1
|
Chu ZY, Zi XJ. Network toxicology and molecular docking for the toxicity analysis of food contaminants: A case of Aflatoxin B 1. Food Chem Toxicol 2024; 188:114687. [PMID: 38663764 DOI: 10.1016/j.fct.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The present study aims to promote network toxicology and molecular docking strategies for the efficient evaluation of the toxicity of food contaminants. With the example of liver injury induced by the food contaminant Aflatoxin B1(AFB1), this study effectively investigated the putative toxicity of food contaminants and the potentially molecular mechanisms. The study found that AFB1 regulates multiple signalling pathways by modulating core targets such as AKT1, BCL2, TNF, CASP3, SRC and EGFR. These pathways encompass Pathways in cancer, PI3K-Akt signalling pathway, Endocrine resistance, Lipid and atherosclerosis, Apoptosis and other pathways, subsequently impacting immunotoxicity, inflammatory responses, apoptosis, cytogenetic mutations, and ultimately leading to liver injury. We provide a theoretical basis for understanding the molecular mechanisms of AFB1 hepatotoxicity and for the prevention and treatment of cancers caused by the food contaminant AFB1. Furthermore, our network toxicology and molecular docking methods also provide an effective method for the rapid evaluation of the toxicity of food contaminants, which effectively solves the cost and ethical problems associated with the use of experimental animals.
Collapse
Affiliation(s)
- Zi-Yong Chu
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.
| | - Xue-Jiao Zi
- College of Life Science and Technology, Tarim University, Alaer, 843300, Xinjiang, PR China
| |
Collapse
|
2
|
Chen D, Hou X. Aspartame carcinogenic potential revealed through network toxicology and molecular docking insights. Sci Rep 2024; 14:11492. [PMID: 38769413 PMCID: PMC11106323 DOI: 10.1038/s41598-024-62461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
The research employed network toxicology and molecular docking techniques to systematically examine the potential carcinogenic effects and mechanisms of aspartame (L-α-aspartyl-L-phenylalanine methyl ester). Aspartame, a commonly used synthetic sweetener, is widely applied in foods and beverages globally. In recent years, its safety issues, particularly the potential carcinogenic risk, have garnered widespread attention. The study first constructed an interaction network map of aspartame with gastric cancer targets using network toxicology methods and identified key targets and pathways. Preliminary validation was conducted through microarray data analysis and survival analysis, and molecular docking techniques were employed to further examine the binding affinity and modes of action of aspartame with key proteins. The findings suggest that aspartame has the potential to impact various cancer-related proteins, potentially raising the likelihood of cellular carcinogenesis by interfering with biomolecular function. Furthermore, the study found that the action patterns and pathways of aspartame-related targets are like the mechanisms of known carcinogenic pathways, further supporting the scientific hypothesis of its potential carcinogenicity. However, given the complexity of the in vivo environment, we also emphasize the necessity of validating these molecular-level findings in actual biological systems. The study introduces a fresh scientific method for evaluating the safety of food enhancers and provides a theoretical foundation for shaping public health regulations.
Collapse
Affiliation(s)
- Dandan Chen
- Fenghua Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Xianbing Hou
- Fenghua Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Li H, Xin G, Zhou Q, Yu X, Wan C, Wang Y, Wen A, Zhang K, Zhang B, Cao Y, Huang W. Qingkailing granule alleviates pulmonary fibrosis by inhibiting PI3K/AKT and SRC/STAT3 signaling pathways. Bioorg Chem 2024; 146:107286. [PMID: 38537336 DOI: 10.1016/j.bioorg.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-β1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.
Collapse
Affiliation(s)
- Hong Li
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Xin
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qilong Zhou
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiuxian Yu
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengyu Wan
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yilan Wang
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ao Wen
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Zhang
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Boli Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Huang
- Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Davis-Lunn M, Goult BT, Andrews MR. Clutching at Guidance Cues: The Integrin-FAK Axis Steers Axon Outgrowth. BIOLOGY 2023; 12:954. [PMID: 37508384 PMCID: PMC10376711 DOI: 10.3390/biology12070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Integrin receptors are essential contributors to neurite outgrowth and axon elongation. Activated integrins engage components of the extracellular matrix, enabling the growth cone to form point contacts, which connect the extracellular substrate to dynamic intracellular protein complexes. These adhesion complexes facilitate efficient growth cone migration and neurite extension. Major signalling pathways mediated by the adhesion complex are instigated by focal adhesion kinase (FAK), whilst axonal guidance molecules present in vivo promote growth cone turning or retraction by local modulation of FAK activity. Activation of FAK is marked by phosphorylation following integrin engagement, and this activity is tightly regulated during neurite outgrowth. FAK inhibition slows neurite outgrowth by reducing point contact turnover; however, mutant FAK constructs with enhanced activity stimulate aberrant outgrowth. Importantly, FAK is a major structural component of maturing adhesion sites, which provide the platform for actin polymerisation to drive leading edge advance. In this review, we discuss the coordinated signalling of integrin receptors and FAK, as well as their role in regulating neurite outgrowth and axon elongation. We also discuss the importance of the integrin-FAK axis in vivo, as integrin expression and activation are key determinants of successful axon regeneration following injury.
Collapse
Affiliation(s)
- Mathew Davis-Lunn
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Melissa R Andrews
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
5
|
Han YH, He XM, Jin MH, Sun HN, Kwon T. Lipophagy: A potential therapeutic target for nonalcoholic and alcoholic fatty liver disease. Biochem Biophys Res Commun 2023; 672:36-44. [PMID: 37336123 DOI: 10.1016/j.bbrc.2023.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Lipid droplets are unique lipid storage organelles in hepatocytes. Lipophagy is a key mechanism of selective degradation of lipid droplets through lysosomes. It plays a crucial role in the prevention of metabolic liver disease, including nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD), and is a potential therapeutic target for treating these dysfunctions. In this review, we highlighted recent research and discussed advances in key proteins and molecular mechanisms related to lipophagy in liver disease. Reactive oxygen species (ROS) is an inevitable product of metabolism in alcohol-treated or high-fat-treated cells. Under this light, the potential role of ROS in autophagy in lipid droplet removal was initially explored to provide insights into the link between oxidative stress and metabolic liver disease. Subsequently, the current measures and drugs that treat NAFLD and AFLD through lipophagy regulation were summarized. The complexity of molecular mechanisms underlying lipophagy in hepatocytes and the need for further studies for their elucidation, as well as the status and limitations of current therapeutic measures and drugs, were also discussed.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xin-Mei He
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, 56216, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Safaei S, Sajed R, Saeednejad Zanjani L, Rahimi M, Fattahi F, Ensieh Kazemi-Sefat G, Razmi M, Dorafshan S, Eini L, Madjd Z, Ghods R. Overexpression of cytoplasmic dynamin 2 is associated with worse outcomes in patients with clear cell renal cell carcinoma. Cancer Biomark 2022; 35:27-45. [DOI: 10.3233/cbm-210514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Dynamin 2 (DNM2) involved in tumor progression in various malignancies. OBJECTIVE: For the first time, we evaluated DNM2 expression pattern, its association with clinicopathological characteristics and survival outcomes in RCC subtypes. METHODS: We evaluated the DNM2 expression pattern in RCC tissues as well as adjacent normal tissue using immunohistochemistry on tissue microarray (TMA) slides. RESULTS: Our findings revealed increased DNM2 expression in RCC samples rather than in adjacent normal tissues. The results indicated that there was a statistically significant difference between cytoplasmic expression of DNM2 among subtypes of RCC in terms of intensity of staining, percentage of positive tumor cells, and H-score (P= 0.024, 0.049, and 0.009, respectively). The analysis revealed that increased cytoplasmic expression of DNM2 in ccRCC is associated with worse OS (log rank: P= 0.045), DSS (P= 0.049), and PFS (P= 0.041). Furthermore, cytoplasmic expression of DNM2 was found as an independent prognostic factor affecting DSS and PFS in multivariate analysis. CONCLUSIONS: Our results indicated that DNM2 cytoplasmic expression is associated with tumor aggressiveness and poor outcomes. DNM2 could serve as a promising prognostic biomarker and therapeutic target in patients with ccRCC.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mandana Rahimi
- Hasheminejad Kidney Center, Pathology department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
9
|
Bamberger C, Diedrich J, Martìnez-Bartholomé S, Yates JR. Cancer Conformational Landscape Shapes Tumorigenesis. J Proteome Res 2022; 21:1017-1028. [PMID: 35271278 PMCID: PMC9653087 DOI: 10.1021/acs.jproteome.1c00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During tumorigenesis, DNA mutations in protein coding sequences can alter amino acid sequences which can change the structures of proteins. While the 3D structure of mutated proteins has been studied with atomic resolution, the precise impact of somatic mutations on the 3D proteome during malignant transformation remains unknown because methods to reveal in vivo protein structures in high throughput are limited. Here, we measured the accessibility of the lysine ε-amine for chemical modification across proteomes using covalent protein painting (CPP) to indirectly determine alterations in the 3D proteome. CPP is a novel, high-throughput quantitative mass spectrometric method that surveyed a total of 8052 lysine sites across the 60 cell lines of the well-studied anticancer cell line panel (NCI60). Overall, 5.2 structural alterations differentiated any cancer cell line from the other 59. Structural aberrations in 98 effector proteins correlated with the selected presence of 90 commonly mutated proteins in the NCI60 cell line panel, suggesting that different tumor genotypes reshape a limited set of effector proteins. We searched our dataset for druggable conformational aberrations and identified 49 changes in the cancer conformational landscape that correlated with the growth inhibition profiles of 300 drug candidates out of 50,000 small molecules. We found that alterations in heat shock proteins are key predictors of anticancer drug efficacy, which implies that the proteostasis network may have a general but hitherto unrecognized role in maintaining malignancy. Individual lysine sites may serve as biomarkers to guide drug selection or may be directly targeted for anticancer drug development.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jolene Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martìnez-Bartholomé
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Tassin TC, Barylko B, Hedde PN, Chen Y, Binns DD, James NG, Mueller JD, Jameson DM, Taussig R, Albanesi JP. Gain-of-Function Properties of a Dynamin 2 Mutant Implicated in Charcot-Marie-Tooth Disease. Front Cell Neurosci 2021; 15:745940. [PMID: 34744632 PMCID: PMC8563704 DOI: 10.3389/fncel.2021.745940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Mutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis. In contrast, CNM-linked mutations inhibit intramolecular interactions that normally suppress dynamin self-assembly and GTPase activation. Hence, CNM-linked DNM2 mutants form abnormally stable polymers and express enhanced assembly-dependent GTPase activation. These distinct effects of CMT and CNM mutations are consistent with current findings that DNM2-dependent CMT and CNM are loss-of-function and gain-of-function diseases, respectively. In this study, we present evidence that at least one CMT-causing DNM2 mutant (ΔDEE; lacking residues 555DEE557) forms polymers that, like the CNM mutants, are resistant to disassembly and display enhanced GTPase activation. We further show that the ΔDEE mutant undergoes 2-3-fold higher levels of tyrosine phosphorylation than wild-type DNM2. These results suggest that molecular mechanisms underlying the absence of pathogenic overlap between DNM2-dependent CMT and CNM should be re-examined.
Collapse
Affiliation(s)
- Tara C. Tassin
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States
| | - Barbara Barylko
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States
| | - Per Niklas Hedde
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, United States
| | - Yan Chen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - Derk D. Binns
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States
| | - Nicholas G. James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - David M. Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Ronald Taussig
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States
| | - Joseph P. Albanesi
- Department of Pharmacology, U.T. Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Roles of Endocytic Processes and Early Endosomes on Focal Adhesion Dynamics in MDA-MB-231 Cells. Rep Biochem Mol Biol 2021; 10:145-155. [PMID: 34604404 DOI: 10.52547/rbmb.10.2.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Background Focal adhesion (FA) play a critical role in many biological processes which include cell survival and cell migration. They serve as cellular anchor, allowing cells to stay attached to the extracellular matrix (ECM), and can also regulate cellular transduction. Previously, it has been suggested that vesicles such as endosomes could interact directly with FA or be implicated in their turnover. In this study, we investigated whether there is a relationship between FA and the early endocytic machinery in MDA-MB-231 cells. Methods In this study, cell culture, transfection, time laps confocal microscopies, immunocytochemistry, western blotting, Cell fractionation and immunoprecipitation techniques were performed. Results Cells acutely treated with Dynasore, an inhibitor of dynamin, or with Pitstop 2, an inhibitor of clathryn-dependent endocytosis showed a reduction in the expression of early endosome biomarkers such as Rab5 and EEA1. Additionally, cells treated with these endocytic inhibitors exhibited an increase number and size of FA, as well as an increase FA turnover duration. This data was consistent with the reduction of the speed of cell migration. We demonstrated that Rab5- and EEA1-positive early endosomes were found to be colocalized with internalized FA. Conclusion The present study suggests that there is a link between FA and early endosome markers, which indicates that the early endosomes may be involved in FA dynamics.
Collapse
|
12
|
Mochizuki Y, Funayama R, Shirota M, Kikukawa Y, Ohira M, Karasawa H, Kobayashi M, Ohnuma S, Unno M, Nakayama K. Alternative microexon splicing by RBFOX2 and PTBP1 is associated with metastasis in colorectal cancer. Int J Cancer 2021; 149:1787-1800. [PMID: 34346508 DOI: 10.1002/ijc.33758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Abstract
The splicing of microexons (very small exons) is frequently dysregulated in the brain of individuals with autism spectrum disorder. However, little is known of the patterns, regulatory mechanisms and roles of microexon splicing in cancer. We here examined the transcriptome-wide profile of microexon splicing in matched colorectal cancer (CRC) and normal tissue specimens. Out of 1492 microexons comprising 3 to 15 nucleotides, 21 (1%) manifested differential splicing between CRC and normal tissue. The 21 genes harboring the differentially spliced microexons were enriched in gene ontology terms related to cell adhesion and migration. RNA interference-mediated knockdown experiments identified two splicing factors, RBFOX2 and PTBP1, as regulators of microexon splicing in CRC cells. RBFOX2 and PTBP1 were found to directly bind to microexon-containing pre-mRNAs and to control their splicing in such cells. Differential microexon splicing was shown to be due, at least in part, to altered expression of RBFOX2 and PTBP1 in CRC tissue compared to matched normal tissue. Finally, we found that changes in the pattern of microexon splicing were associated with CRC metastasis. Our data thus suggest that altered expression of RBFOX2 and PTBP1 might influence CRC metastasis through the regulation of microexon splicing.
Collapse
Affiliation(s)
- Yasushi Mochizuki
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuna Kikukawa
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Ohira
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hideaki Karasawa
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Minoru Kobayashi
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S. ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun 2020; 11:4261. [PMID: 32848136 PMCID: PMC7450082 DOI: 10.1038/s41467-020-18081-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/31/2020] [Indexed: 11/08/2022] Open
Abstract
Metastasis, the spread of malignant cells from a primary tumour to distant sites, causes 90% of cancer-related deaths. The integrin ITGB3 has been previously described to play an essential role in breast cancer metastasis, but the precise mechanisms remain undefined. We have now uncovered essential and thus far unknown roles of ITGB3 in vesicle uptake. The functional requirement for ITGB3 derives from its interactions with heparan sulfate proteoglycans (HSPGs) and the process of integrin endocytosis, allowing the capture of extracellular vesicles and their endocytosis-mediated internalization. Key for the function of ITGB3 is the interaction and activation of focal adhesion kinase (FAK), which is required for endocytosis of these vesicles. Thus, ITGB3 has a central role in intracellular communication via extracellular vesicles, proposed to be critical for cancer metastasis.
Collapse
Affiliation(s)
- Pedro Fuentes
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Pedro J Guijarro
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Emperador
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Tumor Biomarkers Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| | - Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
14
|
Banerjee A, Kulkarni S, Mukherjee A. Herpes Simplex Virus: The Hostile Guest That Takes Over Your Home. Front Microbiol 2020; 11:733. [PMID: 32457704 PMCID: PMC7221137 DOI: 10.3389/fmicb.2020.00733] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Alpha (α)-herpesviruses (HSV-1 and HSV-2), like other viruses, are obligate intracellular parasites. They hijack the cellular machinery to survive and replicate through evading the defensive responses by the host. The viral genome of herpes simplex viruses (HSVs) contains viral genes, the products of which are destined to exploit the host apparatus for their own existence. Cellular modulations begin from the entry point itself. The two main gateways that the virus has to penetrate are the cell membrane and the nuclear membrane. Changes in the cell membrane are triggered when the glycoproteins of HSV interact with the surface receptors of the host cell, and from here, the components of the cytoskeleton take over. The rearrangement in the cytoskeleton components help the virus to enter as well as transport to the nucleus and back to the cell membrane to spread out to the other cells. The entire carriage process is also mediated by the motor proteins of the kinesin and dynein superfamily and is directed by the viral tegument proteins. Also, the virus captures the cell’s most efficient cargo carrying system, the endoplasmic reticulum (ER)–Golgi vesicular transport machinery for egress to the cell membrane. For these reasons, the host cell has its own checkpoints where the normal functions are halted once a danger is sensed. However, a cell may be prepared for the adversities from an invading virus, and it is simply commendable that the virus has the antidote to these cellular strategies as well. The HSV viral proteins are capable of limiting the use of the transcriptional and translational tools for the cell itself, so that its own transcription and translation pathways remain unhindered. HSV prefers to constrain any self-destruction process of the cell—be it autophagy in the lysosome or apoptosis by the mitochondria, so that it can continue to parasitize the cell for its own survival. This review gives a detailed account of the significance of compartmentalization during HSV pathogenesis. It also highlights the undiscovered areas in the HSV cell biology research which demand attention for devising improved therapeutics against the infection.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| | - Anupam Mukherjee
- Division of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, India
| |
Collapse
|
15
|
Aisa Y, Yunusi K, Chen Q, Mi N. Systematic understanding of the potential targets and pharmacological mechanisms of acteoside by network pharmacology approach. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Burton KM, Cao H, Chen J, Qiang L, Krueger EW, Johnson KM, Bamlet WR, Zhang L, McNiven MA, Razidlo GL. Dynamin 2 interacts with α-actinin 4 to drive tumor cell invasion. Mol Biol Cell 2020; 31:439-451. [PMID: 31967944 PMCID: PMC7185896 DOI: 10.1091/mbc.e19-07-0395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
The large GTPase Dynamin 2 (Dyn2) is known to increase the invasiveness of pancreatic cancer tumor cells, but the mechanisms by which Dyn2 regulates changes in the actin cytoskeleton to drive cell migration are still unclear. Here we report that a direct interaction between Dyn2 and the actin-bundling protein alpha-actinin (α-actinin) 4 is critical for tumor cell migration and remodeling of the extracellular matrix in pancreatic ductal adenocarcinoma (PDAC) cells. The direct interaction is mediated through the C-terminal tails of both Dyn2 and α-actinin 4, and these proteins interact at invasive structures at the plasma membrane. While Dyn2 binds directly to both α-actinin 1 and α-actinin 4, only the interaction with α-actinin 4 is required to promote tumor cell invasion. Specific disruption of the Dyn2-α-actinin 4 interaction blocks the ability of PDAC cells to migrate in either two dimensions or invade through extracellular matrix as a result of impaired invadopodia stability. Analysis of human PDAC tumor tissue additionally reveals that elevated α-actinin 4 or Dyn2 expression are predictive of poor survival. Overall, these data demonstrate that Dyn2 regulates cytoskeletal dynamics, in part, by interacting with the actin-binding protein α-actinin 4 during tumor cell invasion.
Collapse
Affiliation(s)
- Kevin M. Burton
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
| | - Hong Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Jing Chen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Li Qiang
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Eugene W. Krueger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - William R. Bamlet
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905
| | - Lizhi Zhang
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905
| | - Mark A. McNiven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Gina L. Razidlo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
17
|
Chepied A, Daoud-Omar Z, Meunier-Balandre AC, Laird DW, Mesnil M, Defamie N. Involvement of the Gap Junction Protein, Connexin43, in the Formation and Function of Invadopodia in the Human U251 Glioblastoma Cell Line. Cells 2020; 9:cells9010117. [PMID: 31947771 PMCID: PMC7017254 DOI: 10.3390/cells9010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The resistance of glioblastomas to treatments is mainly the consequence of their invasive capacities. Therefore, in order to better treat these tumors, it is important to understand the molecular mechanisms which are responsible for this behavior. Previous work suggested that gap junction proteins, the connexins, facilitate the aggressive nature of glioma cells. Here, we show that one of them—connexin43 (Cx43)—is implicated in the formation and function of invadopodia responsible for invasion capacity of U251 human glioblastoma cells. Immunofluorescent approaches—combined with confocal analyses—revealed that Cx43 was detected in all the formation stages of invadopodia exhibiting proteolytic activity. Clearly, Cx43 appeared to be localized in invadopodia at low cell density and less associated with the establishment of gap junctions. Accordingly, lower extracellular matrix degradation correlated with less mature invadopodia and MMP2 activity when Cx43 expression was decreased by shRNA strategies. Moreover, the kinetics of invadopodia formation could be dependent on Cx43 dynamic interactions with partners including Src and cortactin. Interestingly, it also appeared that invadopodia formation and MMP2 activity are dependent on Cx43 hemichannel activity. In conclusion, these results reveal that Cx43 might be involved in the formation and function of the invadopodia of U251 glioblastoma cells.
Collapse
Affiliation(s)
- Amandine Chepied
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Zeinaba Daoud-Omar
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Annie-Claire Meunier-Balandre
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Marc Mesnil
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Norah Defamie
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
- Correspondence:
| |
Collapse
|
18
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Wong BS, Shea DJ, Mistriotis P, Tuntithavornwat S, Law RA, Bieber JM, Zheng L, Konstantopoulos K. A Direct Podocalyxin-Dynamin-2 Interaction Regulates Cytoskeletal Dynamics to Promote Migration and Metastasis in Pancreatic Cancer Cells. Cancer Res 2019; 79:2878-2891. [PMID: 30975647 DOI: 10.1158/0008-5472.can-18-3369] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
The sialoglycoprotein podocalyxin is absent in normal pancreas but is overexpressed in pancreatic cancer and is associated with poor clinical outcome. Here, we investigate the role of podocalyxin in migration and metastasis of pancreatic adenocarcinomas using SW1990 and Pa03c as cell models. Although ezrin is regarded as a cytoplasmic binding partner of podocalyxin that regulates actin polymerization via Rac1 or RhoA, we did not detect podocalyxin-ezrin association in pancreatic cancer cells. Moreover, depletion of podocalyxin did not alter actin dynamics or modulate Rac1 and RhoA activities in pancreatic cancer cells. Using mass spectrometry, bioinformatics analysis, coimmunoprecipitation, and pull-down assays, we discovered a novel, direct binding interaction between the cytoplasmic tail of podocalyxin and the large GTPase dynamin-2 at its GTPase, middle, and pleckstrin homology domains. This podocalyxin-dynamin-2 interaction regulated microtubule growth rate, which in turn modulated focal adhesion dynamics and ultimately promoted efficient pancreatic cancer cell migration via microtubule- and Src-dependent pathways. Depletion of podocalyxin in a hemispleen mouse model of pancreatic cancer diminished liver metastasis without altering primary tumor size. Collectively, these findings reveal a novel mechanism by which podocalyxin facilitates pancreatic cancer cell migration and metastasis. SIGNIFICANCE: These findings reveal that a novel interaction between podocalyxin and dynamin-2 promotes migration and metastasis of pancreatic cancer cells by regulating microtubule and focal adhesion dynamics.
Collapse
Affiliation(s)
- Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Robert A Law
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jake M Bieber
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland. .,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Luwor R, Morokoff AP, Amiridis S, D'Abaco G, Paradiso L, Stylli SS, Nguyen HPT, Tarleton M, Young KA, O'Brien TJ, Robinson PJ, Chircop M, McCluskey A, Jones NC. Targeting Glioma Stem Cells by Functional Inhibition of Dynamin 2: A Novel Treatment Strategy for Glioblastoma. Cancer Invest 2019; 37:144-155. [PMID: 30907150 DOI: 10.1080/07357907.2019.1582060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.
Collapse
Affiliation(s)
- Rodney Luwor
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Andrew P Morokoff
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,b Department of Neurosurgery , The Royal Melbourne Hospital , Parkville , Australia
| | - Stephanie Amiridis
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Giovanna D'Abaco
- d Melbourne School of Engineering, School of Chemical and Biomedical Engineering , The University of Melbourne , Parkville , Australia
| | - Lucia Paradiso
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Stanley S Stylli
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,b Department of Neurosurgery , The Royal Melbourne Hospital , Parkville , Australia
| | - Hong P T Nguyen
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Mark Tarleton
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Kelly A Young
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Terence J O'Brien
- c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,f Department of Neuroscience , Central Clinical School, Monash University , Melbourne , Australia.,g Department of Neurology , The Alfred Hospital , Melbourne , Australia
| | - Phillip J Robinson
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia.,h Children's Medical Research Institute, The University of Sydney , Westmead , Australia
| | - Megan Chircop
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia.,h Children's Medical Research Institute, The University of Sydney , Westmead , Australia
| | - Adam McCluskey
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Nigel C Jones
- c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,f Department of Neuroscience , Central Clinical School, Monash University , Melbourne , Australia.,g Department of Neurology , The Alfred Hospital , Melbourne , Australia
| |
Collapse
|
21
|
Cheung PW, Terlouw A, Janssen SA, Brown D, Bouley R. Inhibition of non-receptor tyrosine kinase Src induces phosphoserine 256-independent aquaporin-2 membrane accumulation. J Physiol 2019; 597:1627-1642. [PMID: 30488437 PMCID: PMC6418769 DOI: 10.1113/jp277024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Aquaporin-2 (AQP2) is crucial for water homeostasis, and vasopressin (VP) induces AQP2 membrane trafficking by increasing intracellular cAMP, activating PKA and causing phosphorylation of AQP2 at serine 256, 264 and 269 residues and dephosphorylation of serine 261 residue on the AQP2 C-terminus. It is thought that serine 256 is the master regulator of AQP2 trafficking, and its phosphorylation has to precede the change of phosphorylation state of other serine residues. We found that Src inhibition causes serine 256-independent AQP2 membrane trafficking and induces phosphorylation of serine 269 independently of serine 256. This targeted phosphorylation of serine 269 is important for Src inhibition-induced AQP2 membrane accumulation; without serine 269, Src inhibition exerts no effect on AQP2 trafficking. This result helps us better understand the independent pathways that can target different AQP2 residues, and design new strategies to induce or sustain AQP2 membrane expression when VP signalling is defective. ABSTRACT Aquaporin-2 (AQP2) is essential for water homeostasis. Upon stimulation by vasopressin, AQP2 is phosphorylated at serine 256 (S256), S264 and S269, and dephosphorylated at S261. It is thought that S256 is the master regulator of AQP2 trafficking and membrane accumulation, and that its phosphorylation has to precede phosphorylation of other serine residues. In this study, we found that VP reduces Src kinase phosphorylation: by suppressing Src using the inhibitor dasatinib and siRNA, we could increase AQP2 membrane accumulation in cultured AQP2-expressing cells and in kidney collecting duct principal cells. Src inhibition increased exocytosis and inhibited clathrin-mediated endocytosis of AQP2, but exerted its effect in a cAMP, PKA and S256 phosphorylation (pS256)-independent manner. Despite the lack of S256 phosphorylation, dasatinib increased phosphorylation of S269, even in S256A mutant cells in which S256 phosphorylation cannot occur. To confirm the importance of pS269 in AQP2 re-distribution, we expressed an AQP2 S269A mutant in LLC-PK1 cells, and found that dasatinib no longer induced AQP2 membrane accumulation. In conclusion, Src inhibition causes phosphorylation of S269 independently of pS256, and induces AQP2 membrane accumulation by inhibiting clathrin-mediated endocytosis and increasing exocytosis. We conclude that S269 can be phosphorylated without pS256, and pS269 alone is important for AQP2 apical membrane accumulation under some conditions. These data increase our understanding of the independent pathways that can phosphorylate different residues in the AQP2 C-terminus, and suggest new strategies to target distinct AQP2 serine residues to induce membrane expression of this water channel when VP signalling is defective.
Collapse
Affiliation(s)
- Pui W. Cheung
- Center for Systems BiologyProgram in Membrane Biology and Division of NephrologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Abby Terlouw
- Center for Systems BiologyProgram in Membrane Biology and Division of NephrologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Sam Antoon Janssen
- Center for Systems BiologyProgram in Membrane Biology and Division of NephrologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Dennis Brown
- Center for Systems BiologyProgram in Membrane Biology and Division of NephrologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Richard Bouley
- Center for Systems BiologyProgram in Membrane Biology and Division of NephrologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
22
|
Qiang L, Cao H, Chen J, Weller SG, Krueger EW, Zhang L, Razidlo GL, McNiven MA. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1. J Cell Biol 2018; 218:317-332. [PMID: 30487181 PMCID: PMC6314558 DOI: 10.1083/jcb.201802032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor cells utilize invadopodia to remodel the surrounding stroma during metastatic invasion. Qiang et al. demonstrate that MTCBP-1 significantly attenuates invadopodia formation and function by binding MT1-MMP and preventing the interaction of MT1-MMP with the actin cytoskeleton. The process by which tumor cells mechanically invade through surrounding stroma into peripheral tissues is an essential component of metastatic dissemination. The directed recruitment of the metalloproteinase MT1-MMP to invadopodia plays a critical role in this invasive process. Here, we provide mechanistic insight into MT1-MMP cytoplasmic tail binding protein 1 (MTCBP-1) with respect to invadopodia formation, matrix remodeling, and invasion by pancreatic tumor cells. MTCBP-1 localizes to invadopodia and interacts with MT1-MMP. We find that this interaction displaces MT1-MMP from invadopodia, thereby attenuating their number and function and reducing the capacity of tumor cells to degrade matrix. Further, we observe an inverse correlation between MTCBP-1 and MT1-MMP expression both in cultured cell lines and human pancreatic tumors. Consistently, MTCBP-1–expressing cells show decreased ability to invade in vitro and metastasize in vivo. These findings implicate MTCBP-1 as an inhibitor of the metastatic process.
Collapse
Affiliation(s)
- Li Qiang
- Biochemistry and Molecular Biology Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Hong Cao
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jing Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shaun G Weller
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Eugene W Krueger
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Lizhi Zhang
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN.,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN .,Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
23
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
24
|
Martin C, Leyton L, Hott M, Arancibia Y, Spichiger C, McNiven MA, Court FA, Concha MI, Burgos PV, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Perturbs Golgi Apparatus Integrity through Activation of Src Tyrosine Kinase and Dyn-2 GTPase. Front Cell Infect Microbiol 2017; 7:371. [PMID: 28879169 PMCID: PMC5572415 DOI: 10.3389/fcimb.2017.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that establishes a latent persistent neuronal infection in humans. The pathogenic effects of repeated viral reactivation in infected neurons are still unknown. Several studies have reported that during HSV-1 epithelial infection, the virus could modulate diverse cell signaling pathways remodeling the Golgi apparatus (GA) membranes, but the molecular mechanisms implicated, and the functional consequences to neurons is currently unknown. Here we report that infection of primary neuronal cultures with HSV-1 triggers Src tyrosine kinase activation and subsequent phosphorylation of Dynamin 2 GTPase, two players with a role in GA integrity maintenance. Immunofluorescence analyses showed that HSV-1 productive neuronal infection caused a scattered and fragmented distribution of the GA through the cytoplasm, contrasting with the uniform perinuclear distribution pattern observed in control cells. In addition, transmission electron microscopy revealed swollen cisternae and disorganized stacks in HSV-1 infected neurons compared to control cells. Interestingly, PP2, a selective inhibitor for Src-family kinases markedly reduced these morphological alterations of the GA induced by HSV-1 infection strongly supporting the possible involvement of Src tyrosine kinase. Finally, we showed that HSV-1 tegument protein VP11/12 is necessary but not sufficient to induce Dyn2 phosphorylation. Altogether, these results show that HSV-1 neuronal infection triggers activation of Src tyrosine kinase, phosphorylation of Dynamin 2 GTPase, and perturbation of GA integrity. These findings suggest a possible neuropathogenic mechanism triggered by HSV-1 infection, which could involve dysfunction of the secretory system in neurons and central nervous system.
Collapse
Affiliation(s)
- Carolina Martin
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Luis Leyton
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Melissa Hott
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Yennyfer Arancibia
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Carlos Spichiger
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Center for Basic Research in Digestive Diseases, Mayo ClinicRochester, MN, United States
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Margarita I Concha
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Faculty of Medicine, Institute of Physiology, Universidad Austral de ChileValdivia, Chile.,Facultad de Ciencia y Facultad de Medicina, Centro de Biología Celular y Biomedicina, Universidad San SebastiánSantiago, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de ChileValdivia, Chile
| |
Collapse
|
25
|
Eppler FJ, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS One 2017; 12:e0172443. [PMID: 28273099 PMCID: PMC5342215 DOI: 10.1371/journal.pone.0172443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022] Open
Abstract
Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-dependent T cell adhesion in vitro. This phenotype was not observed when T cells were treated with various chemical inhibitors which abrogate endocytosis or actin polymerization. We furthermore detected dynamin2 in signaling complexes and propose that it controls T cell adhesion via FAK/Pyk2- and RapGEF1-mediated Rap1 activation. In addition, the dynamin2 inhibitor-induced reduction of lymphocyte adhesion can be rescued by Rap1a overexpression. We demonstrate that the dynamin2 effect on T cell adhesion does not involve integrin affinity regulation but instead relies on its ability to modulate integrin valency. Taken together, we suggest a previously unidentified role of dynamin2 in the regulation of integrin-mediated lymphocyte adhesion via a Rap1 signaling pathway.
Collapse
Affiliation(s)
- Felix J. Eppler
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Thomas Quast
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
26
|
Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places. Curr Opin Cell Biol 2017; 45:24-30. [PMID: 28213315 DOI: 10.1016/j.ceb.2017.01.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase first identified at extracellular matrix and integrin receptor cell adhesion sites and is a key regulator of cell movement. FAK is activated by a variety of stimuli. Herein, we discuss advances in conformational-associated FAK activation and dimerization mechanisms. Additionally, new roles have emerged for FAK signaling at cell adhesions, adherens junctions, endosomes, and the nucleus. In light of these new findings, we review how FAK activation at these sites is connected to the regulation of integrin recycling-activation, vascular permeability, cell survival, and transcriptional regulation, respectively. Studies uncovering FAK signaling connections in unexpected places within cells have yielded important new regulatory insights in cell biology.
Collapse
Affiliation(s)
- Elizabeth G Kleinschmidt
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States
| | - David D Schlaepfer
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States; Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Drive, MC 0983, La Jolla, CA 92093-0983, United States.
| |
Collapse
|
27
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
28
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
29
|
FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol 2016; 18:491-503. [PMID: 27043085 DOI: 10.1038/ncb3333] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Integrin endocytic recycling is critical for cell migration, yet how recycled integrins assemble into new adhesions is unclear. By synchronizing endocytic disassembly of focal adhesions (FAs), we find that recycled integrins reassemble FAs coincident with their return to the cell surface and dependent on Rab5 and Rab11. Unexpectedly, endocytosed integrins remained in an active but unliganded state in endosomes. FAK and Src kinases co-localized with endocytosed integrin and were critical for FA reassembly by regulating integrin activation and recycling, respectively. FAK sustained the active integrin conformation by maintaining talin association with Rab11 endosomes in a type I phosphatidylinositol phosphate kinase (PIPKIγ)-dependent manner. In migrating cells, endocytosed integrins reassembled FAs polarized towards the leading edge, and this polarization required FAK. These studies identify unanticipated roles for FA proteins in maintaining endocytosed integrin in an active conformation. We propose that the conformational memory of endocytosed integrin enhances polarized reassembly of FAs to enable directional cell migration.
Collapse
|
30
|
Villari G, Jayo A, Zanet J, Fitch B, Serrels B, Frame M, Stramer BM, Goult BT, Parsons M. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration. J Cell Sci 2015; 128:4601-14. [PMID: 26542021 PMCID: PMC4696496 DOI: 10.1242/jcs.175760] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/03/2015] [Indexed: 01/06/2023] Open
Abstract
Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin-microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease.
Collapse
Affiliation(s)
- Giulia Villari
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Asier Jayo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Jennifer Zanet
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK Université de Toulouse, Université Paul Sabatier and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Centre de Biologie du Développement, Toulouse F-31062, France
| | - Briana Fitch
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Bryan Serrels
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Margaret Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Brian M Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
31
|
Reinecke J, Caplan S. Endocytosis and the Src family of non-receptor tyrosine kinases. Biomol Concepts 2015; 5:143-55. [PMID: 25372749 DOI: 10.1515/bmc-2014-0003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 11/15/2022] Open
Abstract
The regulated intracellular transport of nutrient, adhesion, and growth factor receptors is crucial for maintaining cell and tissue homeostasis. Endocytosis, or endocytic membrane trafficking, involves the steps of intracellular transport that include, but are not limited to, internalization from the plasma membrane, sorting in early endosomes, transport to late endosomes/lysosomes followed by degradation, and/or recycling back to the plasma membrane through tubular recycling endosomes. In addition to regulating the localization of transmembrane receptor proteins, the endocytic pathway also controls the localization of non-receptor molecules. The non-receptor tyrosine kinase c-Src (Src) and its closely related family members Yes and Fyn represent three proteins whose localization and signaling activities are tightly regulated by endocytic trafficking. Here, we provide a brief overview of endocytosis, Src function and its biochemical regulation. We will then concentrate on recent advances in understanding how Src intracellular localization is regulated and how its subcellular localization ultimately dictates downstream functioning. As Src kinases are hyperactive in many cancers, it is essential to decipher the spatiotemporal regulation of this important family of tyrosine kinases.
Collapse
|
32
|
Sackmann E. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3132-42. [PMID: 26119326 DOI: 10.1016/j.bbamcr.2015.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/09/2023]
Abstract
Cell-tissue-tissue interaction is determined by specific short range forces between cell adhesion molecules (CAMs) and ligands of the tissue, long range repulsion forces mediated by cell surface grafted macromolecules and adhesion-induced elastic stresses in the cell envelope. This interplay of forces triggers the rapid random clustering of tightly coupled linkers. By coupling of actin gel patches to the intracellular domains of the CAMs, these clusters can grow in a secondary process resulting in the formation of functional adhesion microdomains (ADs). The ADs can act as biochemical steering centers by recruiting and activating functional proteins, such as GTPases and associated regulating proteins, through electrostatic-hydrophobic forces with cationic lipid domains that act as attractive centers. First, I summarize physical concepts of cell adhesion revealed by studies of biomimetic systems. Then I describe the role of the adhesion domains as biochemical signaling platforms and force transmission centers promoting cellular protrusions, in terms of a shell string model of cells. Protrusion forces are generated by actin gelation triggered by molecular machines (focal adhesion kinase (FAK), Src-kinases and associated adaptors) which assemble around newly formed integrin clusters. They recruit and activate the GTPases Rac-1 and actin gelation promoters to charged membrane domains via electrostatic-hydrophobic forces. The cell front is pushed forward in a cyclic and stepwise manner and the step-width is determined by the dynamics antagonistic interplay between Rac-1 and RhoA. The global cell polarization in the direction of motion is mediated by the actin-microtubule (MT) crosstalk at adhesion domains. Supramolecular actin-MT assemblies at the front help to promote actin polymerization. At the rear they regulate the dismantling of the ADs through the Ca(++)-mediated activation of the protease calpain and trigger their disruption by RhoA mediated contraction via stress fibers. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Erich Sackmann
- Technical University Munich, Germany; Physics Department E22/E27, James Franck Str., D85747 Garching, Germany.
| |
Collapse
|
33
|
Torres VA. Rab'ing tumor cell migration and invasion: focal adhesion disassembly driven by Rab5. Cell Adh Migr 2015; 8:84-7. [PMID: 24727246 DOI: 10.4161/cam.28510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The small GTPase Rab5 has been extensively studied in the context of endocytic trafficking because it is critical in the regulation of early endosome dynamics. In addition to this canonical role, evidence obtained in recent years implicates Rab5 in the regulation of cell migration. This novel role of Rab5 is based not only on an indirect relationship between cell migration and endosomal trafficking as separate processes, but also on the direct regulation of signaling proteins implicated in cell migration. However, the precise mechanisms underlying this connection have remained elusive. Recent studies have shown that the activation of Rab5 is a critical event for maintaining the dynamics of focal adhesions, which is fundamental in regulating not only cell migration but also tumor cell invasion.
Collapse
Affiliation(s)
- Vicente A Torres
- Institute for Research in Dental Sciences; Faculty of Dentistry; Universidad de Chile; Santiago, Chile
| |
Collapse
|
34
|
Barosso IR, Zucchetti AE, Miszczuk GS, Boaglio AC, Taborda DR, Roma MG, Crocenzi FA, Sánchez Pozzi EJ. EGFR participates downstream of ERα in estradiol-17β-D-glucuronide-induced impairment of Abcc2 function in isolated rat hepatocyte couplets. Arch Toxicol 2015; 90:891-903. [PMID: 25813982 DOI: 10.1007/s00204-015-1507-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
Estradiol-17β-D-glucuronide (E17G) induces acute endocytic internalization of canalicular transporters, including multidrug resistance-associated protein 2 (Abcc2) in rat, generating cholestasis. Several proteins organized in at least two different signaling pathways are involved in E17G cholestasis: one pathway involves estrogen receptor alpha (ERα), Ca(2+)-dependent protein kinase C and p38-mitogen activated protein kinase, and the other pathway involves GPR30, PKA, phosphoinositide 3-kinase/AKT and extracellular signal-related kinase 1/2. EGF receptor (EGFR) can potentially participate in both pathways since it interacts with GPR30 and ERα. Hence, the aim of this study was to analyze the potential role of this receptor and its downstream effectors, members of the Src family kinases in E17G-induced cholestasis. In vitro, EGFR inhibition by Tyrphostin (Tyr), Cl-387785 or its knockdown with siRNA strongly prevented E17G-induced impairment of Abcc2 function and localization. Activation of EGFR was necessary but not sufficient to impair the canalicular transporter function, whereas the simultaneous activation of EGFR and GPR30 could impair Abcc2 transport. The protection of Tyr was not additive to that produced by the ERα inhibitor ICI neither with that produced by Src kinase inhibitors, suggesting that EGFR shared the signaling pathway of ERα and Src. Further analysis of ERα, EGFR and Src activations induced by E17G, demonstrated that ERα activation precedes that of EGFR and EGFR activation precedes that of Src. In conclusion, activation of EGFR is a key factor in the alteration of canalicular transporter function and localization induced by E17G and it occurs before that of Src and after that of ERα.
Collapse
Affiliation(s)
- Ismael R Barosso
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrés E Zucchetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel S Miszczuk
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Andrea C Boaglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Diego R Taborda
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas (CONICET - U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
35
|
Role of dynamin in elongated cell migration in a 3D matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:611-8. [DOI: 10.1016/j.bbamcr.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022]
|
36
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
37
|
Menon M, Askinazi OL, Schafer DA. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin. PLoS One 2014; 9:e94330. [PMID: 24710573 PMCID: PMC3978067 DOI: 10.1371/journal.pone.0094330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 12/02/2022] Open
Abstract
Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.
Collapse
Affiliation(s)
- Manisha Menon
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Olga L. Askinazi
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dorothy A. Schafer
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
38
|
Wu Q, Kohli M, Bergen HR, Cheville JC, Karnes RJ, Cao H, Young CYF, Tindall DJ, McNiven MA, Donkena KV. Preclinical evaluation of the supercritical extract of azadirachta indica (neem) leaves in vitro and in vivo on inhibition of prostate cancer tumor growth. Mol Cancer Ther 2014; 13:1067-77. [PMID: 24674886 DOI: 10.1158/1535-7163.mct-13-0699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Azadirachta indica, commonly known as neem, has gained worldwide prominence because of its medical properties, namely antitumor, antiviral, anti-inflammatory, antihyperglycemic, antifungal, and antibacterial activities. Despite these promising results, gaps remain in our understanding of the molecular mechanism of action of neem compounds and their potential for use in clinical trials. We investigated supercritical extract of neem leaves (SENL) for the following: molecular targets in vitro, in vivo efficacy to inhibit tumor growth, and bioactive compounds that exert antitumor activity. Treatment of LNCaP-luc2 prostate cancer cells with SENL suppressed dihydrotestosterone-induced androgen receptor and prostate-specific antigen levels. SENL inhibited integrin β1, calreticulin, and focal adhesion kinase activation in LNCaP-luc2 and PC3 prostate cancer cells. Oral administration of SENL significantly reduced LNCaP-luc2 xenograft tumor growth in mice with the formation of hyalinized fibrous tumor tissue, reduction in the prostate-specific antigen, and increase in AKR1C2 levels. To identify the active anticancer compounds, we fractionated SENL by high-pressure liquid chromatography and evaluated 16 peaks for cytotoxic activity. Four of the 16 peaks exhibited significant cytotoxic activity against prostate cancer cells. Mass spectrometry of the isolated peaks suggested the compounds with cytotoxic activity were nimbandiol, nimbolide, 2',3'-dihydronimbolide, and 28-deoxonimbolide. Analysis of tumor tissue and plasma samples from mice treated with SENL indicated 28-deoxonimbolide and nimbolide as the bioactive compounds. Overall, our data revealed the bioactive compounds in SENL and suggested that the anticancer activity could be mediated through alteration in androgen receptor and calreticulin levels in prostate cancer.
Collapse
Affiliation(s)
- Qiang Wu
- Authors' Affiliations: Departments of Urology, Oncology, and Biochemistry and Molecular Biology; and Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee MY, Skoura A, Park EJ, Landskroner-Eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 2014; 141:1465-72. [PMID: 24598168 DOI: 10.1242/dev.104539] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of β1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of β1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Monica Y Lee
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu B, Teng LH, Silva SDD, Bijian K, Al Bashir S, Jie S, Dolph M, Alaoui-Jamali MA, Bismar TA. The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting. Cancer Med 2013; 3:14-24. [PMID: 24402972 PMCID: PMC3930386 DOI: 10.1002/cam4.168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/09/2013] [Accepted: 11/01/2013] [Indexed: 12/12/2022] Open
Abstract
Dynamin 2 (Dyn2) is essential for intracellular vesicle formation and trafficking, cytokinesis, and receptor endocytosis. In this study, we investigated the implication of Dyn2 as a prognostic marker and therapeutic target for progressive prostate cancer (PCA). We evaluated Dyn2 protein expression by immunohistochemistry in two cohorts: men with localized PCA treated by retropubic radical prostatectomy (n = 226), and men with advanced/castrate-resistant PCA (CRPC) treated by transurethral resection of prostate (TURP) (n = 253). The role of Dyn2 in cell invasiveness was assessed by in vitro and in vivo experiments using androgen-responsive and refractory PCA preclinical models. Dyn2 expression was significantly increased across advanced stages of PCA compared to benign prostate tissue (P < 0.0001). In the CRPC cohort, high Dyn2 was associated with higher Gleason score (P = 0.004) and marginally with cancer-specific mortality (P = 0.052). In preclinical models, Dyn2 gene silencing significantly reduced cell migration and invasion in vitro, as well as tumor size and lymph node metastases in vivo. In isolated PCA cells, Dyn2 was found to regulate focal adhesion turnover, which is critical for cell migration; this mechanism requires full Dyn2 compared to mutants deficient in GTPase activity. In conclusion, Dyn2 overexpression is associated with neoplastic prostate epithelium and is associated with poor prognosis. Inhibition of Dyn2 prevents cell invasiveness in androgen-responsive and -refractory PCA models, supporting the potential benefit of Dyn2 to serve as a therapeutic target for advanced PCA.
Collapse
Affiliation(s)
- Bin Xu
- Segal Cancer Center and Lady Davis Institute for Medical Research, Department of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
42
|
Eleniste PP, Huang S, Wayakanon K, Largura HW, Bruzzaniti A. Osteoblast differentiation and migration are regulated by dynamin GTPase activity. Int J Biochem Cell Biol 2013; 46:9-18. [PMID: 24387844 DOI: 10.1016/j.biocel.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Bone formation is controlled by osteoblasts, but the signaling proteins that control osteoblast differentiation and function are still unclear. We examined if the dynamin GTPase, which is associated with actin remodeling and migration in other cells, plays a role in osteoblast differentiation and migration. Dynamin mRNA was expressed in primary osteoblasts throughout differentiation (0-21 days). However, alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation, was decreased in osteoblasts over-expressing dynamin. Conversely, ALP activity was increased following shRNA-mediated knockdown of dynamin and in osteoblasts treated with the dynamin inhibitor, dynasore. Dynasore also reduced c-fos and osterix expression, markers of early osteoblasts, suggesting a role for dynamin in pre-osteoblast to osteoblast differentiation. Since dynamin GTPase activity is regulated by tyrosine phosphorylation, we examined the mechanism of dynamin dephosphorylation in osteoblasts. Dynamin formed a protein complex with the tyrosine phosphatase PTP-PEST and inhibition of phosphatase activity increased the level of phosphorylated dynamin. Further, PTP-PEST blocked the Src-mediated increase in the phosphorylation and GTPase activity of wild-type dynamin but not the phosphorylation mutant dynY231F/Y597F. Although ALP activity was increased in osteoblasts expressing GTPase-defective dynK44A, and to a lesser extent dynY231F/Y597F, osteoblast migration was significantly inhibited by dynK44A and dynY231F/Y597F. These studies demonstrate a novel role for dynamin GTPase activity and phosphorylation in osteoblast differentiation and migration, which may be important for bone formation.
Collapse
Affiliation(s)
- Pierre P Eleniste
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Su Huang
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Kornchanok Wayakanon
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Heather W Largura
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| | - Angela Bruzzaniti
- Indiana University School of Dentistry, Department of Oral Biology, DS241, 1121W. Michigan Street, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
44
|
|
45
|
Ng T, Ryu JR, Sohn JH, Tan T, Song H, Ming GL, Goh ELK. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway. PLoS One 2013; 8:e65572. [PMID: 23762397 PMCID: PMC3677868 DOI: 10.1371/journal.pone.0065572] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/26/2013] [Indexed: 01/09/2023] Open
Abstract
Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP) 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397) and serine phosphorylation (Ser 732) of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.
Collapse
Affiliation(s)
- Teclise Ng
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jae Ryun Ryu
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jae Ho Sohn
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Terence Tan
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eyleen L. K. Goh
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
46
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
47
|
The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25:1539-45. [PMID: 23571269 DOI: 10.1016/j.cellsig.2013.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
Abstract
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.
Collapse
|
48
|
Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev Cell 2013; 24:573-85. [PMID: 23537630 PMCID: PMC3905678 DOI: 10.1016/j.devcel.2013.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 01/03/2023]
Abstract
The large GTPase Dynamin 2 (Dyn2) is markedly upregulated in pancreatic cancer, is a potent activator of metastatic migration, and is required for Rac1-mediated formation of lamellipodia. Here we demonstrate an unexpected mechanism of Dyn2 action in these contexts via direct binding to the Rac1 guanine nucleotide exchange factor (GEF) Vav1. Surprisingly, disruption of the Dyn2-Vav1 interaction targets Vav1 to the lysosome for degradation via an interaction with the cytoplasmic chaperone Hsc70, resulting in a dramatic reduction of Vav1 protein stability. Importantly, a specific mutation in Vav1 near its Dyn2-binding C-terminal Src homology 3 (SH3) domain prevents Hsc70 binding, resulting in a stabilization of Vav1 levels. Dyn2 binding regulates the interaction of Vav1 with Hsc70 to control the stability and subsequent activity of this oncogenic GEF. These findings elucidate how Dyn2 activates Rac1, lamellipod protrusion, and invasive cellular migration and provide insight into how this specific Vav is ectopically expressed in pancreatic tumors.
Collapse
Affiliation(s)
- Gina L. Razidlo
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Yu Wang
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Jing Chen
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Daniel D. Billadeau
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| |
Collapse
|
49
|
Sadowski Ł, Jastrzębski K, Kalaidzidis Y, Heldin CH, Hellberg C, Miaczynska M. Dynamin inhibitors impair endocytosis and mitogenic signaling of PDGF. Traffic 2013; 14:725-36. [PMID: 23425318 PMCID: PMC3712465 DOI: 10.1111/tra.12061] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms regulate cell proliferation, migration and differentiation both in embryonic development and adult tissue remodeling. At the cellular level, growth-factor signaling is often modulated by endocytosis. Despite important functions of PDGF, its endocytosis remains poorly studied, mainly for lack of tools to track internalized ligand by microscopy. Here, we developed such a tool and quantitatively analyzed internalization and endosomal trafficking of PDGF-BB in human fibroblasts. We further show that PDGF can be internalized in the presence of dynamin inhibitors, arguing that both dynamin-dependent and dynamin-independent pathways can mediate PDGF uptake. Although these routes operate with somewhat different kinetics, they both ultimately lead to lysosomal degradation of PDGF. Although acute inhibition of dynamin activity only moderately affects PDGF endocytosis, it specifically decreases downstream signaling of PDGF via signal transducer and activator of transcription 3 (STAT3). This correlates with reduced expression of MYC and impaired cell entry into S-phase, indicating that dynamin activity is required for PDGF-induced mitogenesis. Our data support a general view that the components governing endocytic trafficking may selectively regulate certain signaling effectors activated by a growth factor.
Collapse
Affiliation(s)
- Łukasz Sadowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
50
|
Roles for focal adhesion kinase (FAK) in blastomere abscission and vesicle trafficking during cleavage in the sea urchin embryo. Mech Dev 2013; 130:290-303. [PMID: 23313141 DOI: 10.1016/j.mod.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/23/2012] [Accepted: 12/27/2012] [Indexed: 11/23/2022]
Abstract
Is focal adhesion kinase (FAK) needed for embryonic cleavage? We find that FAK is expressed during early cleavage divisions of sea urchin embryos as determined by polyclonal antibodies to the Lytechinus variegatus protein. FAK is absent in eggs and zygotes and then cycles in abundance during the first cleavages after fertilization. It is maximal at anaphase, similar to the destruction and synthesis of cyclin proteins. To investigate whether FAK is needed during early cleavage, we interfered with its function by microinjecting eggs with anti-FAK antibodies or with FAK antisense morpholino oligonucleotides. Both treatments led to regression of the cleavage furrow. FAK knockdown with antibodies or morpholino oligonucleotides also resulted in an over-accumulation of endocytic vesicles. Thus, FAK could be restricting endocytosis or increasing exocytosis in localized areas important for abscission. FAK appears to be necessary for successful cleavage. These results are the first to document a functional role for FAK during embryonic cleavage.
Collapse
|