01/28/2023] Open
Abstract
Flagella and cilia are evolutionarily conserved cellular organelles. Abnormal formation or motility of these organelles in humans causes several syndromic diseases termed ciliopathies. The central component of flagella and cilia is the axoneme that is composed of the ‘9+2’ microtubule arrangement, dynein arms, radial spokes, and the Nexin-Dynein Regulatory Complex (N-DRC). The N-DRC is localized between doublet microtubules and has been extensively studied in the unicellular flagellate Chlamydomonas. Recently, it has been reported that TCTE1 (DRC5), a component of the N-DRC, is essential for proper sperm motility and male fertility in mice. Further, TCTE1 has been shown to interact with FBXL13 (DRC6) and DRC7; however, functional roles of FBXL13 and DRC7 in mammals have not been elucidated. Here we show that Fbxl13 and Drc7 expression are testes-enriched in mice. Although Fbxl13 knockout (KO) mice did not show any obvious phenotypes, Drc7 KO male mice were infertile due to their short immotile spermatozoa. In Drc7 KO spermatids, the axoneme is disorganized and the ‘9+2’ microtubule arrangement was difficult to detect. Further, other N-DRC components fail to incorporate into the flagellum without DRC7. These results indicate that Drc7, but not Fbxl13, is essential for the correct assembly of the N-DRC and flagella. In recent years, almost one in six couples face infertility, and nearly 50% of cases are attributed to male factors. It has been shown that approximately 15% of male infertility is caused by genetic factors. The conditions of male infertility mainly include spermatozoa with abnormal morphology (teratozoospermia), reduced sperm motility (asthenozoospermia), and no or low sperm count (azoospermia). Multiple morphological abnormalities of the sperm flagella (MMAF) are characterized as asthenoteratozoospermia, which is a condition with abnormal sperm tail morphology, including absent, coiled, bent, or short tails. Sperm tails are formed during spermiogenesis; however, the mechanism that govern tail formation remains unclear. Here we mutated Fbxl13 and Drc7, two genes with strong expression in mouse testis and which have been shown to be important for flagellum formation and regulation in other systems. Deletion of Drc7 leads to aberrant tail formation in mouse spermatozoa that phenocopies patients with MMAF, while deletion of Fbxl13 has no observable effect on sperm function. Our results identified DRC7 as an important factor for sperm flagellum formation.
Collapse
Affiliation(s)
- Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryuji Yanase
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Scaffold subunits support associated subunit assembly in the Chlamydomonas ciliary nexin-dynein regulatory complex. Proc Natl Acad Sci U S A 2019; 116:23152-23162. [PMID: 31659045 DOI: 10.1073/pnas.1910960116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nexin-dynein regulatory complex (N-DRC) in motile cilia and flagella functions as a linker between neighboring doublet microtubules, acts to stabilize the axonemal core structure, and serves as a central hub for the regulation of ciliary motility. Although the N-DRC has been studied extensively using genetic, biochemical, and structural approaches, the precise arrangement of the 11 (or more) N-DRC subunits remains unknown. Here, using cryo-electron tomography, we have compared the structure of Chlamydomonas wild-type flagella to that of strains with specific DRC subunit deletions or rescued strains with tagged DRC subunits. Our results show that DRC7 is a central linker subunit that helps connect the N-DRC to the outer dynein arms. DRC11 is required for the assembly of DRC8, and DRC8/11 form a subcomplex in the proximal lobe of the linker domain that is required to form stable contacts to the neighboring B-tubule. Gold labeling of tagged subunits determines the precise locations of the previously ambiguous N terminus of DRC4 and C terminus of DRC5. DRC4 is now shown to contribute to the core scaffold of the N-DRC. Our results reveal the overall architecture of N-DRC, with the 3 subunits DRC1/2/4 forming a core complex that serves as the scaffold for the assembly of the "functional subunits," namely DRC3/5-8/11. These findings shed light on N-DRC assembly and its role in regulating flagellar beating.
Collapse
|
11
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
12
|
Zhang P, Jiang W, Luo N, Zhu W, Fan L. IQ motif containing D (IQCD), a new acrosomal protein involved in the acrosome reaction and fertilisation. Reprod Fertil Dev 2019; 31:898-914. [DOI: 10.1071/rd18416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
The acrosome is single, large, dense-core secretory granule overlying the nucleus of most mammalian spermatozoa. Its exocytosis, the acrosome reaction, is a crucial event during fertilisation. In this study we identified a new acrosome-associated gene, namely IQ motif containing D (IQCD), expressed nearly in multiple tissues with highest expression levels in the testis. In mouse testis, Iqcd transcript accumulated from Postnatal Day (PND) 1 to adulthood. However, expression of IQCD protein at the testicular development stage started primarily from PND 18 and increased in an age-dependent manner until plateauing in adulthood. IQCD was primarily accumulated in the acrosome area of round and elongating spermatids within seminiferous tubules of the testes during the late stage of spermiogenesis; this immunolocalisation pattern is similar in mice and humans. IQCD levels in spermatozoa were significantly lower in IVF patients with total fertilisation failure or a low fertilisation rate than in healthy men. Anti-IQCD antibody significantly inhibited the acrosome reaction and slightly reduced protein tyrosine phosphorylation levels in human spermatozoa, but specifically blocked murine IVF. IQCD interacted with mammalian homolog of C. elegans uncoordinated gene 13 (Munc13) in spermatozoa and may participate in acrosome exocytosis. In conclusion, this study identified a new acrosomal protein, namely IQCD, which is involved in fertilisation and the acrosome reaction.
Collapse
|
13
|
Fu C, Luo J, Ye S, Yuan Z, Li S. Integrated Lung and Tracheal mRNA-Seq and miRNA-Seq Analysis of Dogs with an Avian-Like H5N1 Canine Influenza Virus Infection. Front Microbiol 2018; 9:303. [PMID: 29556219 PMCID: PMC5844969 DOI: 10.3389/fmicb.2018.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Avian-like H5N1 canine influenza virus (CIV) causes severe respiratory infections in dogs. However, the mechanism underlying H5N1 CIV infection in dogs is unknown. The present study aimed to identify differentially expressed miRNAs and mRNAs in the lungs and trachea in H5N1 CIV-infected dogs through a next-generation sequencing-based method. Eighteen 40-day-old beagles were inoculated intranasally with CIV, A/canine/01/Guangdong/2013 (H5N1) at a tissue culture infectious dose 50 (TCID50) of 106, and lung and tracheal tissues were harvested at 3 and 7 d post-inoculation. The tissues were processed for miRNA and mRNA analysis. By means of miRNA-gene expression integrative negative analysis, we found miRNA–mRNA pairs. Lung and trachea tissues showed 138 and 135 negative miRNA–mRNA pairs, respectively. One hundred and twenty negative miRNA–mRNA pairs were found between the different tissues. In particular, pathways including the influenza A pathway, chemokine signaling pathways, and the PI3K-Akt signaling pathway were significantly enriched in all groups in responses to virus infection. Furthermore, dysregulation of miRNA and mRNA expression was observed in the respiratory tract of H5N1 CIV-infected dogs and notably, TLR4 (miR-146), NF-κB (miR-34c) and CCL5 (miR-335), CCL10 (miR-8908-5p), and GNGT2 (miR-122) were found to play important roles in regulating pathways that resist virus infection. To our knowledge, the present study is the first to analyze miRNA and mRNA expression in H5N1 CIV-infected dogs; furthermore, the present findings provide insights into the molecular mechanisms underlying influenza virus infection.
Collapse
Affiliation(s)
- Cheng Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jie Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
14
|
Degner EC, Harrington LC. A mosquito sperm's journey from male ejaculate to egg: Mechanisms, molecules, and methods for exploration. Mol Reprod Dev 2018; 83:897-911. [PMID: 27147424 PMCID: PMC5086422 DOI: 10.1002/mrd.22653] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The fate of mosquito sperm in the female reproductive tract has been addressed sporadically and incompletely, resulting in significant gaps in our understanding of sperm-female interactions that ultimately lead to fertilization. As with other Diptera, mosquito sperm have a complex journey to their ultimate destination, the egg. After copulation, sperm spend a short time at the site of insemination where they are hyperactivated and quickly congregate near the entrance of the spermathecal ducts. Within minutes, they travel up the narrow ducts to the spermathecae, likely through the combined efforts of female transport and sperm locomotion. The female nourishes sperm and maintains them in these permanent storage organs for her entire life. When she is ready, the female coordinates the release of sperm with ovulation, and the descending egg is fertilized. Although this process has been well studied via microscopy, many questions remain regarding the molecular processes that coordinate sperm motility, movement through the reproductive tract, maintenance, and usage. In this review, we describe the current understanding of a mosquito sperm's journey to the egg, highlighting gaps in our knowledge of mosquito reproductive biology. Where insufficient information is available in mosquitoes, we describe analogous processes in other organisms, such as Drosophila melanogaster, as a basis for comparison, and we suggest future areas of research that will illuminate how sperm successfully traverse the female reproductive tract. Such studies may yield molecular targets that could be manipulated to control populations of vector species. Mol. Reprod. Dev. 83: 897-911, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ethan C Degner
- Department of Entomology, Cornell University, Ithaca, New York
| | | |
Collapse
|
15
|
Tomaru M, Ohsako T, Watanabe M, Juni N, Matsubayashi H, Sato H, Takahashi A, Yamamoto MT. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster. G3 (BETHESDA, MD.) 2018; 8:149-160. [PMID: 29158336 PMCID: PMC5765343 DOI: 10.1534/g3.117.300171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps) of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611 Thus, shps may define a new class of gene responsible for sperm storage.
Collapse
Affiliation(s)
- Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Takashi Ohsako
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masahide Watanabe
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Naoto Juni
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiroshi Matsubayashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Hiromi Sato
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Ayako Takahashi
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| | - Masa-Toshi Yamamoto
- Department of Drosophila Genomics and Genetic Resources, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, 616-8354, Japan
| |
Collapse
|
16
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
17
|
Bower R, Tritschler D, Mills KV, Heuser T, Nicastro D, Porter ME. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell 2017; 29:137-153. [PMID: 29167384 PMCID: PMC5909927 DOI: 10.1091/mbc.e17-08-0510] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023] Open
Abstract
DRC2 is a subunit of the nexin–dynein regulatory complex linked to primary ciliary dyskinesia. Little is known about the impact of drc2 mutations on axoneme composition and structure. We used proteomic and structural approaches to reveal that DRC2 coassembles with DRC1 to attach the N-DRC to the A-tubule and mediate interactions with other regulatory structures. The nexin–dynein regulatory complex (N-DRC) plays a central role in the regulation of ciliary and flagellar motility. In most species, the N-DRC contains at least 11 subunits, but the specific function of each subunit is unknown. Mutations in three subunits (DRC1, DRC2/CCDC65, DRC4/GAS8) have been linked to defects in ciliary motility in humans and lead to a ciliopathy known as primary ciliary dyskinesia (PCD). Here we characterize the biochemical, structural, and motility phenotypes of two mutations in the DRC2 gene of Chlamydomonas. Using high-resolution proteomic and structural approaches, we find that the C-terminal region of DRC2 is critical for the coassembly of DRC2 and DRC1 to form the base plate of N-DRC and its attachment to the outer doublet microtubule. Loss of DRC2 in drc2 mutants disrupts the assembly of several other N-DRC subunits and also destabilizes the assembly of several closely associated structures such as the inner dynein arms, the radial spokes, and the calmodulin- and spoke-associated complex. Our study provides new insights into the range of ciliary defects that can lead to PCD.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Thomas Heuser
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Vienna Biocenter Core Facilities, 1030 Vienna, Austria
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
18
|
Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017; 9:9/8/a018325. [PMID: 28765157 DOI: 10.1101/cshperspect.a018325] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.
Collapse
Affiliation(s)
- Rasagnya Viswanadha
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
19
|
Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, Zhang L, Sun X, Zhi E, Wang H, Li H, Jin L, Luo Y, Wang J, Yang S, Zhang F. Biallelic Mutations in CFAP43 and CFAP44 Cause Male Infertility with Multiple Morphological Abnormalities of the Sperm Flagella. Am J Hum Genet 2017; 100:854-864. [PMID: 28552195 DOI: 10.1016/j.ajhg.2017.04.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023] Open
Abstract
Sperm motility is vital to human reproduction. Malformations of sperm flagella can cause male infertility. Men with multiple morphological abnormalities of the flagella (MMAF) have abnormal spermatozoa with absent, short, coiled, bent, and/or irregular-caliber flagella, which impair sperm motility. The known human MMAF-associated genes, such as DNAH1, only account for fewer than 45% of affected individuals. Pathogenic mechanisms in the genetically unexplained MMAF remain to be elucidated. Here, we conducted genetic analyses by using whole-exome sequencing and genome-wide comparative genomic hybridization microarrays in a multi-center cohort of 30 Han Chinese men affected by MMAF. Among them, 12 subjects could not be genetically explained by any known MMAF-associated genes. Intriguingly, we identified compound-heterozygous mutations in CFAP43 in three subjects and a homozygous frameshift mutation in CFAP44 in one subject. All of these recessive mutations were parentally inherited from heterozygous carriers but were absent in 984 individuals from three Han Chinese control populations. CFAP43 and CFAP44, encoding two cilia- and flagella-associated proteins (CFAPs), are specifically or preferentially expressed in the testis. Using CRISPR/Cas9 technology, we generated two knockout models each deficient in mouse ortholog Cfap43 or Cfap44. Notably, both Cfap43- and Cfap44-deficient male mice presented with MMAF phenotypes, whereas the corresponding female mice were fertile. Our experimental observations on human subjects and animal models strongly suggest that biallelic mutations in either CFAP43 or CFAP44 can cause sperm flagellar abnormalities and impair sperm motility. Further investigations on other CFAP-encoding genes in more genetically unexplained MMAF-affected individuals could uncover novel mechanisms underlying sperm flagellar formation.
Collapse
|
20
|
Li Y, Li C, Lin S, Yang B, Huang W, Wu H, Chen Y, Yang L, Luo M, Guo H, Chen J, Wang T, Ma Q, Gu Y, Mou L, Jiang Z, Xia J, Gui Y. A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod 2017; 96:587-597. [PMID: 28339613 DOI: 10.1095/biolreprod.116.141408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
Abstract
Phenotype-driven mutagenesis is an unbiased method to identify novel genes involved in spermatogenesis and other reproductive processes. Male repro29/repro29 mice generated by the Reproductive Genomics Program at the Jackson Laboratory were infertile with deformed sperm and poor motility. Using selected exonic capture and massively parallel sequencing technologies, we identified a nonsense mutation in the exon 6 of coiled-coil domain-containing 62 gene (Ccdc62), which results in a formation of a premature stop codon and a truncated protein. Among the tissues examined, CCDC62 was found to be expressed at the highest level in mouse testis by reverse transcriptase-PCR (RT-PCR) and Western blot analysis. With immunofluorescent staining, we demonstrated that CCDC62 was expressed in the cytoplasm and the developing acrosome in the spematids of mouse testis, and was specifically localized at the acrosome in mature sperm. The complementation analysis by mating repro29/+ mice with Ccdc62 -/- mice (generated by CRISPR-Cas9 strategy) further provided genetic proof that the infertility of repro29/repro29 mice was caused by Ccdc62 mutation. Finally, it was found that intracellular colocalization and interaction of CCDC62 and Golgi-associated PDZ and coiled-coil motif-containing protein may be important for acrosome formation. Taken together, this study identified a nonsense mutation in Ccdc62, which directly results in male infertility in repro29/repro29 mice.
Collapse
Affiliation(s)
- Yuchi Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Shouren Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Yuanbin Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lihua Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Manling Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Huan Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jianbo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Tiantian Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Yanli Gu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lisha Mou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jun Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| |
Collapse
|
21
|
Ertl NG, O’Connor WA, Wiegand AN, Elizur A. Molecular analysis of the Sydney rock oyster (Saccostrea glomerata) CO2 stress response. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40665-016-0019-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males. Heredity (Edinb) 2016; 117:100-8. [PMID: 27220308 DOI: 10.1038/hdy.2016.31] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.
Collapse
|
23
|
Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neurooncol 2016; 128:93-100. [PMID: 26961773 DOI: 10.1007/s11060-016-2081-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAF (V600E) mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient's clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTEN (R130*) at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD.
Collapse
|
24
|
Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, Witman GB. DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol Biol Cell 2015; 26:2788-800. [PMID: 26063732 PMCID: PMC4571338 DOI: 10.1091/mbc.e15-01-0018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/30/2023] Open
Abstract
The nexin-dynein regulatory complex (N-DRC), which is a major hub for the control of flagellar motility, contains at least 11 different subunits. A major challenge is to determine the location and function of each of these subunits within the N-DRC. We characterized a Chlamydomonas mutant defective in the N-DRC subunit DRC3. Of the known N-DRC subunits, the drc3 mutant is missing only DRC3. Like other N-DRC mutants, the drc3 mutant has a defect in flagellar motility. However, in contrast to other mutations affecting the N-DRC, drc3 does not suppress flagellar paralysis caused by loss of radial spokes. Cryo-electron tomography revealed that the drc3 mutant lacks a portion of the N-DRC linker domain, including the L1 protrusion, part of the distal lobe, and the connection between these two structures, thus localizing DRC3 to this part of the N-DRC. This and additional considerations enable us to assign DRC3 to the L1 protrusion. Because the L1 protrusion is the only non-dynein structure in contact with the dynein g motor domain in wild-type axonemes and this is the only N-DRC-dynein connection missing in the drc3 mutant, we conclude that DRC3 interacts with dynein g to regulate flagellar waveform.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kangkang Song
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Jianfeng Lin
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Stephen M King
- Department of Molecular Biology and Biophysics and Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Daniela Nicastro
- Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
25
|
Metzler-Guillemain C, Victorero G, Lepoivre C, Bergon A, Yammine M, Perrin J, Sari-Minodier I, Boulanger N, Rihet P, Nguyen C. Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Syst Biol Reprod Med 2015; 61:139-49. [PMID: 25821920 DOI: 10.3109/19396368.2015.1022835] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation. All men were selected based on their answers to a standard toxic exposure questionnaire, and sperm parameters. Using mRNA and miRNA microarrays, we showed that mRNAs from 15 genes were differentially represented between smokers and non-smokers (p<0.01): five had higher levels and 10 lower levels in the smokers. For the microRNAs, 23 were differentially represented: 16 were higher and seven lower in the smokers (0.004≤p<0.01). Quantitative RT-PCR confirmed the lower levels in smokers compared to non-smokers for hsa-miR-296-5p, hsa-miR-3940, and hsa-miR-520d-3p. Moreover, we observed an inverse relationship between the levels of microRNAs and six potential target mRNAs (B3GAT3, HNRNPL, OASL, ODZ3, CNGB1, and PKD2). Our results indicate that alterations in the level of a small number of microRNAs in response to smoking may contribute to changes in mRNA expression in smokers. We conclude that large-scale analysis of spermatozoa RNAs can be used to help understand the mechanisms by which human spermatogenesis responds to toxic substances including those in tobacco smoke.
Collapse
|
26
|
Urbanska P, Song K, Joachimiak E, Krzemien-Ojak L, Koprowski P, Hennessey T, Jerka-Dziadosz M, Fabczak H, Gaertig J, Nicastro D, Wloga D. The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia. Mol Biol Cell 2015; 26:1463-75. [PMID: 25694453 PMCID: PMC4395127 DOI: 10.1091/mbc.e14-11-1545] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
Motile cilia have nine doublet microtubules, with hundreds of associated proteins that repeat in modules. Each module contains three radial spokes, which differ in their architecture, protein composition, and function. The conserved proteins FAP61 and FAP251 are crucial for the assembly and stable docking of RS3 and cilia motility. Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.
Collapse
Affiliation(s)
- Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Kangkang Song
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lucja Krzemien-Ojak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Todd Hennessey
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Maria Jerka-Dziadosz
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Daniela Nicastro
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
27
|
Sagri E, Reczko M, Tsoumani KT, Gregoriou ME, Harokopos V, Mavridou AM, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD. The molecular biology of the olive fly comes of age. BMC Genet 2014; 15 Suppl 2:S8. [PMID: 25472866 PMCID: PMC4255830 DOI: 10.1186/1471-2156-15-s2-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.
Collapse
|
28
|
Abstract
Cilia are force-generating and -sensing organelles that serve as mechanical interfaces between the cell and the extracellular environment. Cilia are present in tissues that adaptively respond to mechanical loading and fluid flow, and defects in ciliary function can lead to diseases affecting these tissues. As might be expected for a mechanical interface, the formation of cilia is, itself, regulated by mechanical forces, and these links between mechanics and ciliary formation are providing new entry points for dissecting the regulatory pathways of ciliogenesis.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| | - Wallace F Marshall
- Hiroaki Ishikawa and Wallace F. Marshall are affiliated with the Department of Biochemistry and Biophysics at the University of California San Francisco
| |
Collapse
|
29
|
Abstract
It has been exciting times since the identification of polycystic kidney disease 1 (PKD1) and PKD2 as the genes mutated in autosomal dominant polycystic kidney disease (ADPKD). Biological roles of the encoded proteins polycystin-1 and TRPP2 have been deduced from phenotypes in ADPKD patients, but recent insights from vertebrate and invertebrate model organisms have significantly expanded our understanding of the physiological functions of these proteins. The identification of additional TRPP (TRPP3 and TRPP5) and polycystin-1-like proteins (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) has added yet another layer of complexity to these fascinating cellular signalling units. TRPP proteins assemble with polycystin-1 family members to form receptor-channel complexes. These protein modules have important biological roles ranging from tubular morphogenesis to determination of left-right asymmetry. The founding members of the polycystin family, TRPP2 and polycystin-1, are a prime example of how studying human disease genes can provide insights into fundamental biological mechanisms using a so-called "reverse translational" approach (from bedside to bench). Here, we discuss the current literature on TRPP ion channels and polycystin-1 family proteins including expression, structure, physical interactions, physiology, and lessons from animal model systems and human disease.
Collapse
Affiliation(s)
- Mariam Semmo
- Renal Division, Department of Medicine, University Medical Centre Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany,
| | | | | |
Collapse
|
30
|
Thaler CD, Miyata H, Haimo LT, Cardullo RA. Waveform generation is controlled by phosphorylation and swimming direction is controlled by Ca2+ in sperm from the mosquito Culex quinquefasciatus. Biol Reprod 2013; 89:135. [PMID: 24108305 DOI: 10.1095/biolreprod.113.109488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most animal sperm are quiescent in the male reproductive tract and become activated after mixing with accessory secretions from the male and/or female reproductive tract. Sperm from the mosquito Culex quinquefasciatus initiate flagellar motility after mixing with male accessory gland components, and the sperm flagellum displays three distinct motility patterns over time: a low amplitude, a long wavelength form (Wave A), a double waveform consisting of two superimposed waveforms over the length of the flagellum (Wave B), and finally, a single helical waveform that propels the sperm at high velocity (Wave C). This flagellar behavior is replicated by treating quiescent sperm with trypsin. When exposed to either broad spectrum or tyrosine kinase inhibitors, sperm activated by accessory gland secretions exhibited motility through Wave B but were unable to progress to Wave C. The MEK1/2 inhibitor UO126 and the ERK1/2 inhibitor FR180204 each blocked the transition from Wave B to Wave C, indicating a role for MAPK activity in the control of waveform and, accordingly, progressive movement. Furthermore, a MAPK substrate antibody stained the flagellum of activated sperm. In the absence of extracellular Ca(2+), a small fraction of sperm swam backwards, whereas most could not be activated by either accessory glands or trypsin and were immotile. However, the phosphatase inhibitor okadaic acid in the absence of extracellular Ca(2+) induced all sperm to swim backwards with a flagellar waveform similar to Wave A. These results indicate that flagellar waveform generation and direction of motility are controlled by protein phosphorylation and Ca(2+) levels, respectively.
Collapse
Affiliation(s)
- Catherine D Thaler
- Department of Biology, University of California, Riverside, Riverside, California
| | | | | | | |
Collapse
|
31
|
Shiba K, Shibata D, Inaba K. Autonomous changes in the swimming direction of sperm in the gastropod Strombus luhuanus. ACTA ACUST UNITED AC 2013; 217:986-96. [PMID: 24311809 DOI: 10.1242/jeb.095398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The sperm of the gastropod Strombus luhuanus show dimorphism. The eusperm have a nucleus and fertilize the egg, whereas the other type of sperm, parasperm, are anucleate and are thought to assist fertilization. Here we report the autonomous changes in the swimming pattern of S. luhuanus eusperm. In artificial seawater, the eusperm collected from S. luhuanus sperm ducts formed sperm bundles and initially swam backward with asymmetric flagellar waveforms to detach from the bundles. One hour later, the sperm began to swim forward and in a circle. After an additional 1 h incubation, the sperm swam straight, with a change in the flagellar waveforms from asymmetric to symmetric. Spontaneous backward swimming with symmetric waveforms was also observed. The eusperm stored in the female seminal receptacle were motile and showed forward symmetric swimming with spontaneous backward swimming, which appeared necessary for detachment from the wall of receptacle. All of these motility changes were observed in the absence of parasperm, suggesting that these changes autonomously occur in eusperm. Our waveform analysis of these swimming patterns revealed that only the swimming with symmetric waveform showed reverse propagation of the flagellar waveforms. Both types of backward swimming were diminished in Ca(2+)-free seawater and in seawater containing Ni(2+), indicating the regulation of swimming direction by Ca(2+)-dependent signal transduction.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | | | | |
Collapse
|
32
|
Sun J, Spradling AC. Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. eLife 2013; 2:e00415. [PMID: 23599892 PMCID: PMC3628084 DOI: 10.7554/elife.00415] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/08/2013] [Indexed: 12/27/2022] Open
Abstract
How oocytes are transferred into an oviduct with a receptive environment remains poorly known. We found that glands of the Drosophila female reproductive tract, spermathecae and/or parovaria, are required for ovulation and to promote sperm storage. Reducing total secretory cell number by interferring with Notch signaling during development blocked ovulation. Knocking down expression after adult eclosion of the nuclear hormone receptor Hr39, a master regulator of gland development, slowed ovulation and blocked sperm storage. However, ovulation (but not sperm storage) continued when only canonical protein secretion was compromised in adult glands. Our results imply that proteins secreted during adulthood by the canonical secretory pathway from female reproductive glands are needed to store sperm, while a non-canonical glandular secretion stimulates ovulation. Our results suggest that the reproductive tract signals to the ovary using glandular secretions, and that this pathway has been conserved during evolution. DOI:http://dx.doi.org/10.7554/eLife.00415.001.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Embryology , Carnegie Institution for Science , Baltimore , United States ; Howard Hughes Medical Institute , Baltimore , United States
| | | |
Collapse
|
33
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lu X. Fluorescent imaging of Drosophila melanogaster sperm in the reproductive tract: a new model of flagellar motility. Methods Enzymol 2013; 525:131-48. [PMID: 23522468 DOI: 10.1016/b978-0-12-397944-5.00007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sperm of Drosophila melanogaster stands out because of its enormous length and perplexing movements that break some norms of flagella. Most flagella with analyzed motility, ranging from flagella of Chlamydomonas to sperm of marine invertebrates and vertebrates, are from a few microns to at most 208 μm in length. Most flagella propagate waves in a constant direction, starting at the base of the flagellum and moving toward the tip (base-to-tip waves). In contrast, the fly sperm is 1.9-mm long and it propagates waves in base-to-tip or tip-to-base direction, generating head-leading or tail-leading movement. Of the two movement orientations, the sperm choose one or the other for a particular movement along the convoluted path leading to fertilization. For example, the sperm enter the seminal receptacle (SR) for storage with a tail-leading movement, but exit it for fertilization with a head-leading movement. Moreover, the sperm move with unusual waveforms. A modified sinusoidal or arc-line waveform generates semistationary movement-moving but staying at a general area-within temporary reservoirs (ejaculatory duct, uterus) and storage organs (SR, spermathecae). In contrast, a corkscrew-like helical waveform is ideal for rapid advancing movement and suspected for traveling through long tubules that interconnect these reservoirs. Here, we describe new methods for capturing these complex sperm movements that naturally occur in the reproductive tract. The imaging methods coupled with large mutant collections and genomic resources make the fly sperm a powerful new model for understanding flagellar motility and its dynamic regulation in vivo. The motility regulatory proteins we have identified in the fly are broadly conserved, thus illustrating a general utility of this model system.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
35
|
Zhang D, Aravind L. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 2012; 11:3861-75. [PMID: 22983010 PMCID: PMC3495828 DOI: 10.4161/cc.22068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last common eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Lalli MA, Garcia G, Madrigal L, Arcos-Burgos M, Arcila ML, Kosik KS, Lopera F. Exploratory data from complete genomes of familial alzheimer disease age-at-onset outliers. Hum Mutat 2012; 33:1630-4. [PMID: 22829467 DOI: 10.1002/humu.22167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/07/2012] [Indexed: 11/08/2022]
Abstract
Identifying genes that modify the age at onset (AAO) of Alzheimer disease and targeting them pharmacologically represent a potential treatment strategy. In this exploratory study, we sequenced the complete genomes of six individuals with familial Alzheimer disease due to the autosomal dominant mutation p.Glu280Ala in PSEN1 (MIM# 104311; NM_000021.3:c.839A>C). The disease and its AAO are highly heritable, motivating our search for genetic variants that modulate AAO. The median AAO of dementia in carriers of the mutant allele is 49 years. Extreme phenotypic outliers for AAO in this genetically isolated population with limited environmental variance are likely to harbor onset modifying genetic variants. A narrow distribution of AAO in this kindred suggests large effect sizes of genetic determinants of AAO in these outliers. Identity by descent (IBD) analysis and a combination of bioinformatics filters have suggested several candidate variants for AAO modifiers. Future work and replication studies on these variants may provide mechanistic insights into the etiopathology of Alzheimer disease.
Collapse
Affiliation(s)
- Matthew A Lalli
- Neuroscience Research Institute, University of California at Santa Barbara, CA, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 2012; 3:35. [PMID: 22435069 PMCID: PMC3304048 DOI: 10.3389/fgene.2012.00035] [Citation(s) in RCA: 629] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/24/2012] [Indexed: 11/13/2022] Open
Abstract
This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals.
Collapse
Affiliation(s)
- Pablo Cingolani
- Institute of Environmental Health Sciences, Wayne State University Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Takeda S, Narita K. Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 2011; 83:S4-11. [PMID: 22118931 DOI: 10.1016/j.diff.2011.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
In this review, we propose a new classification of vertebrate cilia/flagella and discuss the evolution and prototype of cilia. Cilia/flagella are evolutionarily well-conserved membranous organelles in eukaryotes and serve a variety of functions, including motility and sensation. Vertebrate cilia have been traditionally classified into conventional motile cilia and sensory primary cilia. However, an avalanche of emerging evidence on the variations of cilia has made it almost impossible to classify them in a simple dichotomic manner. For example, conventional motile cilia are also involved in the sensation of bitter taste to facilitate the beating of cilia as a defense system of the respiratory system. On the other hand, the primary cilium, often regarded as a non-motile sensory organelle, has been revealed to be motile in vertebrate embryonic nodes, where they play a crucial role in the determination of left-right asymmetry of the body. Moreover, choroid plexus epithelial cells in the cerebral ventricular system exhibit multiple primary cilia on a single cell. Considering these lines of evidence on the diversity of cilia, we believe the classification of cilia should be based on their structure and function, and include more detailed criteria. Another intriguing issue is how in the evolution of cilia, their function and morphology are combined. For example, has motility been acquired from originally sensory cilia, or vice versa? Alternatively, were they originally hybrid in nature? These questions are inseparable from the classification of cilia per se. We would like to address these conundrums in this review article, principally from the standpoint of differentiation of the animal cell.
Collapse
Affiliation(s)
- Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409-3898, Japan.
| | | |
Collapse
|
39
|
Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, Nicastro D. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem 2011; 286:29175-29191. [PMID: 21700706 DOI: 10.1074/jbc.m111.241760] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Kangkang Song
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Cynthia F Barber
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Jennifer S Cobb
- Chemistry Department, MS015, Brandeis University, Waltham, Massachusetts 02454
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454,.
| |
Collapse
|