1
|
Harders RH, Morthorst TH, Landgrebe LE, Lande AD, Fuglsang MS, Mortensen SB, Feteira-Montero V, Jensen HH, Wesseltoft JB, Olsen A. CED-6/GULP and components of the clathrin-mediated endocytosis machinery act redundantly to correctly display CED-1 on the cell membrane in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2024; 14:jkae088. [PMID: 38696649 PMCID: PMC11228867 DOI: 10.1093/g3journal/jkae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
CED-1 (cell death abnormal) is a transmembrane receptor involved in the recognition of "eat-me" signals displayed on the surface of apoptotic cells and thus central for the subsequent engulfment of the cell corpse in Caenorhabditis elegans. The roles of CED-1 in engulfment are well established, as are its downstream effectors. The latter include the adapter protein CED-6/GULP and the ATP-binding cassette family homolog CED-7. However, how CED-1 is maintained on the plasma membrane in the absence of engulfment is currently unknown. Here, we show that CED-6 and CED-7 have a novel role in maintaining CED-1 correctly on the plasma membrane. We propose that the underlying mechanism is via endocytosis as CED-6 and CED-7 act redundantly with clathrin and its adaptor, the Adaptor protein 2 complex, in ensuring correct CED-1 localization. In conclusion, CED-6 and CED-7 impact other cellular processes than engulfment of apoptotic cells.
Collapse
Affiliation(s)
- Rikke Hindsgaul Harders
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Tine H Morthorst
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Line E Landgrebe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Anna D Lande
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Marie Sikjær Fuglsang
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, Aarhus, DK-8000, Denmark
| | - Stine Bothilde Mortensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Verónica Feteira-Montero
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Helene Halkjær Jensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Jonas Bruhn Wesseltoft
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, DK-9220, Denmark
| |
Collapse
|
2
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
4
|
Swords S, Jia N, Norris A, Modi J, Cai Q, Grant BD. A Conserved Requirement for RME-8/DNAJC13 in Neuronal Autolysosome Reformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530319. [PMID: 36909501 PMCID: PMC10002637 DOI: 10.1101/2023.02.27.530319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autolysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain proteostasis and cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. Cell biological studies have linked the DNA-J domain Hsc70 co-chaperone RME-8/DNAJC13 to endosomal coat protein regulation, while human genetics studies have linked RME-8/DNAJC13 to neurological disease, including Parkinsonism and Essential Tremor. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on C. elegans mechanosensory neurons in the intact animal, and in primary mouse cortical neurons in culture. We find that loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including bec-1/beclin and vps-15/PIK3R4/p150 that regulate type-III PI3-kinase VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a conserved but previously unrecognized role in autolysosome reformation, likely affecting ALR tubule initiation and/or severing. Additionally, in both systems, we found that loss of RME-8/DNAJC13 appeared to reduce autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Sierra Swords
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Anne Norris
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Jil Modi
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
- Center for Lipid Research, New Brunswick, NJ USA 08901
| |
Collapse
|
5
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Peña-Ramos O, Chiao L, Liu X, Yu X, Yao T, He H, Zhou Z. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Caenorhabditis elegans. eLife 2022; 11:72466. [PMID: 34982028 PMCID: PMC8769646 DOI: 10.7554/elife.72466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported to facilitate phagocytosis in mammals, it is the canonical double-membrane autophagosomes that facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.
Collapse
Affiliation(s)
- Omar Peña-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xiaomeng Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Tianyou Yao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Henry He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
7
|
Fountain A, Inpanathan S, Alves P, Verdawala MB, Botelho RJ. Phagosome maturation in macrophages: Eat, digest, adapt, and repeat. Adv Biol Regul 2021; 82:100832. [PMID: 34717137 DOI: 10.1016/j.jbior.2021.100832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
Phagocytosis is a dynamic process that requires an intricate interplay between phagocytic receptors, membrane lipids, and numerous signalling proteins and their effectors, to coordinate the engulfment of a bound particle. These particles are diverse in their physico-chemical properties such as size and shape and include bacteria, fungi, apoptotic cells, living tumour cells, and abiotic particles. Once engulfed, these particles are enclosed within a phagosome, which undergoes a striking transformation referred to as phagosome maturation, which will ultimately lead to the processing and degradation of the enclosed particulate. In this review, we focus on recent advancements in phagosome maturation in macrophages, highlighting new discoveries and emerging themes. Such advancements include identification of new GTPases and their effectors and the intricate spatio-temporal dynamics of phosphoinositides in governing phagosome maturation. We then explore phagosome fission and recycling, the emerging role of membrane contact sites, and delve into mechanisms of phagosome resolution to recycle and reform lysosomes. We further illustrate how phagosome maturation is context-dependent, subject to the type of particle, phagocytic receptors, the phagocytes and their state of activation during phagocytosis. Lastly, we discuss how phagosomes serve as signalling platforms to help phagocytes adapt to their environmental conditions. Overall, this review aims to cover recent findings, identify emerging themes, and highlight current challenges and directions to improve our understanding of phagosome maturation in macrophages.
Collapse
Affiliation(s)
- Aaron Fountain
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Patris Alves
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Munira B Verdawala
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada; Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, M5B2K3, Canada.
| |
Collapse
|
8
|
Carroll SL, Coyne VE. A proteomic analysis of the effect of ocean acidification on the haemocyte proteome of the South African abalone Haliotis midae. FISH & SHELLFISH IMMUNOLOGY 2021; 117:274-290. [PMID: 34411749 DOI: 10.1016/j.fsi.2021.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
As a result of increasing CO2 emissions and the prevalence of global climate change, ocean acidification (OA) is becoming more pervasive, affecting many trophic levels, particularly those that rely on succinctly balanced ocean chemistry. This ultimately threatens community structures, as well as the future sustainability of the fishing/aquaculture industry. Understanding the molecular stress response of key organisms will aid in predicting their future survivability under changing environmental conditions. This study sought to elucidate the molecular stress response of the South African abalone, Haliotis midae, an understudied organism with high economic value, utilising a high throughput iTRAQ-based proteomics methodology. Adult abalone were exposed to control (pH 7.9) and experimental (pH 7.5) conditions for 12, 72 and 168 h, following which protein was isolated from sampled haemocytes and subsequently processed. iTRAQ-labelled peptides were analysed using mass spectrometry, while an array of bioinformatics tools was utilised for analysing the proteomic data. COG analysis identified "Cytoskeleton", "Translation, ribosomal structure and biogenesis", "Post-translational modification, protein turnover, chaperones", and "Intracellular trafficking, secretion and vesicular transport" to be the most enriched functional classes, while statistical analysis identified a total of 33 up-regulated and 23 down-regulated effectors of OA stress in abalone. Several of the up-regulated proteins that were identified function in central metabolism (ENO1, PGK, DUOX1, GPD2), the stress/immune response (CAMKI, HSPA5/GRP78, MAPKI), and cytoskeleton, protein sorting and signal transduction (IQGAP1, MYO9B, TLN1, RDX, TCP-1/CCT, SNX6, CHMP1a, VPS13a). Protein-protein interactions were predicted using STRING DB, Cytoscape and Ingenuity Pathway Analysis, providing a model of the effects of OA on the H. midae haemocyte proteome. The data indicated that H. midae underwent a metabolic shift under OA conditions to utilize more energy-efficient mechanisms of ATP generation, while attempts at restoring haemocyte stabilisation and homeostasis were reflected by up-regulation of oxidative stress and cytoskeletal proteins. Our results support other molluscan studies that report a complex array of overlapping functions of both the stress and immune response systems. This interplay of the mounted stress and immune response is maintained and observed through the up-regulation of proteins involved in protein synthesis and turnover, as well as intracellular signalling and transport. The data presented in this study highlight the value of employing sensitive and robust -omics technologies for assessing the effects of changing environmental conditions on marine organisms.
Collapse
Affiliation(s)
- Sarah L Carroll
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Vernon E Coyne
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa.
| |
Collapse
|
9
|
Tian Y, Kang Q, Shi X, Wang Y, Zhang N, Ye H, Xu Q, Xu T, Zhang R. SNX-3 mediates retromer-independent tubular endosomal recycling by opposing EEA-1-facilitated trafficking. PLoS Genet 2021; 17:e1009607. [PMID: 34081703 PMCID: PMC8219167 DOI: 10.1371/journal.pgen.1009607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Early endosomes are the sorting hub on the endocytic pathway, wherein sorting nexins (SNXs) play important roles for formation of the distinct membranous microdomains with different sorting functions. Tubular endosomes mediate the recycling of clathrin-independent endocytic (CIE) cargoes back toward the plasma membrane. However, the molecular mechanism underlying the tubule formation is still poorly understood. Here we screened the effect on the ARF-6-associated CIE recycling endosomal tubules for all the SNX members in Caenorhabditis elegans (C. elegans). We identified SNX-3 as an essential factor for generation of the recycling tubules. The loss of SNX-3 abolishes the interconnected tubules in the intestine of C. elegans. Consequently, the surface and total protein levels of the recycling CIE protein hTAC are strongly decreased. Unexpectedly, depletion of the retromer components VPS-26/-29/-35 has no similar effect, implying that the retromer trimer is dispensable in this process. We determined that hTAC is captured by the ESCRT complex and transported into the lysosome for rapid degradation in snx-3 mutants. Interestingly, EEA-1 is increasingly recruited on early endosomes and localized to the hTAC-containing structures in snx-3 mutant intestines. We also showed that SNX3 and EEA1 compete with each other for binding to phosphatidylinositol-3-phosphate enriching early endosomes in Hela cells. Our data demonstrate for the first time that PX domain-only C. elegans SNX-3 organizes the tubular endosomes for efficient recycling and retrieves the CIE cargo away from the maturing sorting endosomes by competing with EEA-1 for binding to the early endosomes. However, our results call into question how SNX-3 couples the cargo capture and membrane remodeling in the absence of the retromer trimer complex. Trafficking of internalized materials through the endolysosomal system is essential for the maintenance of homeostasis and signaling regulation in all eukaryotic cells. Early endosomes are the sorting hub on the endocytic pathway. After internalization, the plasma membrane lipid, proteins, and invading pathogens are delivered to early endosomes for further degradation in lysosomes or for retrieval to the plasma membrane or the trans-Golgi network for reuse. However, when, where and by what mechanism various cargo proteins are sorted from each other and into the different pathways largely remain to be explored. Here, we identified SNX-3, a PX-domain only sorting nexin family member, as a novel regulator for the tubular endosomes underlying recycling of a subset of CIE cargoes. Compared with EEA-1, the superior recruitment of SNX-3 at the CIE-derived subpopulation of endosomes is critical for preventing these endosomes from converging to the classical sorting endosomes and subsequently into the multivesicular endosomal pathway. We speculate that through a spatio-temporal interplay with the retromer, SNX-3 is involved in different recycling transport carriers. Our finding of SNX-3’s role in modulating the formation of tubular endosomes provides insight into the sorting and trafficking of CIE pathways.
Collapse
Affiliation(s)
- Yangli Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiaoju Kang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuemeng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nali Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Ye
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (TX); (RZ)
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (TX); (RZ)
| |
Collapse
|
10
|
Mylvaganam S, Freeman SA, Grinstein S. The cytoskeleton in phagocytosis and macropinocytosis. Curr Biol 2021; 31:R619-R632. [PMID: 34033794 DOI: 10.1016/j.cub.2021.01.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cells of the innate immune system, notably macrophages, neutrophils and dendritic cells, perform essential antimicrobial and homeostatic functions. These functions rely on the dynamic surveillance of the environment supported by the formation of elaborate membrane protrusions. Such protrusions - pseudopodia, lamellipodia and filopodia - facilitate the sampling of the surrounding fluid by macropinocytosis, as well as the engulfment of particulates by phagocytosis. Both processes entail extreme plasma membrane deformations that require the coordinated rearrangement of cytoskeletal polymers, which exert protrusive force and drive membrane coalescence and scission. The resulting vacuolar compartments undergo pronounced remodeling and ultimate resolution by mechanisms that also involve the cytoskeleton. Here, we describe the regulation and functions of cytoskeletal assembly and remodeling during macropinocytosis and phagocytosis.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Yang Y, Dong W, Wu Q, Wang D. Response of G protein-coupled receptor CED-1 in germline to polystyrene nanoparticles in Caenorhabditis elegans. NANOSCALE ADVANCES 2021; 3:1997-2006. [PMID: 36133095 PMCID: PMC9419163 DOI: 10.1039/d0na00867b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 05/30/2023]
Abstract
The deposition of a certain amount of nanopolystyrene (NPS) can be observed in the gonad of Caenorhabditis elegans. However, we still know little about the response of germline towards NPS exposure. In the germline of C. elegans, NPS (1-1000 μg L-1) increased the expression levels of two G protein-coupled receptors (GPCRs), namely PAQR-2 and CED-1. Moreover, susceptibility to NPS toxicity was observed in ced-1(RNAi) worms, which suggested that the protective response of germline was mediated by GPCR CED-1. In the germline, five proteins (CED-10, VPS-34, SNX-1, RAB-7, and RAB-14) functioned as downstream targets of GPCR CED-1 in controlling NPS toxicity. Furthermore, these five targets in the germline regulated NPS toxicity by affecting the activities of p38 MAPK and insulin signaling pathways in intestinal cells. Therefore, we raised a GPCR CED-1-mediated signaling cascade in the germline in response to NPS exposure, which is helpful for understanding the molecular basis of the germline in response to NPS exposure.
Collapse
Affiliation(s)
- Yunhan Yang
- Medical School, Southeast University Nanjing 210009 China
| | - Wenting Dong
- Medical School, Southeast University Nanjing 210009 China
| | - Qiuli Wu
- Medical School, Southeast University Nanjing 210009 China
| | - Dayong Wang
- Medical School, Southeast University Nanjing 210009 China
| |
Collapse
|
12
|
RXRs control serous macrophage neonatal expansion and identity and contribute to ovarian cancer progression. Nat Commun 2020; 11:1655. [PMID: 32246014 PMCID: PMC7125161 DOI: 10.1038/s41467-020-15371-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/04/2022] Open
Abstract
Tissue-resident macrophages (TRMs) populate all tissues and play key roles in homeostasis, immunity and repair. TRMs express a molecular program that is mostly shaped by tissue cues. However, TRM identity and the mechanisms that maintain TRMs in tissues remain poorly understood. We recently found that serous-cavity TRMs (LPMs) are highly enriched in RXR transcripts and RXR-response elements. Here, we show that RXRs control mouse serous-macrophage identity by regulating chromatin accessibility and the transcriptional regulation of canonical macrophage genes. RXR deficiency impairs neonatal expansion of the LPM pool and reduces the survival of adult LPMs through excess lipid accumulation. We also find that peritoneal LPMs infiltrate early ovarian tumours and that RXR deletion diminishes LPM accumulation in tumours and strongly reduces ovarian tumour progression in mice. Our study reveals that RXR signalling controls the maintenance of the serous macrophage pool and that targeting peritoneal LPMs may improve ovarian cancer outcomes. Macrophages can differentiate to perform homeostatic tissue-specific functions. Here the authors show that RXR signalling is critical for large peritoneal macrophage (LPM) expansion during neonatal life and LPM lipid metabolism and survival during adult homeostasis, and that ovarian cancer growth relies on RXR-dependent LPMs.
Collapse
|
13
|
Jenzer C, Simionato E, Largeau C, Scarcelli V, Lefebvre C, Legouis R. Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy 2018; 15:228-241. [PMID: 30160610 DOI: 10.1080/15548627.2018.1512452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis and macroautophagy/autophagy are 2 processes involved in lysosome-mediated clearance of extracellular and intracellular components, respectively. Recent studies have identified the recruitment of the autophagic protein LC3 during phagocytosis of apoptotic corpses in what is now called LC3-associated phagocytosis (LAP). LAP is a distinct process from autophagy but it relies on some members of the autophagy pathway to allow efficient degradation of the phagocytosed cargo. We investigated whether both LC3/LGG-2 and GABARAP/LGG-1 are involved in phagocytosis of apoptotic corpses during embryonic development of Caenorhabditis elegans. We discovered that both LGG-1 and LGG-2 are involved in the correct elimination of apoptotic corpses, but that they have different functions. lgg-1 and lgg-2 mutants present a delay in phagocytosis of apoptotic cells but genetic analyses indicate that LGG-1 and LGG-2 act upstream and downstream of the engulfment pathways, respectively. Moreover, LGG-1 and LGG-2 display different cellular localizations with enrichment in apoptotic corpses and phagocytic cells, respectively. For both LGG-1 and LGG-2, subcellular localization is vesicular and dependent on UNC-51/ULK1, BEC-1/BECN1 and the lipidation machinery, indicating that their functions during phagocytosis of apoptotic corpses mainly rely on autophagy. Finally, we show that LGG-1 is involved in the exposure of the 'eat-me signal' phosphatidylserine at the surface of the apoptotic cell to allow its recognition by the phagocytic cell, whereas LGG-2 is involved in later steps of phagocytosis to allow efficient cell corpse clearance by mediating the maturation/degradation of the phagosome.
Collapse
Affiliation(s)
- Céline Jenzer
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Elena Simionato
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Céline Largeau
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Vincent Scarcelli
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Christophe Lefebvre
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| | - Renaud Legouis
- a Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , Gif-sur-Yvette cedex , France
| |
Collapse
|
14
|
Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet 2018; 14:e1007558. [PMID: 30138370 PMCID: PMC6107108 DOI: 10.1371/journal.pgen.1007558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance from a genetic screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. We found that RAB-35 was required for the efficient incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 promotes two essential events that initiate phagosome maturation: the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P, and the recruitment of the small GTPase RAB-5 to phagosomal surfaces. These functions of RAB-35 were previously unknown. Remarkably, although the phagocytic receptor CED-1 regulates these same events, RAB-35 and CED-1 appear to function independently. Upstream of degradation, RAB-35 also facilitates the recognition of apoptotic cells independently of the known CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating apoptotic cell-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 clearance pathways. We propose that RAB-35 acts as a robustness factor, defining a novel pathway that aids these canonical pathways in both the recognition and degradation of apoptotic cells.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rocheleau CE. C. elegans RAB-35: Dual roles in apoptotic cell clearance. PLoS Genet 2018; 14:e1007534. [PMID: 30138327 PMCID: PMC6107104 DOI: 10.1371/journal.pgen.1007534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Program in Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Vieira N, Bessa C, Rodrigues AJ, Marques P, Chan FY, de Carvalho AX, Correia-Neves M, Sousa N. Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans. Cell Mol Life Sci 2018; 75:2027-2044. [PMID: 29196797 PMCID: PMC11105199 DOI: 10.1007/s00018-017-2719-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/27/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer's disease and Down's syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.
Collapse
Affiliation(s)
- Neide Vieira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Bessa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo Marques
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fung-Yi Chan
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular-IBMC, Porto, Portugal
| | - Ana Xavier de Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular-IBMC, Porto, Portugal
| | - Margarida Correia-Neves
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
18
|
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A 2017; 114:E307-E316. [PMID: 28053230 DOI: 10.1073/pnas.1612730114] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.
Collapse
|
19
|
Cheng S, Liu K, Yang C, Wang X. Dissecting Phagocytic Removal of Apoptotic Cells in Caenorhabditis elegans. Methods Mol Biol 2017; 1519:265-284. [PMID: 27815886 DOI: 10.1007/978-1-4939-6581-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The unique features of programmed cell death during C. elegans development provide an outstanding system to decipher the mechanisms governing phagocytic removal of apoptotic cells. Like in many other organisms, phagocytosis in C. elegans involves several essential events, including exposure of eat-me signals on the cell corpse surface, cell corpse recognition and engulfment by phagocytes, and maturation of phagosomes for cell corpse destruction. Forward or reverse genetic approaches, microscopy-based cell biological methods, and biochemical assays have successfully been employed to identify key factors that control different steps of phagocytosis and to understand their functions in these cellular events. In this chapter, we mainly describe how to apply genetic and cell biological approaches to dissect cell corpse removal by phagocytosis in C. elegans.
Collapse
Affiliation(s)
- Shiya Cheng
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Kai Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
20
|
Bendris N, Schmid SL. Endocytosis, Metastasis and Beyond: Multiple Facets of SNX9. Trends Cell Biol 2016; 27:189-200. [PMID: 27989654 DOI: 10.1016/j.tcb.2016.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 11/26/2022]
Abstract
Sorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
Collapse
Affiliation(s)
- Nawal Bendris
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sandra L Schmid
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nat Cell Biol 2016; 18:1302-1310. [PMID: 27842058 PMCID: PMC5129868 DOI: 10.1038/ncb3439] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023]
Abstract
Primordial germ cells (PGCs) in many species associate intimately with endodermal cells, but the significance of such interactions is largely unexplored. Here, we show that Caenorhabditis elegans PGCs form lobes that are removed and digested by endodermal cells, dramatically altering PGC size and mitochondrial content. We demonstrate that endodermal cells do not scavenge lobes PGCs shed, but rather, actively remove lobes from the cell body. CED-10 (Rac)-induced actin, DYN-1 (dynamin) and LST-4 (SNX9) transiently surround lobe necks and are required within endodermal cells for lobe scission, suggesting that scission occurs through a mechanism resembling vesicle endocytosis. These findings reveal an unexpected role for endoderm in altering the contents of embryonic PGCs, and define a form of developmentally programmed cell remodelling involving intercellular cannibalism. Active roles for engulfing cells have been proposed in several neuronal remodelling events, suggesting that intercellular cannibalism may be a more widespread method used to shape cells than previously thought.
Collapse
|
22
|
Xu L, Peng X, Yu D, Ji C, Zhao J, Wu H. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages. FISH & SHELLFISH IMMUNOLOGY 2016; 55:510-515. [PMID: 27302865 DOI: 10.1016/j.fsi.2016.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages.
Collapse
Affiliation(s)
- Lanlan Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Deliang Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China.
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, 264003, PR China
| |
Collapse
|
23
|
Meehan TL, Joudi TF, Timmons AK, Taylor JD, Habib CS, Peterson JS, Emmanuel S, Franc NC, McCall K. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLoS One 2016; 11:e0158217. [PMID: 27347682 PMCID: PMC4922577 DOI: 10.1371/journal.pone.0158217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells.
Collapse
Affiliation(s)
- Tracy L. Meehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| | - Tony F. Joudi
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Allison K. Timmons
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeffrey D. Taylor
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Corey S. Habib
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeanne S. Peterson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shanan Emmanuel
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Nathalie C. Franc
- The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| |
Collapse
|
24
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
25
|
Cheng S, Wang K, Zou W, Miao R, Huang Y, Wang H, Wang X. PtdIns(4,5)P₂ and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol 2016; 210:485-502. [PMID: 26240185 PMCID: PMC4523610 DOI: 10.1083/jcb.201501038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A coincidence detection mechanism regulates phagosomal sealing and couples it with phosphoinositide conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes. Phagocytosis requires phosphoinositides (PIs) as both signaling molecules and localization cues. How PIs coordinate to control phagosomal sealing and the accompanying switch of organelle identity is unclear. In this study, we followed dynamic changes in PIs during apoptotic cell clearance in Caenorhabditis elegans. We found that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3-phosphate (PtdIns3P), which accumulate transiently on unsealed and fully sealed phagosomes, respectively, are both involved in phagosome closure. We identified PtdIns3P phosphatase MTM-1 as an effector of PtdIns(4,5)P2 to promote phagosomal sealing. MTM-1 coordinates with the class II PI3 kinase PIKI-1 to control PtdIns3P levels on unsealed phagosomes. The SNX9 family protein LST-4 is required for sealing, and its association with unsealed phagosomes is regulated by PtdIns(4,5)P2, PIKI-1, and MTM-1. Loss of LST-4 or its retention on phagosomes disrupts sealing and suppresses PtdIns3P accumulation, indicating close coupling of the two events. Our findings support a coincidence detection mechanism by which phagosomal sealing is regulated and coupled with conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes.
Collapse
Affiliation(s)
- Shiya Cheng
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China National Institute of Biological Sciences, Beijing 102206, China
| | - Kun Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Zou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Miao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yaling Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Haibin Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
26
|
Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 2016; 9:e1174798. [PMID: 27489580 PMCID: PMC4951175 DOI: 10.1080/19420889.2016.1174798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.
Collapse
|
27
|
Ukken FP, Bruckner JJ, Weir KL, Hope SJ, Sison SL, Birschbach RM, Hicks L, Taylor KL, Dent EW, Gonsalvez GB, O'Connor-Giles KM. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. J Cell Sci 2015; 129:166-77. [PMID: 26567222 PMCID: PMC4732300 DOI: 10.1242/jcs.178699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.
Collapse
Affiliation(s)
- Fiona P Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kurt L Weir
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah J Hope
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha L Sison
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan M Birschbach
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W Dent
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate M O'Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
28
|
Hicks L, Liu G, Ukken FP, Lu S, Bollinger KE, O'Connor-Giles K, Gonsalvez GB. Depletion or over-expression of Sh3px1 results in dramatic changes in cell morphology. Biol Open 2015; 4:1448-61. [PMID: 26459243 PMCID: PMC4728355 DOI: 10.1242/bio.013755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian Sorting Nexin 9 (Snx9) family consists of three paralogs: Snx9, Snx18 and Snx33. Most of the published literature to date has centered on the role of Snx9 in clathrin-mediated endocytosis (CME). Snx9 contains an Sh3 domain at its N-terminus and has been shown to interact with Dynamin and actin nucleation factors via this domain. In addition to the Sh3 domain, Snx9 also contains a C-terminal BAR domain. BAR domains are known to sense and/or induce membrane curvature. In addition to endocytosis, recent studies have implicated the Snx9 family in diverse processes such as autophagy, macropinocytosis, phagocytosis and mitosis. The Snx9 family is encoded by a single gene in Drosophila called sh3px1. In this report, we present our initial characterization of sh3px1. We found that depletion of Sh3px1 from Drosophila Schneider 2 (S2) cells resulted in defective lamellipodia formation. A similar phenotype has been reported upon depletion of Scar, the actin nucleation factor implicated in forming lamellipodia. In addition, we demonstrate that over-expression of Sh3px1 in S2 cells results in the formation of tubules as well as long protrusions. Formation of these structures required the C-terminal BAR domain as well as the adjacent Phox homology (PX) domain of Sh3px1. Furthermore, efficient protrusion formation by Sh3px1 required the actin nucleation factor Wasp. Tubules and protrusions were also generated upon over-expressing the mammalian orthologs Snx18 and Snx33 in S2 cells. By contrast, over-expressing Snx9 mostly induced long tubules. Summary: Proteins containing BAR domains are known to generate membrane curvature. Some BAR domains generate tubules upon over-expression in cells, whereas others generate membrane protrusions. We demonstrate that Sh3px1, the Drosophila ortholog of the Snx9 family, is capable of inducing both tubules and protrusions.
Collapse
Affiliation(s)
- Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Guojun Liu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Fiona P Ukken
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sumin Lu
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kathryn E Bollinger
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA James and Jean Culver Vision Discovery Institute, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate O'Connor-Giles
- Laboratory of Genetics, and Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
29
|
Meehan TL, Kleinsorge SE, Timmons AK, Taylor JD, McCall K. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary. Dis Model Mech 2015; 8:1603-14. [PMID: 26398951 PMCID: PMC4728319 DOI: 10.1242/dmm.021998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. Summary: Apical integrin localization, mediated by polarized and directed trafficking, is crucial for proper engulfment by epithelial cells.
Collapse
Affiliation(s)
- Tracy L Meehan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Sarah E Kleinsorge
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Allison K Timmons
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
30
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
31
|
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
32
|
Abstract
The endosomal network comprises an interconnected network of membranous compartments whose primary function is to receive, dissociate, and sort cargo that originates from the plasma membrane and the biosynthetic pathway. A major challenge in cell biology is to achieve a thorough molecular description of how this network operates, and in so doing, how defects contribute to the etiology and pathology of human disease. We discuss the increasing body of evidence that implicates an ancient evolutionary conserved complex, termed "retromer," as a master conductor in the complex orchestration of multiple cargo-sorting events within the endosomal network.
Collapse
Affiliation(s)
- Christopher Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
| | | |
Collapse
|
33
|
Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Development 2013; 140:3230-43. [PMID: 23861060 PMCID: PMC3931732 DOI: 10.1242/dev.093732] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cells in Caenorhabditis elegans. Inactivating epn-1 or chc-1 disrupts engulfment by impairing actin polymerization. This defect is partially suppressed by inactivating UNC-60, a cofilin ortholog and actin server/depolymerization protein, further indicating that EPN-1 and CHC-1 regulate actin assembly during pseudopod extension. CHC-1 is enriched on extending pseudopods together with EPN-1, in an EPN-1-dependent manner. Epistasis analysis places epn-1 and chc-1 in the same cell-corpse engulfment pathway as ced-1, ced-6 and dyn-1. CED-1 signaling is necessary for the pseudopod enrichment of EPN-1 and CHC-1. CED-1, CED-6 and DYN-1, like EPN-1 and CHC-1, are essential for the assembly and stability of F-actin underneath pseudopods. We propose that in response to CED-1 signaling, CHC-1 is recruited to the phagocytic cup through EPN-1 and acts as a scaffold protein to organize actin remodeling. Our work reveals novel roles of clathrin and epsin in apoptotic-cell internalization, suggests a Hip1/R-independent mechanism linking clathrin to actin assembly, and ties the CED-1 pathway to cytoskeleton remodeling.
Collapse
Affiliation(s)
- Qian Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Chen D, Jian Y, Liu X, Zhang Y, Liang J, Qi X, Du H, Zou W, Chen L, Chai Y, Ou G, Miao L, Wang Y, Yang C. Clathrin and AP2 are required for phagocytic receptor-mediated apoptotic cell clearance in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003517. [PMID: 23696751 PMCID: PMC3656144 DOI: 10.1371/journal.pgen.1003517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Clathrin and the multi-subunit adaptor protein complex AP2 are central players in clathrin-mediated endocytosis by which the cell selectively internalizes surface materials. Here, we report the essential role of clathrin and AP2 in phagocytosis of apoptotic cells. In Caenorhabditis elegans, depletion of the clathrin heavy chain CHC-1 and individual components of AP2 led to a significant accumulation of germ cell corpses, which resulted from defects in both cell corpse engulfment and phagosome maturation required for corpse removal. CHC-1 and AP2 components associate with phagosomes in an inter-dependent manner. Importantly, we found that the phagocytic receptor CED-1 interacts with the α subunit of AP2, while the CED-6/Gulp adaptor forms a complex with both CHC-1 and the AP2 complex, which likely mediates the rearrangement of the actin cytoskeleton required for cell corpse engulfment triggered by the CED-1 signaling pathway. In addition, CHC-1 and AP2 promote the phagosomal association of LST-4/Snx9/18/33 and DYN-1/dynamin by forming a complex with them, thereby facilitating the maturation of phagosomes necessary for corpse degradation. These findings reveal a non-classical role of clathrin and AP2 and establish them as indispensable regulators in phagocytic receptor-mediated apoptotic cell clearance.
Collapse
Affiliation(s)
- Didi Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Youli Jian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuezhao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaying Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Wei Zou
- National Institute of Biological Sciences, Beijing, China
| | - Lianwan Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongping Chai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangshuo Ou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Long Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proc Natl Acad Sci U S A 2013; 110:7193-8. [PMID: 23589871 DOI: 10.1073/pnas.1305286110] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The membrane-cytosol interface is the major locus of control of actin polymerization. At this interface, phosphoinositides act as second messengers to recruit membrane-binding proteins. We show that curved membranes, but not flat ones, can use phosphatidylinositol 3-phosphate [PI(3)P] along with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to stimulate actin polymerization. In this case, actin polymerization requires the small GTPase cell cycle division 42 (Cdc42), the nucleation-promoting factor neural Wiskott-Aldrich syndrome protein (N-WASP) and the actin nucleator the actin-related protein (Arp) 2/3 complex. In liposomes containing PI(4,5)P2 as the sole phosphoinositide, actin polymerization requires transducer of Cdc42 activation-1 (toca-1). In the presence of phosphatidylinositol 3-phosphate, polymerization is both more efficient and independent of toca-1. Under these conditions, sorting nexin 9 (Snx9) can be implicated as a specific adaptor that replaces toca-1 to mobilize neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex. This switch in phosphoinositide and adaptor specificity for actin polymerization from membranes has implications for how different types of actin structures are generated at precise times and locations in the cell.
Collapse
|
36
|
Li Z, Lu N, He X, Zhou Z. Monitoring the clearance of apoptotic and necrotic cells in the nematode Caenorhabditis elegans. Methods Mol Biol 2013; 1004:183-202. [PMID: 23733578 DOI: 10.1007/978-1-62703-383-1_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nematode Caenorhabditis elegans is an excellent model organism for studying the mechanisms -controlling cell death, including apoptosis, a cell suicide event, and necrosis, pathological cell deaths caused by environmental insults or genetic alterations. C. elegans has also been established as a model for understanding how dying cells are cleared from animal bodies. In particular, the transparent nature of worm bodies and eggshells make C. elegans particularly amenable for live-cell microscopy. Here we describe methods for identifying apoptotic and necrotic cells in living C. elegans embryos, larvae, and adults and for monitoring their clearance during development. We further discuss specific methods to distinguish engulfed from unengulfed apoptotic cells, and methods to monitor cellular and molecular events occurring during phagosome maturation. These methods are based on Differential Interference Contrast (DIC) microscopy or fluorescence microscopy using GFP-based reporters.
Collapse
Affiliation(s)
- Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
37
|
Pinto SM, Hengartner MO. Cleaning up the mess: cell corpse clearance in Caenorhabditis elegans. Curr Opin Cell Biol 2012. [PMID: 23206434 DOI: 10.1016/j.ceb.2012.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic and cell biology studies have led to the identification in Caenorhabditis elegans of a set of evolutionary conserved cellular mechanisms responsible for the clearance of apoptotic cells. Based on the phenotype of cell corpse clearance mutants, corpse clearance can be divided into three distinct, but linked steps: corpse recognition, corpse internalization, and corpse degradation. Work in recent years has led to a better understanding of the molecular pathways that mediate each of these steps. Here, we review recent developments in our understanding of in vivo cell corpse clearance in this simple but most elegant model organism.
Collapse
Affiliation(s)
- Sérgio Morgado Pinto
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland; Graduate Program in Areas of Basic and Applied Biology (GABBA), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
38
|
Abstract
The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.
Collapse
|
39
|
Fairn GD, Grinstein S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol 2012; 33:397-405. [DOI: 10.1016/j.it.2012.03.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/24/2012] [Indexed: 01/18/2023]
|
40
|
Jha A, Watkins SC, Traub LM. The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers. Mol Biol Cell 2012; 23:1742-64. [PMID: 22398720 PMCID: PMC3338440 DOI: 10.1091/mbc.e11-11-0939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During oogenesis in Drosophila, the phagocytic engulfment protein Ced-6 recognizes the atypical endocytic sorting signal within the vitellogenin receptor Yolkless. Because Ced-6 displays all of the features of an authentic clathrin adaptor, an unrecognized clathrin dependence for Ced-6/Gulp operation during phagocytosis is possible. Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called “eat-me” signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6–null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered.
Collapse
Affiliation(s)
- Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
41
|
Koh GCKW, Porras P, Aranda B, Hermjakob H, Orchard SE. Analyzing protein-protein interaction networks. J Proteome Res 2012; 11:2014-31. [PMID: 22385417 DOI: 10.1021/pr201211w] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of the "omics" era in biology research has brought new challenges and requires the development of novel strategies to answer previously intractable questions. Molecular interaction networks provide a framework to visualize cellular processes, but their complexity often makes their interpretation an overwhelming task. The inherently artificial nature of interaction detection methods and the incompleteness of currently available interaction maps call for a careful and well-informed utilization of this valuable data. In this tutorial, we aim to give an overview of the key aspects that any researcher needs to consider when working with molecular interaction data sets and we outline an example for interactome analysis. Using the molecular interaction database IntAct, the software platform Cytoscape, and its plugins BiNGO and clusterMaker, and taking as a starting point a list of proteins identified in a mass spectrometry-based proteomics experiment, we show how to build, visualize, and analyze a protein-protein interaction network.
Collapse
Affiliation(s)
- Gavin C K W Koh
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
SPPS: a sequence-based method for predicting probability of protein-protein interaction partners. PLoS One 2012; 7:e30938. [PMID: 22292078 PMCID: PMC3266917 DOI: 10.1371/journal.pone.0030938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/26/2011] [Indexed: 01/20/2023] Open
Abstract
Background The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. Results We have developed a web-based tool “Sequence-based Protein Partners Search” (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. Conclusions SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.
Collapse
|
43
|
Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y, Zhou Z. Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 2012; 10:e1001245. [PMID: 22272187 PMCID: PMC3260314 DOI: 10.1371/journal.pbio.1001245] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022] Open
Abstract
Cyclic oscillations in the level of phosphatidylinositol 3-phosphate in phagosomes, regulated by two phosphoinositide kinases and one phosphatase, are critical for phagosome maturation and degradation of apoptotic cells. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a signaling molecule important for many membrane trafficking events, including phagosome maturation. The level of PtdIns(3)P on phagosomes oscillates in two waves during phagosome maturation. However, the physiological significance of such oscillation remains unknown. Currently, the Class III PI 3-kinase (PI3K) Vps34 is regarded as the only kinase that produces PtdIns(3)P in phagosomal membranes. We report here that, in the nematode C. elegans, the Class II PI3K PIKI-1 plays a novel and crucial role in producing phagosomal PtdIns(3)P. PIKI-1 is recruited to extending pseudopods and nascent phagosomes prior to the appearance of PtdIns(3)P in a manner dependent on the large GTPase dynamin (DYN-1). PIKI-1 and VPS-34 act in sequence to provide overlapping pools of PtdIns(3)P on phagosomes. Inactivating both piki-1 and vps-34 completely abolishes the production of phagosomal PtdIns(3)P and disables phagosomes from recruiting multiple essential maturation factors, resulting in a complete arrest of apoptotic-cell degradation. We have further identified MTM-1, a PI 3-phosphatase that antagonizes the activities of PIKI-1 and VPS-34 by down-regulating PtdIns(3)P on phagosomes. Remarkably, persistent appearance of phagosomal PtdIns(3)P, as a result of inactivating mtm-1, blocks phagosome maturation. Our findings demonstrate that the proper oscillation pattern of PtdIns(3)P on phagosomes, programmed by the coordinated activities of two PI3Ks and one PI 3-phosphatase, is critical for phagosome maturation. They further shed light on how the temporally controlled reversible phosphorylation of phosphoinositides regulates the progression of multi-step cellular events. During animal development and in adulthood many cells are programmed to die by an active process called apoptosis. These dead or dying apoptotic cells are swiftly taken up by scavenger cells into membrane-bound compartments—phagosomes—where they are subsequently degraded when other intracellular organelles containing digestive enzymes fuse with phagosomes—a process called phagosome maturation. Phagocytosis of apoptotic cells is important for tissue remodeling in development and to prevent harmful inflammatory and autoimmune responses. In nematode worms—a model organism in which to study apoptosis—phagosome maturation is accompanied by two waves of the signaling molecule phosphatidylinositol 3-phosphate (PtdIns(3)P) in this compartment: one that forms soon after the formation of the phagosome and lasts for 10–15 minutes, and a second, weaker one 10 minutes later that lasts until the apoptotic cell is fully digested. In this study, we investigated the mechanism that regulates the timing and length of these two waves. We found that they are established by the sequential and combined action of three enzymes: two phosphoinositide 3-kinases, which add a phosphate group to the 3′ site of PtdIns, and one phosphoinositide 3-phosphatase, which removes it. We showed that inactivation of both kinases depleted phagosomes of PtdIns(3)P and resulted in the arrest of phagosome maturation and degradation of apoptotic cells. In addition, the timely turnover of PtdIns(3)P catalyzed by the phosphatase was critical for the step-wise progress of phagosome maturation. Our findings suggest that reversible phosphorylation of phophoinositides, catalyzed by distinct sets of kinases and phosphatases, might be a general mechanism to drive multi-step intracellular membrane trafficking events.
Collapse
Affiliation(s)
- Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qian Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Timothy R. Mahoney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lukas J. Neukomm
- Institute of Molecular Life Science, University of Zürich, Zürich, Switzerland
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Lu N, Zhou Z. Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:269-309. [PMID: 22251564 PMCID: PMC3551535 DOI: 10.1016/b978-0-12-394304-0.00013-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis is a cellular suicide process that quietly and efficiently eliminates unwanted or damaged cells. In metazoans, cells that undergo apoptosis are swiftly internalized by phagocytes and subsequently degraded inside phagosomes through phagosome maturation, a process that involves the fusion between phagosomes and multiple kinds of intracellular organelles and the gradual acidification of phagosomal lumen. In recent years, rapid progress has been made, in particular, through studies conducted in the model organism, the nematode Caenorhabditis elegans, in understanding the membrane trafficking events and molecular mechanisms that govern the degradation of apoptotic cells through phagosome maturation. These studies revealed the novel and essential functions of a large number of proteins, including the large GTPase dynamin, multiple Rab small GTPases and their regulatory proteins, the lipid second messenger PtdIns(3)P and its effectors, and unexpectedly, the phagosomal receptors for apoptotic cells, in promoting phagosome maturation. Further, novel signaling pathways essential for phagosome maturation have been delineated. Here, we discuss these exciting new findings, which have significantly deepened and broadened our understanding of the mechanisms that regulate the interaction between intracellular organelles and phagosomes.
Collapse
Affiliation(s)
- Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
45
|
Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011; 14:29-37. [PMID: 22193161 PMCID: PMC3613977 DOI: 10.1038/ncb2374] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.
Collapse
Affiliation(s)
- Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
46
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
47
|
Abstract
The endosomal network is an organized array of intracellular, membranous compartments that function as sorting sites for endosomal and biosynthetic cargo. The fate of endocytic cargo is reliant upon interactions with a number of molecularly distinct sorting complexes, which tightly control the relationship between sorting of their respective cargo and the physical process of membrane re-scuplturing required for the formation of transport carries. One such complex, retromer, mediates retrograde transport from endosomes to the trans-Golgi network (TGN). Disregulation of retromer has been implicated in a host of disease states including late-onset Alzheimer's. Rather than give a broad overview of retromer biology, here we aim to outline the recent advances in understanding this complex, focussing on the involvement of both clathrin and the cytoskeleton in retromer function.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
48
|
Almendinger J, Doukoumetzidis K, Kinchen JM, Kaech A, Ravichandran KS, Hengartner MO. A conserved role for SNX9-family members in the regulation of phagosome maturation during engulfment of apoptotic cells. PLoS One 2011; 6:e18325. [PMID: 21494661 PMCID: PMC3072968 DOI: 10.1371/journal.pone.0018325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/02/2011] [Indexed: 12/02/2022] Open
Abstract
Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution.
Collapse
Affiliation(s)
- Johann Almendinger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|