1
|
Wang Y, Li S, Bo X, Li Y, Wang C, Nan L, Zhang D, Liu H, Zhang J. CircRNome-wide characterisation reveals the promoting role of circAATF in anti-PD-L1 immunotherapy of gallbladder carcinoma. Clin Transl Med 2024; 14:e70060. [PMID: 39428382 PMCID: PMC11491271 DOI: 10.1002/ctm2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Circular RNAs (circRNAs) have been shown to play important roles in tumour development and tumour immunology. However, genome-wide characterisation of circRNAs and their roles in the immunology and immunotherapy of gallbladder carcinoma (GBC) has been lacking. We present a comprehensive characterisation of the circRNA landscape in GBC, revealing GBC-specific circRNAs. Our analysis found that circRNAs are significantly enriched in cell proliferation and are involved in cancer-related hallmarks. In particular, circAATF was upregulated in GBC, which was positively correlated with AATF mRNA expression, and promoted GBC cell growth. Through integrating computational and experimental approaches, we revealed that circAATF is positively associated with the CD4+ T cell abundance and PD-L1 level, and enhances the clinical benefits of anti-PD-L1 immunotherapy for GBC. We further demonstrate that circAATF elevates the PD-L1 level by activating phosphorylated AKT and acting as a sponge for miR-142-5p. CircAATF is positively associated with CD4+ T cells and PD-L1 levels and shows potential to aid anti-PD-L1 immunotherapy for GBC. Our study provides insights into roles of circAATF in the tumour development and immunology of GBC and accelerates the development of therapeutic strategies for GBC immunotherapy. HIGHLIGHTS: We present a comprehensive characterisation of circRNA landscape in gallbladder carcinoma (GBC). CircAATF is positively associated with CD4+ T cell abundance and PD-L1 expression and is shown to promote PD-L1 treatment in mouse model. CircAATF can elevate PD-L1 level through phosphorylated AKT and linear AATF, which upregulates PD-L1 by acting as a sponge of miR-142-5p.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaobo Bo
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Changcheng Wang
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lingxi Nan
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Dexiang Zhang
- Department of General SurgeryXuhui District Central Hospital of ShanghaiShanghaiChina
| | - Houbao Liu
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
- Department of General SurgeryXuhui District Central Hospital of ShanghaiShanghaiChina
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Zhu H, Huang Y, Chen J. FAM122A functions as a tumor suppressor in oral squamous cell carcinoma. Exp Cell Res 2024; 441:114165. [PMID: 39009214 DOI: 10.1016/j.yexcr.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Family with sequence similarity 122a (FAM122A), identified as an endogenous inhibitor of protein phosphatase 2A (PP2A) previously, is involved in multiple important physiological processes, and essential for the growth of acute myeloid leukemia and hepatocellular carcinoma cells. However, the function of FAM122A in oral squamous cell carcinoma (OSCC) is undetermined. In this study, by analyzing TCGA and GEO databases, we found that the expression of FAM122A was significantly down-regulated in head and neck squamous cell carcinoma and OSCC patients, meanwhile this low expression was tightly associated with the poor prognosis and advanced clinical stage during OSCC development. The similar low expression pattern of FAM122A could also been seen in OSCC cell lines compared with normal human oral keratinocytes. Further, we demonstrated that FAM122A knockdown significantly promoted the growth, clonogenic potential as well as migration capabilities of OSCC cells, while these alterations could be rescued by the re-expression of FAM122A. Over-expression of FAM122A suppressed OSCC cell proliferation and migration. FAM122A also inhibited the epithelial-mesenchymal transition (EMT) in OSCC cells by the up-regulation of epithelial marker E-cadherin and down-regulation of mesenchymal markers Fibronectin and Vimentin, which is presumably mediated by transforming growth factor β receptor 3 (TGFBR3), a novel tumor suppressor. In addition, FAM122A could induce T cell infiltration in OSCC, indicating that FAM122A might influence the immune cell activity of tumor environment and further interfere the tumor development. Collectively, our results suggest that FAM122A functions as a tumor suppressor in OSCC and possibly acts as a predictive biomarker for the diagnosis and/or treatment of OSCC.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jing Chen
- Department of Clinical Laboratory, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
5
|
Ettlin J, Bauer A, Opitz L, Malbon A, Markkanen E. Deciphering Stromal Changes between Metastatic and Non-metastatic Canine Mammary Carcinomas. J Mammary Gland Biol Neoplasia 2023; 28:14. [PMID: 37391533 PMCID: PMC10313573 DOI: 10.1007/s10911-023-09542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
Cancer-associated stroma (CAS) is widely recognized to influence development and progression of epithelial tumours including breast cancer. Canine mammary tumours (CMTs) such as simple canine mammary carcinomas represent valuable models for human breast cancer also with respect to stromal reprogramming. However, it remains unclear whether and how CAS changes in metastatic tumours compared to non-metastatic ones. To characterize stromal changes between metastatic and non-metastatic CMTs and identify potential drivers of tumour progression, we analysed CAS and matched normal stroma from 16 non-metastatic and 15 metastatic CMTs by RNA-sequencing of microdissected FFPE tissue. We identified 1438 differentially regulated genes between CAS and normal stroma, supporting previous results demonstrating stromal reprogramming in CMTs to be comparable with CAS in human breast cancer and validating deregulation of pathways and genes associated with CAS. Using primary human fibroblasts activated by treatment with TGFβ, we demonstrate some of the strongest expression changes to be conserved in fibroblasts across species. Furthermore, we identify 132 differentially expressed genes between CAS from metastatic and non-metastatic tumours, with strong changes in pathways including chemotaxis, regulation of apoptosis, immune response and TGFβ signalling and validate deregulation of several targets using RT-qPCR. Finally, we identify specific upregulation of COL6A5, F5, GALNT3, CIT and MMP11 in metastatic CAS, suggesting high stromal expression of these targets to be linked to malignancy and metastasis of CMTs. In summary, our data present a resource supporting further research into stromal changes of the mammary gland in relation to metastasis with implications for both canine and human mammary cancer.
Collapse
Affiliation(s)
- Julia Ettlin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
| | - Alina Bauer
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zürich, ETH Zürich/University of Zurich, Zürich, 8057, Switzerland
| | - Alexandra Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, Scotland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Zürich, 8057, Switzerland.
| |
Collapse
|
6
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
7
|
Urdeitx P, Mousavi SJ, Avril S, Doweidar MH. Computational modeling of multiple myeloma interactions with resident bone marrow cells. Comput Biol Med 2023; 153:106458. [PMID: 36599211 DOI: 10.1016/j.compbiomed.2022.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022]
Abstract
The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems. In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stress-strain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis. A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0-10 ng/mL. Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0-100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix. Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner.
Collapse
Affiliation(s)
- Pau Urdeitx
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain
| | - S Jamaleddin Mousavi
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France
| | - Stephane Avril
- Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, Saint-Etienne, 42023, France; Institute for Mechanics of Materials and Structures, TU Wien-Vienna University of Technology, Vienna, 1040, Austria
| | - Mohamed H Doweidar
- School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain.
| |
Collapse
|
8
|
Kovaleva O, Sorokin M, Egorova A, Petrenko A, Shelekhova K, Gratchev A. Macrophage - tumor cell interaction beyond cytokines. Front Oncol 2023; 13:1078029. [PMID: 36910627 PMCID: PMC9995642 DOI: 10.3389/fonc.2023.1078029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor cells communication with tumor associated macrophages is a highly important factor of tumor malignant potential development. For a long time, studies of this interaction were focused on a cytokine- and other soluble factors -mediated processes. Discovery of exosomes and regulatory RNAs as their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were demonstrated to contribute significantly to the development of macrophage phenotype, not only by regulating expression of certain genes, but also by providing for feedback loops of macrophage activation. Being a usual cargo of macrophage- or tumor cell-derived exosomes ncRNAs provide an important mechanism of tumor-stromal cell interaction that contributes significantly to the pathogenesis of various types of tumors. Despite the volume of ongoing research there are still many gaps that must be filled before the practical use of ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in the development of macrophage phenotype. Further we review recent studies supporting the hypothesis that macrophages may affect the properties of tumor cells and vice versa tumor cells influence macrophage phenotype by miRNA and lncRNA transported between these cells by exosomes. We suggest that this mechanism of tumor cell - macrophage interaction is highly promising for the development of novel diagnostic and therapeutic strategies, though many problems are still to be solved.
Collapse
Affiliation(s)
- Olga Kovaleva
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maxim Sorokin
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anastasija Egorova
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anatoly Petrenko
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Ksenya Shelekhova
- Department of Pathology, Clinical Research and Practical Center for Specialized Oncological Care, St. Petersburg, Russia.,Pathology Department, SPb Medico-Social Institute, St. Petersburg, Russia
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
9
|
Yi Z, Ma T, Liu J, Tie W, Li Y, Bai J, Li L, Zhang L. The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Front Immunol 2022; 13:925266. [PMID: 35958625 PMCID: PMC9357873 DOI: 10.3389/fimmu.2022.925266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is the third most common malignant neoplasm of the hematological system. It often develops from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) precursor states. In this process, the immune microenvironment interacts with the MM cells to exert yin and yang effects, promoting tumor progression on the one hand and inhibiting it on the other. Despite significant therapeutic advances, MM remains incurable, and the main reason for this may be related to the complex and variable immune microenvironment. Therefore, it is crucial to investigate the dynamic relationship between the immune microenvironment and tumors, to elucidate the molecular mechanisms of different factors in the microenvironment, and to develop novel therapeutic agents targeting the immune microenvironment of MM. In this paper, we review the latest research progress and describe the dual influences of the immune microenvironment on the development and progression of MM from the perspective of immune cells and molecules.
Collapse
Affiliation(s)
- Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pediatric Orthopedics and Pediatrics Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
10
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
11
|
Zhang N, Li L, Luo J, Tan J, Hu W, Li Z, Wang X, Ye T. Inhibiting microRNA-424 in bone marrow mesenchymal stem cells-derived exosomes suppresses tumor growth in colorectal cancer by upregulating TGFBR3. Arch Biochem Biophys 2021; 709:108965. [PMID: 34129838 DOI: 10.1016/j.abb.2021.108965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE MicroRNAs (miRNAs) have been demonstrated to be differently expressed in colorectal cancer (CRC) and were identified as biomarkers and therapeutic targets for CRC. We aimed to identify the effect of microRNA-424 (miR-424) on process of CRC. METHODS Exosomes were obtained from bone marrow mesenchymal stem cells (BMSCs). MiR-424, transforming growth factor-β receptor 3 (TGFBR3) vimentin, S100A4, p-Smad1 expression in tissues and cells was measured. After treated with miR-424 inhibitor or TGFBR3 overexpression plasmid, the migration, invasion, cell cycle distribution and apoptosis of Lovo cells and exosomes-transfected Lovo cells were determined. The subcutaneous tumor models were established and the tumor growth was observed. The target relation between miR-424 and TGFBR3 was confirmed. RESULTS MiR-424 was upregulated while TGFBR3 was downregulated in CRC tissues. TGFBR3 was targeted by miR-424. Inhibited miR-424 or elevated TGFBR3 upregulated p-Smad1, indicating that TGFBR3 mediated the Smad1 pathway, thus regulating CRC progression. MiR-424 inhibition or TGFBR3 restoration also suppressed migration and invasion of CRC cells, arrested the CRC cells at G0/G1 phase, and promoted CRC cell apoptosis. Moreover, exosomal miR-424 from BMSCs promoted CRC development. CONCLUSION Inhibited exosomal miR-424 from BMSCs inhibited malignant behaviors of CRC cells by targeting TGFBR3, thus suppressing the progression of CRC.
Collapse
Affiliation(s)
- Ning Zhang
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Ling Li
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jun Luo
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jiahua Tan
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Wanfu Hu
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Zihui Li
- Medical College, Dalian University, Dalian, 116622, Liaoning, China
| | - Xinxin Wang
- Pharmacy Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Tao Ye
- Oncology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 North Baoshan Road, Yunyan District, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
12
|
Tazat K, Pomeraniec-Abudy L, Hector-Greene M, Szilágyi SS, Sharma S, Cai EM, Corona AL, Ehrlich M, Blobe GC, Henis YI. ALK1 regulates the internalization of endoglin and the type III TGF-β receptor. Mol Biol Cell 2021; 32:605-621. [PMID: 33566682 PMCID: PMC8101464 DOI: 10.1091/mbc.e20-03-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | - Swati Sharma
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elise M Cai
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Armando L Corona
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
14
|
Liu Z, Gao H, Peng Q, Yang Y. Long Noncoding RNA LUCAT1 Promotes Multiple Myeloma Cell Growth by Regulating the TGF-β Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820945770. [PMID: 32812490 PMCID: PMC7440725 DOI: 10.1177/1533033820945770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: Long noncoding RNAs (lncRNAs) are potential biomarkers for cancers. Nevertheless, the ability of long noncoding RNA lung cancer-associated transcript 1 in patients with multiple myeloma remains unknown. The purpose of this current study was to figure out its function in multiple myeloma. Methods: Firstly, the expression of long noncoding RNA lung cancer-associated transcript 1 in cancer or normal tissues and serum from patients with multiple myeloma and normal donors was detected. Secondly, the expression of long noncoding RNA lung cancer-associated transcript 1 was overexpressed or silenced in U266 and H929 cells, respectively to detect changes of proliferation and apoptosis in multiple myeloma in vitro. Subsequently, the expression of transforming growth factor-β signaling pathway-related proteins was detected by western blot analysis. Finally, the effect of long noncoding RNA lung cancer-associated transcript 1 on the growth of multiple myeloma cells in vivo was evaluated by tumor xenograft in nude mice. Results: Long noncoding RNA lung cancer-associated transcript 1 was increased in cancer tissues and serum of patients with multiple myeloma as well as multiple myeloma cells, which was correlated with dismal prognosis of patients with multiple myeloma. Overexpression of long noncoding RNA lung cancer-associated transcript 1 promoted the activity of U266 and H929 cells, while inhibition of long noncoding RNA lung cancer-associated transcript 1 suppressed the activity of U266 and H929 cells. In addition, long noncoding RNA lung cancer-associated transcript 1 was found to promote activation of the transforming growth factor-β signaling pathway. Furthermore, long noncoding RNA lung cancer-associated transcript 1 knockdown restricted the growth of multiple myeloma cells in vivo. Conclusion: This study suggests that suppression of long noncoding RNA lung cancer-associated transcript 1 inhibits the activation of transforming growth factor-β signaling pathway, thereby inhibiting the growth of multiple myeloma cells.
Collapse
Affiliation(s)
- Zhaoyu Liu
- 74648Department of Medical Oncology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hong Gao
- 74648Department of Gastroenterology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qing Peng
- 74648Department of Medical Oncology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yongheng Yang
- 74648Department of Medical Oncology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
15
|
Yu G, Li N, Zhao Y, Wang W, Feng XL. Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncol Lett 2018; 15:6513-6518. [PMID: 29616120 DOI: 10.3892/ol.2018.8090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Salidroside is one of the most potent compounds extracted from the plant Rhodiola rosea, and its cardiovascular protective effects have been studied extensively. However, the role of salidroside in human ovarian carcinoma remains unknown. The aim of the current study was to investigate the effects of salidroside on the proliferation and apoptosis of SKOV3 and A2780 cells using MTT assay and acridine orange/ethidium bromide staining. Salidroside activated caspase-3 and upregulated the levels of apoptosis-inducing factor, Bcl-2-associated X and Bcl-2-associated death promoter (Bad) proteins. Furthermore, salidroside downregulated the levels of Bcl-2, p-Bad and X-linked inhibitor of apoptosis proteins. Salidroside activated the caspase-dependent pathway in SKOV3 and A2780 cells, upregulating p53, p21Cip1/Waf1 and p16INK4a. These results suggest that the p53/p21Cip1/Waf1/p16INK4a pathway may serve a key function in salidroside-mediated effects on SKOV3 and A2780 cells. The current findings indicate that salidroside may be a promising novel drug candidate for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Na Li
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Zhao
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Wang
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Ling Feng
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China.,Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
16
|
Nagarajan A, Malvi P, Wajapeyee N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front Endocrinol (Lausanne) 2018; 9:483. [PMID: 30197623 PMCID: PMC6118229 DOI: 10.3389/fendo.2018.00483] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily modified by sulfate and exist either conjugated to proteins or as free, unconjugated chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and act as co-receptors for different cell surface receptors. They also modulate the dynamics and kinetics of various ligand-receptor interactions, which in turn can influence the duration and potency of the signaling. HS and HSPGs have also been shown to exert a structural role as a component of the extracellular matrix, thereby altering processes such as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown that HS are deregulated in a variety of solid tumors and hematological malignancies and regulate key aspects of cancer initiation and progression. HS deregulation in cancer can occur as a result of changes in the level of HSPGs or due to changes in the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated HS biosynthesis and HSPGs as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Narendra Wajapeyee
| |
Collapse
|
17
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
18
|
Li D, Liu K, Li Z, Wang J, Wang X. miR-19a and miR-424 target TGFBR3 to promote epithelial-to-mesenchymal transition and migration of tongue squamous cell carcinoma cells. Cell Adh Migr 2017; 12:236-246. [PMID: 29130787 DOI: 10.1080/19336918.2017.1365992] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies indicate that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), a novel suppressor of progression in certain cancers, is down-regulated in tongue squamous cell carcinoma (TSCC). However, the role of this factor as an upstream regulator in TSCC cells remains to be elucidated. The present study was designed to elucidate whether TGFBR3 gene expression is regulated by two microRNA molecules, miR-19a and miR-424. The study also aimed to determine if these microRNAs promote migration of CAL-27 human oral squamous cells. Immunohistochemistry (IHC) and western blot analyses demonstrated that TGFBR3 protein levels were dramatically down-regulated in clinical TSCC specimens. Conversely, bioinformatics analyses and qRT-PCR results confirmed that both miR-19a and miR-424 were markedly up-regulated in clinical TSCC specimens. In this study, we observed that transfection of a TGFBR3-containing plasmid dramatically inhibited epithelial-to-mesenchymal transition (EMT) and migration in CAL-27 cells. Co-immunoprecipitation analyses also revealed that TGFBR3 forms a complex with the β-arrestin 2 scaffolding protein and IκBα. Furthermore, overexpression of TGFBR3 decreased p-p65 expression and increased IκBα expression; these effects were subsequently abolished following knockdown of β-arrestin 2. Moreover, over-expression of miR-19a and miR-424 promoted migration and EMT in CAL-27 cells. We also observed that the promotion of EMT by miR-19a and miR-424 was mediated by the inhibition of TGFBR3. Our study provides evidence that miR-19a and miR-424 play important roles in the development of TSCC. These results expand our understanding of TGFBR3 gene expression and regulatory mechanisms pertaining to miRNAs.
Collapse
Affiliation(s)
- Duo Li
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Ke Liu
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Zhiyong Li
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jian Wang
- b Department of Neurosurgery , The Fourth Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Xiaofeng Wang
- a Department of Oral and Maxillofacial Surgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
19
|
Liu S, Zheng LL, Zhu YM, Shen HJ, Zhong Q, Huang J, Li C, Liu Z, Yao MD, Ou RM, Zhang Q. Knockdown of REGγ inhibits the proliferation and migration and promotes the apoptosis of multiple myeloma cells by downregulating NF-κB signal pathway. ACTA ACUST UNITED AC 2017; 23:277-283. [PMID: 29020881 DOI: 10.1080/10245332.2017.1385194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effects of REGγ knockdown on the proliferation, apoptosis and migration of multiple myeloma (MM) cells, and reveal the potential regulatory mechanisms. METHODS The expression of REGγ on myeloma cells of 28 MM patients was detected by Western blot. shRNA-REGγ-1 and shRNA-REGγ-2 were constructed to downregulate REGγ in RPMI-8226 cells. The proliferation, apoptosis and migration of transfected cells were analyzed by Cell Counting Kit 8 (CCK8), flow cytometry and transwell chamber, respectively. The expression of phosphorylated p65 (p-p65), p65, NF-kappa-B inhibitor ε (IkBε), matrix metalloproteinase 2 (MMP2), B-cell lymphoma xL (Bcl-xL) and X-linked inhibitor of apoptosis protein (XIAP) in transfected cells was detected by Western blot. Using cycloheximide (CHX), the half-life period of IkBε was detected by Western blot. RESULTS The expression of REGγ was positive in myeloma cells. The proliferation and migration of RPMI-8226 cells were significantly inhibited by shRNA-REGγ-1/shRNA-REGγ-2, while the apoptosis rates were significantly increased (p < 0.05). The expression of p-p65 and IkBε was significantly reduced in RPMI-8226 cells transfected with shRNA-REGγ-1/shRNA-REGγ-2. The degradation of IkBε was significantly lower in RPMI-8226 cells transfected with shRNA-REGγ-1 than the control (longer half-life period). Besides, the expression of MMP2, Bcl-xL and XIAP in RPMI-8226 cells was significantly inhibited by shRNA-REGγ-1/shRNA-REGγ-2. DISCUSSION Knockdown of REGγ may inhibit the proliferation and migration, and promote the apoptosis of RPMI-8226 cells possibly by downregulating NF-κB signal pathway.
Collapse
Affiliation(s)
- Shuang Liu
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Li-Ling Zheng
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Yang-Min Zhu
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Hui-Juan Shen
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Qi Zhong
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Jing Huang
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Cheng Li
- b Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Zhi Liu
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Meng-Dong Yao
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Rui-Ming Ou
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| | - Qing Zhang
- a Department of Hematology , Guangdong Second Provincial General Hospital , Guangzhou , Guangdong Province , People's Republic of China
| |
Collapse
|
20
|
Inflammatory and Anti-Inflammatory Equilibrium, Proliferative and Antiproliferative Balance: The Role of Cytokines in Multiple Myeloma. Mediators Inflamm 2017; 2017:1852517. [PMID: 29089667 PMCID: PMC5635476 DOI: 10.1155/2017/1852517] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma (MM) is typically exemplified by a desynchronized cytokine system with increased levels of inflammatory cytokines. We focused on the contrast between inflammatory and anti-inflammatory systems by assessing the role of cytokines and their influence on MM. The aim of this review is to summarize the available information to date concerning this equilibrium to provide an overview of the research exploring the roles of serum cytokines in MM. However, the association between MM and inflammatory cytokines appears to be inadequate, and other functions, such as pro-proliferative or antiproliferative effects, can assume the role of cytokines in the genesis and progression of MM. It is possible that inflammation, when guided by cancer-specific Th1 cells, may inhibit tumour onset and progression. In a Th1 microenvironment, proinflammatory cytokines (e.g., IL-6 and IL-1) may contribute to tumour eradication by attracting leucocytes from the circulation and by increasing CD4 + T cell activity. Hence, caution should be used when considering therapies that target factors with pro- or anti-inflammatory activity. Drugs that may reduce the tumour-suppressive Th1-driven inflammatory immune response should be avoided. A better understanding of the relationship between inflammation and myeloma will ensure more effective therapeutic interventions.
Collapse
|
21
|
Liu HY, Pan XL, Tian JN, Sun H, Huan Q, Huang YL, Liu JQ. Na 7CrCuW 11O 39.16H 2O induces apoptosis in human ovarian cancer SKOV3 cells through the p38 signaling pathway. Oncol Lett 2017; 13:2418-2424. [PMID: 28454413 DOI: 10.3892/ol.2017.5719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
Ovarian carcinoma is a common malignant disease worldwide with a poor therapeutic response. The present study investigated the effects of Na7CrCuW11O39.16H2O (CrCuW11) on ovarian cancer cell growth and investigated the mechanisms underlying its actions. The effects of CrCuW11 on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, acridine orange/ethidium bromide staining and electron microscopy in human ovarian cancer SKOV3 cells. The expression of bcl-2-like protein 4 (Bax), B-cell lymphoma 2 (Bcl-2), cytochrome c, phosphorylated (p)-p38 and p38 was determined by western blot analysis. Caspase-3 activity was measured by caspase-3 activity kit. CrCuW11 concentrations of 1.87×10-3 mol. l-1 at 12 h reduced viability induced apoptosis in SKOV3 cells in a concentration-and time-dependent manner. Forced expression of CrCuW11 upregulated the expression of certain proteins (Bax, cytochrome c, and p-p38), and downregulated Bcl-2 protein expression. Furthermore, CrCuW11 also enhanced caspase-3 activity. The p38 inhibitor SB203580 was able to inhibit the activity of CrCuW11. Caspase-3 and p38 signaling pathways were associated with CrCuW11-regulated multiple targets involved in SKOV3 cell proliferation. Therefore, the results of the present study indicated that CrCuW11 may be used as a novel clinical drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hai-Ying Liu
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510005, P.R. China
| | - Xiu-Li Pan
- Department of Clinical Skill Center Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang 150081, P.R. China
| | - Jia-Nan Tian
- Department of Neurology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150050 P.R. China
| | - Hui Sun
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150050 P.R. China
| | - Qing Huan
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510005, P.R. China
| | - Yu-Ling Huang
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510005, P.R. China
| | - Jian-Qiao Liu
- Department of Reproductive Medicine Center, Key Laboratory for Reproductive Medicine of Guangdong, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510005, P.R. China
| |
Collapse
|
22
|
Xia RY, Zhang RR, Jiang Z, Sun YJ, Liu J, Chen FH. K 9(C 4H 4FN 2O 2) 2Nd(PW 11O 39) 2·25H 2O induces apoptosis in human lung cancer A549 cells. Oncol Lett 2016; 13:1348-1352. [PMID: 28454260 DOI: 10.3892/ol.2016.5543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/14/2016] [Indexed: 02/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide. The present study investigated the effects of K9(C4H4FN2O2)2Nd(PW11O39)2·25H2O (FNdPW), a chemically synthesized polyoxometalate that contains rare earth elements, on lung cancer growth, and explored the mechanism underlying its actions. The effects of FNdPW on the cell viability and apoptosis of human lung cancer A549 cells were measured using MTT assay, acridine orange/ethidium bromide staining and electron microscopy. The expression of apoptosis-related proteins, including B-cell lymphoma (Bcl)-2-associated death promoter (Bad), phosphorylated (p)-Bad, X-linked inhibitor of apoptosis (XIAP), apoptosis-inducing factor (AIF), Bcl-2-associated X protein (Bax) and Bcl-2, was determined by western blotting. Caspase-3 activity was measured using a caspase-3 activity kit. After 72 h of incubation, FNdPW reduced cell viability and induced apoptosis in A549 cells in a concentration- and time-dependent manner. FNdPW upregulated the pro-apoptotic Bad and Bax proteins, and downregulated the anti-apoptotic p-Bad, Bcl-2 and XIAP proteins. Furthermore, FNdPW also enhanced caspase-3 activity and increased the protein level of AIF in A549 cells, which was independent of the caspase-3 pathway. These events were associated with the regulation exerted by FNdPW on multiple targets involved in A549 cell proliferation. Therefore, FNdPW may be a novel drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rong-Yao Xia
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ran-Ran Zhang
- Department of Respiration, Harbin First Hospital, Harbin, Heilongjiang 150010, P.R. China
| | - Zhe Jiang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ya-Jiao Sun
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Liu
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fu-Hui Chen
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
23
|
Jovanović B, Pickup MW, Chytil A, Gorska AE, Johnson KC, Moses HL, Owens P. TβRIII Expression in Human Breast Cancer Stroma and the Role of Soluble TβRIII in Breast Cancer Associated Fibroblasts. Cancers (Basel) 2016; 8:E100. [PMID: 27827906 PMCID: PMC5126760 DOI: 10.3390/cancers8110100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022] Open
Abstract
The TGF-β pathway plays a major role in tumor progression through regulation of epithelial and stromal cell signaling. Dysfunction of the pathway can lead to carcinoma progression and metastasis. To gain insight into the stromal role of the TGF-β pathway in breast cancer, we performed laser capture microdissection (LCM) from breast cancer patients and reduction mammoplasty patients. Microdissected tumor stroma and normal breast stroma were examined for gene expression. Expression of the TGF-β type III receptor (TGFBR3) was greatly decreased in the tumor stroma compared to control healthy breast tissue. These results demonstrated a 44-fold decrease in TGFBR3 mRNA in tumor stroma in comparison to control tissue. We investigated publicly available databases, and have identified that TGFBR3 mRNA levels are decreased in tumor stroma. We next investigated fibroblast cell lines derived from cancerous and normal breast tissue and found that in addition to mRNA levels, TβRIII protein levels were significantly reduced. Having previously identified that cancer-associated fibroblasts secrete greater levels of tumor promoting cytokines, we investigated the consequences of soluble-TβRIII (sTβRIII) on fibroblasts. Fibroblast conditioned medium was analyzed for 102 human secreted cytokines and distinct changes in response to sTβRIII were observed. Next, we used the fibroblast-conditioned medium to stimulate human monocyte cell line THP-1. These results indicate a distinct transcriptional response depending on sTβRIII treatment and whether it was derived from normal or cancerous breast tissue. We conclude that the effect of TβRIII has distinct roles not only in cancer-associated fibroblasts but that sTβRIII has distinct paracrine functions in the tumor microenvironment.
Collapse
Affiliation(s)
- Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Michael W Pickup
- Department of Bioengineering, University of California San Francisco, San Francisco, CA 94117, USA.
| | - Anna Chytil
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Agnieszka E Gorska
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Kimberly C Johnson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
- Research Medicine, Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
25
|
Shed proteoglycans in tumor stroma. Cell Tissue Res 2016; 365:643-55. [DOI: 10.1007/s00441-016-2452-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
26
|
Tazat K, Hector-Greene M, Blobe GC, Henis YI. TβRIII independently binds type I and type II TGF-β receptors to inhibit TGF-β signaling. Mol Biol Cell 2015; 26:3535-45. [PMID: 26269580 PMCID: PMC4591696 DOI: 10.1091/mbc.e15-04-0203] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/05/2015] [Indexed: 02/01/2023] Open
Abstract
Study of the TβRIII interaction with the signaling TGF-β receptors shows that TβRIII homo-oligomerization is indirect, depending largely on interactions with GIPC scaffolds. TβRI and II bind independently to TβRIII, competing with TβRI-TβRII complex formation and inhibiting Smad2/3 signaling by a mechanism independent of TβRIII ectodomain shedding. Transforming growth factor-β (TGF-β) receptor oligomerization has important roles in signaling. Complex formation among type I and type II (TβRI and TβRII) TGF-β receptors is well characterized and is essential for signal transduction. However, studies on their interactions with the type III TGF-β coreceptor (TβRIII) in live cells and their effects on TGF-β signaling are lacking. Here we investigated the homomeric and heteromeric interactions of TβRIII with TβRI and TβRII in live cells by combining IgG-mediated patching/immobilization of a given TGF-β receptor with fluorescence recovery after photobleaching studies on the lateral diffusion of a coexpressed receptor. Our studies demonstrate that TβRIII homo-oligomerization is indirect and depends on its cytoplasmic domain interactions with scaffold proteins (mainly GIPC). We show that TβRII and TβRI bind independently to TβRIII, whereas TβRIII augments TβRI/TβRII association, suggesting that TβRI and TβRII bind to TβRIII simultaneously but not as a complex. TβRIII expression inhibited TGF-β–mediated Smad2/3 signaling in MDA-MB-231 cell lines, an effect that depended on the TβRIII cytoplasmic domain and did not require TβRIII ectodomain shedding. We propose that independent binding of TβRI and TβRII to TβRIII competes with TβRI/TβRII signaling complex formation, thus inhibiting TGF-β–mediated Smad signaling.
Collapse
Affiliation(s)
- Keren Tazat
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27708 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel )
| |
Collapse
|
27
|
Elderbroom JL, Huang JJ, Gatza CE, Chen J, How T, Starr M, Nixon AB, Blobe GC. Ectodomain shedding of TβRIII is required for TβRIII-mediated suppression of TGF-β signaling and breast cancer migration and invasion. Mol Biol Cell 2014; 25:2320-32. [PMID: 24966170 PMCID: PMC4142606 DOI: 10.1091/mbc.e13-09-0524] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The type III TGF-β receptor (TβRIII) undergoes ectodomain shedding, with surface TβRIII enhancing and soluble TβRIII inhibiting TGF-β signaling. TβRIII mutants with impaired or enhanced shedding are used to demonstrate that the ratio of soluble to membrane-bound TβRIII regulates TβRIII/TGF-β–mediated signaling and biology in vitro and in vivo. The type III transforming growth factor β (TGF-β) receptor (TβRIII), also known as betaglycan, is the most abundantly expressed TGF-β receptor. TβRIII suppresses breast cancer progression by inhibiting migration, invasion, metastasis, and angiogenesis. TβRIII binds TGF-β ligands, with membrane-bound TβRIII presenting ligand to enhance TGF-β signaling. However, TβRIII can also undergo ectodomain shedding, releasing soluble TβRIII, which binds and sequesters ligand to inhibit downstream signaling. To investigate the relative contributions of soluble and membrane-bound TβRIII on TGF-β signaling and breast cancer biology, we defined TβRIII mutants with impaired (ΔShed-TβRIII) or enhanced ectodomain shedding (SS-TβRIII). Inhibiting ectodomain shedding of TβRIII increased TGF-β responsiveness and abrogated TβRIII's ability to inhibit breast cancer cell migration and invasion. Conversely, expressing SS-TβRIII, which increased soluble TβRIII production, decreased TGF-β signaling and increased TβRIII-mediated inhibition of breast cancer cell migration and invasion. Of importance, SS-TβRIII–mediated increases in soluble TβRIII production also reduced breast cancer metastasis in vivo. Taken together, these studies suggest that the ratio of soluble TβRIII to membrane-bound TβRIII is an important determinant for regulation of TβRIII- and TGF-β–mediated signaling and biology.
Collapse
Affiliation(s)
| | - Jennifer J Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | | | - Jian Chen
- Department of Medicine, Duke University, Durham, NC 27708
| | - Tam How
- Department of Medicine, Duke University, Durham, NC 27708
| | - Mark Starr
- Department of Medicine, Duke University, Durham, NC 27708
| | - Andrew B Nixon
- Department of Medicine, Duke University, Durham, NC 27708
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708Department of Medicine, Duke University, Durham, NC 27708
| |
Collapse
|
28
|
Meyer AE, Gatza CE, How T, Starr M, Nixon AB, Blobe GC. Role of TGF-β receptor III localization in polarity and breast cancer progression. Mol Biol Cell 2014; 25:2291-304. [PMID: 24870032 PMCID: PMC4116303 DOI: 10.1091/mbc.e14-03-0825] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The majority of breast cancers originate from the highly polarized luminal epithelial cells lining the breast ducts. However, cell polarity is often lost during breast cancer progression. The type III transforming growth factor-β cell surface receptor (TβRIII) functions as a suppressor of breast cancer progression and also regulates the process of epithelial-to-mesenchymal transition (EMT), a consequence of which is the loss of cell polarity. Many cell surface proteins exhibit polarized expression, being targeted specifically to the apical or basolateral domains. Here we demonstrate that TβRIII is basolaterally localized in polarized breast epithelial cells and that disruption of the basolateral targeting of TβRIII through a single amino acid mutation of proline 826 in the cytosolic domain results in global loss of cell polarity through enhanced EMT. In addition, the mistargeting of TβRIII results in enhanced proliferation, migration, and invasion in vitro and enhanced tumor formation and invasion in an in vivo mouse model of breast carcinoma. These results suggest that proper localization of TβRIII is critical for maintenance of epithelial cell polarity and phenotype and expand the mechanisms by which TβRIII prevents breast cancer initiation and progression.
Collapse
Affiliation(s)
- Alison E Meyer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Catherine E Gatza
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Tam How
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Mark Starr
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew B Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Gerard C Blobe
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
29
|
The role of bone morphogenetic proteins in myeloma cell survival. Cytokine Growth Factor Rev 2014; 25:343-50. [PMID: 24853340 DOI: 10.1016/j.cytogfr.2014.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Multiple myeloma is characterized by slowly growing clones of malignant plasma cells in the bone marrow. The malignant state is frequently accompanied by osteolytic bone disease due to a disturbed balance between osteoblasts and osteoclasts. Bone morphogenetic proteins (BMPs) are present in the bone marrow and are important for several aspects of myeloma pathogenesis including growth and survival of tumor cells, bone homeostasis, and anemia. Among cancer cells, myeloma cells are particularly sensitive to growth inhibition and apoptosis induced by BMPs and therefore represent good models to study BMP receptor usage and signaling. Our review highlights and discusses the current knowledge on BMP signaling in myeloma.
Collapse
|
30
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
31
|
Knelson EH, Gaviglio AL, Tewari AK, Armstrong MB, Mythreye K, Blobe GC. Type III TGF-β receptor promotes FGF2-mediated neuronal differentiation in neuroblastoma. J Clin Invest 2014; 123:4786-98. [PMID: 24216509 DOI: 10.1172/jci69657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022] Open
Abstract
Growth factors and their receptors coordinate neuronal differentiation during development, yet their roles in the pediatric tumor neuroblastoma remain unclear. Comparison of mRNA from benign neuroblastic tumors and neuroblastomas revealed that expression of the type III TGF-β receptor (TGFBR3) decreases with advancing stage of neuroblastoma and this loss correlates with a poorer prognosis. Patients with MYCN oncogene amplification and low TGFBR3 expression were more likely to have an adverse outcome. In vitro, TβRIII expression was epigenetically suppressed by MYCN-mediated recruitment of histone deacetylases to regions of the TGFBR3 promoter. TβRIII bound FGF2 and exogenous FGFR1, which promoted neuronal differentiation of neuroblastoma cells. TβRIII and FGF2 cooperated to induce expression of the transcription factor inhibitor of DNA binding 1 via Erk MAPK. TβRIII-mediated neuronal differentiation suppressed cell proliferation in vitro as well as tumor growth and metastasis in vivo. These studies characterize a coreceptor function for TβRIII in FGF2-mediated neuronal differentiation, while identifying potential therapeutic targets and clinical biomarkers for neuroblastoma.
Collapse
|
32
|
Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 2013; 57:68-75. [PMID: 23891907 PMCID: PMC3845829 DOI: 10.1016/j.bone.2013.07.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023]
Abstract
The processes of bone resorption and bone formation are tightly coupled in young adults, which is crucial to maintenance of bone integrity. We have documented that osteoclasts secrete chemotactic agents to recruit osteoblast lineage cells, contributing to coupling. Bone formation subsequent to bone resorption becomes uncoupled with aging, resulting in significant bone loss. During bone resorption, osteoclasts release and activate transforming growth factor beta 1 (TGF-β1) from the bone matrix; thus, elevated bone resorption increases the level of active TGF-β in the local environment during aging. In this study, we examined the influences of TGF-β1 on the ability of osteoclasts to recruit osteoblasts. TGF-β1 increased osteoclast expression of the chemokine CXCL16 to promote osteoblast migration. TGF-β1 also directly stimulated osteoblast migration; however, this direct response was blocked by conditioned medium from TGF-β1-treated osteoclasts due to the presence of leukemia inhibitory factor (LIF) in the medium. CXCL16 and LIF expression was dependent on TGF-β1 activation of Smad2 and Smad3. These results establish that TGF-β1 induces CXCL16 and LIF production in osteoclasts, which modulate recruitment of osteoblasts to restore the bone lost during the resorptive phase of bone turnover.
Collapse
Affiliation(s)
- Kuniaki Ota
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Patrick Quint
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Megan M. Weivoda
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Ming Ruan
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Larry Pederson
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Jennifer J. Westendorf
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Sundeep Khosla
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
| | - Merry Jo Oursler
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
- Corresponding author: Merry Jo Oursler, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. 507-285-0712, Fax # 507-293-3853.
| |
Collapse
|
33
|
Transient overexpression of TGFBR3 induces apoptosis in human nasopharyngeal carcinoma CNE-2Z cells. Biosci Rep 2013; 33:e00029. [PMID: 23387308 PMCID: PMC3596095 DOI: 10.1042/bsr20120047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NPC (nasopharyngeal carcinoma) is a common malignancy in southern China without defined aetiology. Recent studies have shown that TGFBR3 (transforming growth factor type III receptor, also known as betaglycan), exhibits anticancer activities. This study was to investigate the effects of TGFBR3 on NPC growth and the mechanisms for its actions. Effects of TGFBR3 overexpression on cell viability and apoptosis were measured by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], AO/EB (acridine orange/ethidium bromide) staining and electron microscopy in human NPC CNE-2Z cells. The expression of apoptosis-related proteins, p-Bad, Bad, XIAP (X-linked inhibitor of apoptosis), AIF (apoptosis-inducing factor), Bax and Bcl-2, was determined by Western blot or immunofluorescence analysis. Caspase 3 activity was measured by caspase 3 activity kit and [Ca2+]i (intracellular Ca2+ concentration) was detected by confocal microscopy. Transfection of TGFBR3 containing plasmid DNA at concentrations of 0.5 and 1 μg/ml reduced viability and induced apoptosis in CNE-2Z in concentration- and time-dependent manners. Forced expression of TGFBR3 up-regulated pro-apoptotic Bad and Bax protein, and down-regulated anti-apoptotic p-Bad, Bcl-2 and XIAP protein. Furthermore, transient overexpression of TGFBR3 also enhanced caspase 3 activity, increased [Ca2+]i and facilitated AIF redistribution from the mitochondria to the nucleus in CNE-2Z cells, which is independent of the caspase 3 pathway. These events were associated with TGFBR3-regulated multiple targets involved in CNE-2Z proliferation. Therefore transient overexpression of TGFBR3 may be a novel strategy for NPC prevention and therapy.
Collapse
|
34
|
Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am 2013; 56:563-75. [PMID: 22835538 DOI: 10.1016/j.cden.2012.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. A myriad of growth factors regulates multiple cellular functions including migration, proliferation, differentiation, and apoptosis of several cell types intimately involved in dentin-pulp regeneration. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin-like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes knowledge on many growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration.
Collapse
Affiliation(s)
- Sahng G Kim
- Center for Craniofacial Regeneration, Columbia University, 630 West 168 Street, PH7E, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Basile A, Moschetta M, Ditonno P, Ria R, Marech I, De Luisi A, Berardi S, Frassanito MA, Angelucci E, Derudas D, Specchia G, Curci P, Pavone V, Rossini B, Ribatti D, Bottazzi B, Mantovani A, Presta M, Dammacco F, Vacca A. Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross-talk in the bone marrow of multiple myeloma patients. J Pathol 2012; 229:87-98. [PMID: 22847671 DOI: 10.1002/path.4081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/27/2012] [Accepted: 07/22/2012] [Indexed: 01/01/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor that binds with high affinity and selectivity to fibroblast growth factor-2 (FGF2), thus inhibiting its pro-angiogenic activity. Here we investigated the effects of PTX3 on monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) patient-derived bone marrow (BM) plasma cells (PCs), endothelial cells (ECs), and fibroblasts (FBs), and assessed whether PTX3 can modulate the cross-talk between PCs and those microenvironment cells. PTX3 and FGF2 expression was evaluated by ELISA. Functional studies, including cell viability, wound healing, chemotaxis, and Matrigel(®) assays, were performed on MGUS and MM ECs and FBs upon the PTX3 treatment. Through western blot PTX3-induced modulation in FGF2/FGF receptor signalling pathways was evaluated in MGUS and MM ECs and FBs through western blot. Co-cultures between MM ECs/FBs and human PC lines were used to evaluate possible PTX3 indirect effects on MM PCs. Adhesion molecules were studied by flow cytometry. PTX3 provides a direct time- and dose-dependent apoptotic effect on MM ECs and FBs, but not on either MM primary PCs or human PC lines. PTX3 inhibits migration of MM ECs and FBs in a dose-dependent manner, and impacts in vitro and in vivo FGF2-mediated MM angiogenesis. Co-cultures of PCs and ECs/FBs show that PTX3 treatment indirectly impairs PC viability and adhesion. We conclude that PTX3 is an anti-angiogenic factor in MM and behaves as a cytotoxic molecule on MM cells by inhibiting the cross-talk between PCs and ECs/FBs.
Collapse
Affiliation(s)
- Antonio Basile
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Azizi G, Mirshafiey A. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol Immunotoxicol 2012; 34:881-95. [DOI: 10.3109/08923973.2012.705292] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β - an excellent servant but a bad master. J Transl Med 2012; 10:183. [PMID: 22943793 PMCID: PMC3494542 DOI: 10.1186/1479-5876-10-183] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors. As a potent inhibitor of cell proliferation, TGF-β acts as a tumor suppressor; however in tumor cells, TGF-β looses anti-proliferative response and become an oncogenic factor. This article reviews current understanding of TGF-β signaling and different mechanisms that lead to its impairment in various solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | | |
Collapse
|
39
|
Sánchez NS, Barnett JV. TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Cell Signal 2012; 24:539-548. [PMID: 22033038 PMCID: PMC3237859 DOI: 10.1016/j.cellsig.2011.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/19/2023]
Abstract
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3(-/-) mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3(+/+) cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3(-/-) epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3(-/-) cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.
Collapse
Affiliation(s)
- Nora S Sánchez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| |
Collapse
|
40
|
Hill CR, Sanchez NS, Love JD, Arrieta JA, Hong CC, Brown CB, Austin AF, Barnett JV. BMP2 signals loss of epithelial character in epicardial cells but requires the Type III TGFβ receptor to promote invasion. Cell Signal 2012; 24:1012-22. [PMID: 22237159 DOI: 10.1016/j.cellsig.2011.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/28/2011] [Indexed: 12/21/2022]
Abstract
Coronary vessel development depends on a subpopulation of epicardial cells that undergo epithelial to mesenchymal transformation (EMT) and invade the subepicardial space and myocardium. These cells form the smooth muscle of the vessels and fibroblasts, but the mechanisms that regulate these processes are poorly understood. Mice lacking the Type III Transforming Growth Factor β Receptor (TGFβR3) die by E14.5 due to failed coronary vessel development accompanied by reduced epicardial cell invasion. BMP2 signals via TGFβR3 emphasizing the importance of determining the relative contributions of the canonical BMP signaling pathway and TGFβR3-dependent signaling to BMP2 responsiveness. Here we examined the role of TGFβR3 in BMP2 signaling in epicardial cells. Whereas TGFβ induced loss of epithelial character and smooth muscle differentiation, BMP2 induced an ALK3-dependent loss of epithelial character and modestly inhibited TGFβ-stimulated differentiation. Tgfbr3(-/-) cells respond to BMP2 indicating that TGFβR3 is not required. However, Tgfbr3(-/-) cells show decreased invasion in response to BMP2 and overexpression of TGFβR3 in Tgfbr3(-/-) cells rescued invasion. Invasion was dependent on ALK5, ALK2, ALK3, and Smad4. Expression of TGFβR3 lacking the 3 C-terminal amino acids required to interact with the scaffolding protein GIPC (GAIP-interacting protein, C terminus) did not rescue. Knockdown of GIPC in Tgfbr3(+/+) or Tgfbr3(-/-) cells rescued with TGFβR3 decreased BMP2-stimulated invasion confirming a requirement for TGFβR3/GIPC interaction. Our results reveal the relative roles of TGFβR3-dependent and TGFβR3-independent signaling in the actions of BMP2 on epicardial cell behavior and demonstrate the critical role of TGFβR3 in mediating BMP2-stimulated invasion.
Collapse
|
41
|
Townsend TA, Robinson JY, How T, DeLaughter DM, Blobe GC, Barnett JV. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC. Cell Signal 2011; 24:247-56. [PMID: 21945156 DOI: 10.1016/j.cellsig.2011.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 12/19/2022]
Abstract
An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT.
Collapse
Affiliation(s)
- Todd A Townsend
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | | | | | | | |
Collapse
|