1
|
Schruefer S, Pschibul A, Wong SSW, Sae-Ong T, Wolf T, Schäuble S, Panagiotou G, Brakhage AA, Aimanianda V, Kniemeyer O, Ebel F. Distinct transcriptional responses to fludioxonil in Aspergillus fumigatus and its ΔtcsC and Δskn7 mutants reveal a crucial role for Skn7 in the cell wall reorganizations triggered by this antifungal. BMC Genomics 2023; 24:684. [PMID: 37964194 PMCID: PMC10647056 DOI: 10.1186/s12864-023-09777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Δskn7 mutant is partially, but not completely resistant. RESULTS In this study, we compared the fludioxonil-induced transcriptional responses in the ΔtcsC and Δskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Δskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Δskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.
Collapse
Affiliation(s)
- Sebastian Schruefer
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Annica Pschibul
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Sarah Sze Wah Wong
- UMR2000, Molecular Mycology Unit, Mycology Department, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Tongta Sae-Ong
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Thomas Wolf
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Vishukumar Aimanianda
- UMR2000, Molecular Mycology Unit, Mycology Department, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Mycology Department, Paris, France
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
2
|
Seekles SJ, van den Brule T, Punt M, Dijksterhuis J, Arentshorst M, Ijadpanahsaravi M, Roseboom W, Meuken G, Ongenae V, Zwerus J, Ohm RA, Kramer G, Wösten HAB, de Winde JH, Ram AFJ. Compatible solutes determine the heat resistance of conidia. Fungal Biol Biotechnol 2023; 10:21. [PMID: 37957766 PMCID: PMC10644514 DOI: 10.1186/s40694-023-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Tom van den Brule
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Maarten Punt
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jan Dijksterhuis
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Maryam Ijadpanahsaravi
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Gwendolin Meuken
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Véronique Ongenae
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Jordy Zwerus
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Robin A Ohm
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, the Netherlands
| | - Han A B Wösten
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
- Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Johannes H de Winde
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Arthur F J Ram
- TiFN, P.O. Box 557, 6700 AN, Wageningen, the Netherlands.
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| |
Collapse
|
3
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
4
|
Liu H, Zhang K, Jang YO, Qiao Z, Jin J, Thi Dao TN, Koo B, Park CO, Shin Y. Homobifunctional imidoester-modified zinc nano-spindle attenuated hyphae growth of Aspergillus against hypersensitivity responses. iScience 2023; 26:105922. [PMID: 36866037 PMCID: PMC9971823 DOI: 10.1016/j.isci.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Fungi cause various forms of invasive fungal disease (IFD), and fungal sensitization can contribute to the development of asthma, asthma severity, and other hypersensitivity diseases, such as atopic dermatitis (AD). In this study, we introduce a facile and controllable approach, using homobifunctional imidoester-modified zinc nano-spindle (HINS), for attenuating hyphae growth of fungi and reducing the hypersensitivity response complications in fungi-infected mice. To extend the study of the specificity and immune mechanisms, we used HINS-cultured Aspergillus extract (HI-AsE) and common agar-cultured Aspergillus extract (Con-AsE) as the refined mouse models. HINS composites within the safe concentration range inhibited the hyphae growth of fungi but also reduce the number of fungal pathogens. Through the evaluation of lung and skin tissues from the mice, asthma pathogenesis (lung) and the hypersensitivity response (skin) to invasive aspergillosis were least severe in HI-AsE-infected mice. Therefore, HINS composites attenuate asthma and the hypersensitivity response to invasive aspergillosis.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jie Jin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thuy Nguyen Thi Dao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea,Corresponding author
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea,Corresponding author
| |
Collapse
|
5
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
6
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
7
|
Choi YH, Jun SC, Lee MW, Yu JH, Shin KS. Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus. Int J Mol Sci 2021; 22:ijms22073777. [PMID: 33917505 PMCID: PMC8038847 DOI: 10.3390/ijms22073777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The APSES family proteins are transcription factors (TFs) with a basic helix-loop-helix domain, known to regulate growth, development, secondary metabolism, and other biological processes in Aspergillus species. In the genome of the human opportunistic pathogenic fungus Aspergillus fumigatus, five genes predicted to encode APSES TFs are present. Here, we report the characterization of one of these genes, called mbsA (Afu7g05620). The deletion (Δ) of mbsA resulted in significantly decreased hyphal growth and asexual sporulation (conidiation), and lowered mRNA levels of the key conidiation genes abaA, brlA, and wetA. Moreover, ΔmbsA resulted in reduced spore germination rates, elevated sensitivity toward Nikkomycin Z, and significantly lowered transcripts levels of genes associated with chitin synthesis. The mbsA deletion also resulted in significantly reduced levels of proteins and transcripts of genes associated with the SakA MAP kinase pathway. Importantly, the cell wall hydrophobicity and architecture of the ΔmbsA asexual spores (conidia) were altered, notably lacking the rodlet layer on the surface of the ΔmbsA conidium. Comparative transcriptomic analyses revealed that the ΔmbsA mutant showed higher mRNA levels of gliotoxin (GT) biosynthetic genes, which was corroborated by elevated levels of GT production in the mutant. While the ΔmbsA mutant produced higher amount of GT, ΔmbsA strains showed reduced virulence in the murine model, likely due to the defective spore integrity. In summary, the putative APSES TF MbsA plays a multiple role in governing growth, development, spore wall architecture, GT production, and virulence, which may be associated with the attenuated SakA signaling pathway.
Collapse
Affiliation(s)
- Yong-Ho Choi
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (Y.-H.C.); (S.-C.J.)
| | - Sang-Cheol Jun
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (Y.-H.C.); (S.-C.J.)
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, Konkuk University, Seoul 143-701, Korea
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Korea; (Y.-H.C.); (S.-C.J.)
- Correspondence: (J.-H.Y.); (K.-S.S.); Tel.: +1-608-262-4696 (J.-H.Y.); +82-42-280-2439 (K.-S.S.); Fax: +1-608-262-2976 (J.-H.Y.); +82-42-280-2608 (K.-S.S.)
| |
Collapse
|
8
|
Silva LP, Horta MAC, Goldman GH. Genetic Interactions Between Aspergillus fumigatus Basic Leucine Zipper (bZIP) Transcription Factors AtfA, AtfB, AtfC, and AtfD. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:632048. [PMID: 37744135 PMCID: PMC10512269 DOI: 10.3389/ffunb.2021.632048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is an opportunistic fungus, capable of causing Invasive Aspergillosis in immunocompromised patients, recently transplanted or undergoing chemotherapy. In the present work, we continued the investigation on A. fumigatus AtfA-D transcription factors (TFs) characterizing possible genetic and physical interactions between them after normal growth and stressing conditions. We constructed double null mutants for all the possible combinations of ΔatfA-, -B, -C, and -D, and look into their susceptibility to different stressing conditions. Our results indicate complex genetic interactions among these TFs that could impact the response to different kinds of stressful conditions. AtfA-D interactions also affect the A. fumigatus virulence in Galleria mellonella. AtfA:GFP is ~97% located in the nucleus while about 20-30% of AtfB, -C, and -D:GFP locate into the nucleus in the absence of any stress. Under stressing conditions, AtfB, -C, and -D:GFP translocate to the nucleus about 60-80% upon the addition of sorbitol or H2O2. These four TFs are also interacting physically forming all the possible combinations of heterodimers. We also identified that AtfA-D physically interact with the MAPK SakA in the absence of any stress and upon osmotic and cell wall stresses. They are involved in the accumulation of trehalose, glycogen and metabolic assimilation of different carbon sources.
Collapse
Affiliation(s)
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus. mSphere 2020; 5:5/6/e00998-20. [PMID: 33177217 PMCID: PMC7657592 DOI: 10.1128/msphere.00998-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunocompromised patients are susceptible to infections with the opportunistic human-pathogenic fungus Aspergillus fumigatus. This fungus causes systemic infections such as invasive aspergillosis (IA), which is one of the most life-threatening fungal diseases. To control this serious disease, it is critical to identify new antifungal drug targets. In fungi, the transcriptional regulatory proteins of the APSES family play crucial roles in controlling various biological processes, including mating, asexual sporulation and dimorphic growth, and virulence traits. This study found that a putative APSES transcription factor, RgdA, regulates normal growth, asexual development, conidium germination, spore wall architecture and hydrophobicity, toxin production, and virulence in A. fumigatus. Better understanding the molecular mechanisms of RgdA in human-pathogenic fungi may reveal a novel antifungal target for future drug development. The APSES transcription factor (TF) in Aspergillus species is known to govern diverse cellular processes, including growth, development, and secondary metabolism. Here, we investigated functions of the rgdA gene (Afu3g13920) encoding a putative APSES TF in the opportunistic human-pathogenic fungus Aspergillus fumigatus. The rgdA deletion resulted in significantly decreased hyphal growth and asexual sporulation. Consistently, transcript levels of the key asexual developmental regulators abaA, brlA, and wetA were decreased in the ΔrgdA mutant compared to those in the wild type (WT). Moreover, ΔrgdA resulted in reduced spore germination rates and elevated transcript levels of genes associated with conidium dormancy. The conidial cell wall hydrophobicity and architecture were changed, and levels of the RodA protein were decreased in the ΔrgdA mutant. Comparative transcriptomic analyses revealed that the ΔrgdA mutant showed higher mRNA levels of gliotoxin (GT)-biosynthetic genes and GT production. While the ΔrgdA mutant exhibited elevated production of GT, ΔrgdA strains showed reduced virulence in the mouse model. In addition, mRNA levels of genes associated with the cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway and the SakA mitogen-activated protein (MAP) kinase pathway were increased in the ΔrgdA mutant. In summary, RgdA plays multiple roles in governing growth, development, GT production, and virulence which may involve attenuation of PKA and SakA signaling. IMPORTANCE Immunocompromised patients are susceptible to infections with the opportunistic human-pathogenic fungus Aspergillus fumigatus. This fungus causes systemic infections such as invasive aspergillosis (IA), which is one of the most life-threatening fungal diseases. To control this serious disease, it is critical to identify new antifungal drug targets. In fungi, the transcriptional regulatory proteins of the APSES family play crucial roles in controlling various biological processes, including mating, asexual sporulation and dimorphic growth, and virulence traits. This study found that a putative APSES transcription factor, RgdA, regulates normal growth, asexual development, conidium germination, spore wall architecture and hydrophobicity, toxin production, and virulence in A. fumigatus. Better understanding the molecular mechanisms of RgdA in human-pathogenic fungi may reveal a novel antifungal target for future drug development.
Collapse
|
10
|
Abstract
Aspergilli produce conidia for reproduction or to survive hostile conditions, and they are highly effective in the distribution of conidia through the environment. In immunocompromised individuals, inhaled conidia can germinate inside the respiratory tract, which may result in invasive pulmonary aspergillosis. The management of invasive aspergillosis has become more complex, with new risk groups being identified and the emergence of antifungal resistance. Patient survival is threatened by these developments, stressing the need for alternative therapeutic strategies. As germination is crucial for infection, prevention of this process might be a feasible approach. A broader understanding of conidial germination is important to identify novel antigermination targets. In this review, we describe conidial resistance against various stresses, transition from dormant conidia to hyphal growth, the underlying molecular mechanisms involved in germination of the most common Aspergillus species, and promising antigermination targets. Germination of Aspergillus is characterized by three morphotypes: dormancy, isotropic growth, and polarized growth. Intra- and extracellular proteins play an important role in the protection against unfavorable environmental conditions. Isotropically expanding conidia remodel the cell wall, and biosynthetic machineries are needed for cellular growth. These biosynthetic machineries are also important during polarized growth, together with tip formation and the cell cycle machinery. Genes involved in isotropic and polarized growth could be effective antigermination targets. Transcriptomic and proteomic studies on specific Aspergillus morphotypes will improve our understanding of the germination process and allow discovery of novel antigermination targets and biomarkers for early diagnosis and therapy.
Collapse
|
11
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
12
|
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang CCC, Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol 2019; 10:1013. [PMID: 31156574 PMCID: PMC6529585 DOI: 10.3389/fmicb.2019.01013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
13
|
Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the International Space Station. Fungal Genet Biol 2019; 124:39-46. [PMID: 30611835 DOI: 10.1016/j.fgb.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suite of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to well-studied clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins that showed increased abundance in ISS isolates were overall involved in stress responses, and carbohydrate and secondary metabolism. Among the most abundant proteins were Pst2 and ArtA involved in oxidative stress response, PdcA and AcuE responsible for ethanol fermentation and glyoxylate cycle, respectively, TpcA, TpcF, and TpcK that are part of trypacidin biosynthetic pathway, and a toxin Asp-hemolysin. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abby J Chiang
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
14
|
Brunet K, Alanio A, Lortholary O, Rammaert B. Reactivation of dormant/latent fungal infection. J Infect 2018; 77:463-468. [DOI: 10.1016/j.jinf.2018.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
15
|
Sephton-Clark PCS, Muñoz JF, Ballou ER, Cuomo CA, Voelz K. Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar. mSphere 2018; 3:e00403-18. [PMID: 30258038 PMCID: PMC6158513 DOI: 10.1128/msphere.00403-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizopus delemar is an invasive fungal pathogen responsible for the frequently fatal disease mucormycosis. Germination, a crucial mechanism by which infectious spores of Rhizopus delemar cause disease, is a key developmental process that transforms the dormant spore state into a vegetative one. The molecular mechanisms that underpin this transformation may be key to controlling mucormycosis; however, the regulation of germination remains poorly understood. This study describes the phenotypic and transcriptional changes that take place over the course of germination. This process is characterized by four distinct stages: dormancy, isotropic swelling, germ tube emergence, and hyphal growth. Dormant spores are shown to be transcriptionally unique, expressing a subset of transcripts absent in later developmental stages. A large shift in the expression profile is prompted by the initiation of germination, with genes involved in respiration, chitin, cytoskeleton, and actin regulation appearing to be important for this transition. A period of transcriptional consistency can be seen throughout isotropic swelling, before the transcriptional landscape shifts again at the onset of hyphal growth. This study provides a greater understanding of the regulation of germination and highlights processes involved in transforming Rhizopus delemar from a single-cellular to multicellular organism.IMPORTANCE Germination is key to the growth of many organisms, including fungal spores. Mucormycete spores exist abundantly within the environment and germinate to form hyphae. These spores are capable of infecting immunocompromised individuals, causing the disease mucormycosis. Germination from spore to hyphae within patients leads to angioinvasion, tissue necrosis, and often fatal infections. This study advances our understanding of how spore germination occurs in the mucormycetes, identifying processes we may be able to inhibit to help prevent or treat mucormycosis.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jose F Muñoz
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kerstin Voelz
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Role of the small GTPase Rho1 in cell wall integrity, stress response, and pathogenesis of Aspergillus fumigatus. Fungal Genet Biol 2018; 120:30-41. [PMID: 30205199 DOI: 10.1016/j.fgb.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 11/24/2022]
Abstract
Aspergillus fumigatus is a major pathogen of invasive pulmonary aspergillosis. The small GTPase, Rho1, of A. fumigatus is reported to comprise a potential regulatory subunit of β-1,3-glucan synthase and is indispensable for fungal viability; however, the role of AfRho1 on the growth, cell wall integrity, and pathogenesis of A. fumigatus is still poorly understood. We constructed A. fumigatus mutants with conditional- and overexpression of Rho1 and found that defects of AfRho1 expression led to the reduction of β-1,3-glucan and glucosamine moieties on the cell wall, with down-regulated transcription of genes in the cell wall integrity signaling pathway and a decrease of calcofluor white (CFW)-stimulated mitogen-activated protein kinase (MpkA) phosphorylation and cytoplasmic leakage compared to those of the wild-type strain (WT). In addition, down-regulation of AfRho1 expression caused much higher sensitivity of A. fumigatus to H2O2 and alkaline pH compared to that of WT. Decrease of AfRho1 expression also attenuated the A. fumigatus pathogenicity in Galleria mellonella and inhibited conidial internalization into lung epithelial cells and inflammatory factor release. In contrast, overexpression of Rho1 did not alter A. fumigatus morphology, susceptibility to cell wall stresses, or pathogenicity relative to its parental strain. Taken together, our findings support AfRho1 as an essential regulator of the cell wall integrity, stress response, and pathogenesis of A. fumigatus.
Collapse
|
17
|
Escobar N, Valdes ID, Keizer EM, Ordonez SR, Ohm RA, Wösten HAB, de Cock H. Expression profile analysis reveals that Aspergillus fumigatus but not Aspergillus niger makes type II epithelial lung cells less immunological alert. BMC Genomics 2018; 19:534. [PMID: 30005605 PMCID: PMC6044037 DOI: 10.1186/s12864-018-4895-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
Background Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. Results Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. Conclusions Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger. Electronic supplementary material The online version of this article (10.1186/s12864-018-4895-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Escobar
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ivan D Valdes
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Esther M Keizer
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Soledad R Ordonez
- Department of Infectious Diseases and Immunology, Division Molecular Host Defence, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology & Institute of Biomembranes, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Kurucz V, Krüger T, Antal K, Dietl AM, Haas H, Pócsi I, Kniemeyer O, Emri T. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics 2018; 19:357. [PMID: 29747589 PMCID: PMC5946477 DOI: 10.1186/s12864-018-4730-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/26/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H2O2-induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. RESULTS The applied H2O2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. CONCLUSIONS Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H2O2-induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.
Collapse
Affiliation(s)
- Vivien Kurucz
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly University, Eszterházy tér 1, Eger, H-3300 Hungary
| | - Anna-Maria Dietl
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, A6020 Innsbruck, Austria
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032 Hungary
| |
Collapse
|
20
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
21
|
Valsecchi I, Sarikaya-Bayram Ö, Wong Sak Hoi J, Muszkieta L, Gibbons J, Prevost MC, Mallet A, Krijnse-Locker J, Ibrahim-Granet O, Mouyna I, Carr P, Bromley M, Aimanianda V, Yu JH, Rokas A, Braus GH, Saveanu C, Bayram Ö, Latgé JP. MybA, a transcription factor involved in conidiation and conidial viability of the human pathogenAspergillus fumigatus. Mol Microbiol 2017; 105:880-900. [DOI: 10.1111/mmi.13744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - John Gibbons
- Department of Biological Sciences; Vanderbilt University; Nashville TN 37235 USA
| | | | - Adeline Mallet
- Plate-Forme de Microscopie Ultrastructurale; Institut Pasteur; Paris 75015 France
| | | | | | | | - Paul Carr
- Manchester Fungal Infection Group; Institute of Inflammation and Repair, University of Manchester; Manchester UK
| | - Michael Bromley
- Manchester Fungal Infection Group; Institute of Inflammation and Repair, University of Manchester; Manchester UK
| | | | - Jae-Hyuk Yu
- Department of Bacteriology and Genetics; University of Wisconsin; Madison WI 53706 USA
| | - Antonis Rokas
- Department of Biological Sciences; Vanderbilt University; Nashville TN 37235 USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics; Georg August University; Göttingen 37077 Germany
| | - Cosmin Saveanu
- Unité de Génétique des Interactions Macromoléculaires; CNRS UMR3525, Institut Pasteur; Paris France
| | - Özgür Bayram
- Department of Biology; Maynooth University; Maynooth Co. Kildare Ireland
- Department of Molecular Microbiology and Genetics; Georg August University; Göttingen 37077 Germany
| | | |
Collapse
|
22
|
Alves de Castro P, dos Reis TF, Dolan SK, Manfiolli AO, Brown NA, Jones GW, Doyle S, Riaño-Pachón DM, Squina FM, Caldana C, Singh A, Del Poeta M, Hagiwara D, Silva-Rocha R, Goldman GH. The Aspergillus fumigatus SchA SCH9 kinase modulates SakA HOG1 MAP kinase activity and it is essential for virulence. Mol Microbiol 2016; 102:642-671. [PMID: 27538790 PMCID: PMC5207228 DOI: 10.1111/mmi.13484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Stephen K. Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Gary W. Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Diego M. Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Fábio Márcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
| | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo, CEP 13083-970, Brasil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, São Paulo, Brazil
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Pais P, Costa C, Cavalheiro M, Romão D, Teixeira MC. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison. Front Cell Infect Microbiol 2016; 6:131. [PMID: 27812511 PMCID: PMC5072224 DOI: 10.3389/fcimb.2016.00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
Transcription factors are key players in the control of the activation or repression of gene expression programs in response to environmental stimuli. The study of regulatory networks taking place in fungal pathogens is a promising research topic that can help in the fight against these pathogens by targeting specific fungal pathways as a whole, instead of targeting more specific effectors of virulence or drug resistance. This review is focused on the analysis of regulatory networks playing a central role in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus, Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis. Current knowledge on the activity of the transcription factors characterized in each of these pathogenic fungal species will be addressed. Particular focus is given to their mechanisms of activation, regulatory targets and phenotypic outcome. The review further provides an evaluation on the conservation of transcriptional circuits among different fungal pathogens, highlighting the pathways that translate common or divergent traits among these species in what concerns their drug resistance, virulence and host immune evasion features. It becomes evident that the regulation of transcriptional networks is complex and presents significant variations among different fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved among all studied species; while some transcription factors, involved in nutrient homeostasis, pH adaptation, drug resistance and morphological switching are present in several, though not all species. Interestingly, in some cases not very homologous transcription factors display orthologous functions, whereas some homologous proteins have diverged in terms of their function in different species. A few cases of species specific transcription factors are also observed.
Collapse
Affiliation(s)
- Pedro Pais
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Catarina Costa
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Mafalda Cavalheiro
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Daniela Romão
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| | - Miguel C Teixeira
- Biological Sciences Research Group, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal; Biological Sciences Research Group, Institute for Bioengineering and Biosciences, Instituto Superior TécnicoLisboa, Portugal
| |
Collapse
|
24
|
Wyatt TT, Wösten HAB, Dijksterhuis J. Fungal spores for dispersion in space and time. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:43-91. [PMID: 23942148 DOI: 10.1016/b978-0-12-407672-3.00002-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- Department of Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
25
|
Singh J, Reddy PS, Reddy CS, Reddy MK. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Emri T, Szarvas V, Orosz E, Antal K, Park H, Han KH, Yu JH, Pócsi I. Core oxidative stress response in Aspergillus nidulans. BMC Genomics 2015; 16:478. [PMID: 26115917 PMCID: PMC4482186 DOI: 10.1186/s12864-015-1705-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The b-Zip transcription factor AtfA plays a key role in regulating stress responses in the filamentous fungus Aspergillus nidulans. To identify the core regulons of AtfA, we examined genome-wide expression changes caused by various stresses in the presence/absence of AtfA using A. nidulans microarrays. We also intended to address the intriguing question regarding the existence of core environmental stress response in this important model eukaryote. RESULTS Examination of the genome wide expression changes caused by five different oxidative stress conditions in wild type and the atfA null mutant has identified a significant number of stereotypically regulated genes (Core Oxidative Stress Response genes). The deletion of atfA increased the oxidative stress sensitivity of A. nidulans and affected mRNA accumulation of several genes under both unstressed and stressed conditions. The numbers of genes under the AtfA control appear to be specific to a stress-type. We also found that both oxidative and salt stresses induced expression of some secondary metabolite gene clusters and the deletion of atfA enhanced the stress responsiveness of additional clusters. Moreover, certain clusters were down-regulated by the stresses tested. CONCLUSION Our data suggest that the observed co-regulations were most likely consequences of the overlapping physiological effects of the stressors and not of the existence of a general environmental stress response. The function of AtfA in governing various stress responses is much smaller than anticipated and/or other regulators may play a redundant or overlapping role with AtfA. Both stress inducible and stress repressive regulations of secondary metabolism seem to be frequent features in A. nidulans.
Collapse
Affiliation(s)
- Tamás Emri
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Vera Szarvas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Erzsébet Orosz
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly College, Eszterházy út 1, H-3300, Eger, Hungary.
| | - HeeSoo Park
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, 565-701, Wanju, Republic of Korea.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI, 53706, USA.
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, H-4032, Debrecen, Hungary.
| |
Collapse
|
27
|
Winkelströter LK, Dolan SK, Fernanda Dos Reis T, Bom VLP, Alves de Castro P, Hagiwara D, Alowni R, Jones GW, Doyle S, Brown NA, Goldman GH. Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3 (BETHESDA, MD.) 2015; 5:1525-39. [PMID: 25943523 PMCID: PMC4502386 DOI: 10.1534/g3.115.016766] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that causes several invasive and noninvasive diseases named aspergillosis. This disease is generally regarded as multifactorial, considering that several pathogenicity determinants are present during the establishment of this illness. It is necessary to obtain an increased knowledge of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes. Protein phosphatases are essential to several signal transduction pathways. We identified 32 phosphatase catalytic subunit-encoding genes in A. fumigatus, of which we were able to construct 24 viable deletion mutants. The role of nine phosphatase mutants in the HOG (high osmolarity glycerol response) pathway was evaluated by measuring phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. We were also able to identify 11 phosphatases involved in iron assimilation, six that are related to gliotoxin resistance, and three implicated in gliotoxin production. These results present the creation of a fundamental resource for the study of signaling in A. fumigatus and its implications in the regulation of pathogenicity determinants and virulence in this important pathogen.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Stephen K Dolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Raneem Alowni
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 13083-970 Ribeirão Preto, Brazil National Laboratory of Science and Technology of Bioethanol (CTBE), 13083-970 Campinas, Brazil
| |
Collapse
|
28
|
Winkelströter LK, Bom VLP, de Castro PA, Ramalho LNZ, Goldman MHS, Brown NA, Rajendran R, Ramage G, Bovier E, Dos Reis TF, Savoldi M, Hagiwara D, Goldman GH. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol Microbiol 2015; 96:42-54. [PMID: 25597841 DOI: 10.1111/mmi.12919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and β-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hagiwara D, Suzuki S, Kamei K, Gonoi T, Kawamoto S. The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genet Biol 2014; 73:138-49. [PMID: 25459537 DOI: 10.1016/j.fgb.2014.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 01/15/2023]
Abstract
Aspergillus fumigatus is a life-threatening pathogenic fungus, whose conidium is the infectious agent of aspergillosis. To better understand the mechanism underlying the long-term viability of conidia, we characterized a bZip transcription factor, AtfA, with special reference to stress-tolerance in conidia. The atfA deletion mutant conidia showed significant sensitivity to high temperature and oxidative stress. The trehalose content that accumulated in conidia was reduced in the mutant conidia. Transcriptome analysis revealed that AtfA regulated several stress-protection-related genes such as catA, dprA, scf1, and conJ at the conidiation stage. The upstream high-osmolarity glycerol pathway was also involved in conferring stress tolerance in conidia because ΔpbsB showed stress sensitivity and reduced trehalose in conidia. However, a mutant lacking the SakA mitogen-activated protein kinase (MAPK) produced normal conidia. We investigated another MAPK, MpkC, in relation with SakA, and the double deletion mutant, ΔsakA,mpkC, was defective in conidia stress tolerance. We concluded that MpkC is able to bypass SakA, and the two MAPKs redundantly regulate the conidia-related function of AtfA in A. fumigatus.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan.
| | - Satoshi Suzuki
- National Food Research Institute (NFRI), 2-1-12 Kan-nondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Susumu Kawamoto
- Medical Mycology Research Center (MMRC), Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
30
|
Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One 2013; 8:e80881. [PMID: 24312504 PMCID: PMC3846623 DOI: 10.1371/journal.pone.0080881] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022] Open
Abstract
The fungal high osmolarity glycerol (HOG) pathway is composed of a two-component system (TCS) and Hog1-type mitogen-activated protein kinase (MAPK) cascade. A group III (Nik1-type) histidine kinase plays a major role in the HOG pathway of several filamentous fungi. In this study, we characterized a group III histidine kinase, NikA/TcsC, in the life-threatening pathogenic fungus, Aspergillus fumigatus. A deletion mutant of nikA showed low conidia production, abnormal hyphae, marked sensitivity to high osmolarity stresses, and resistance to cell wall perturbing reagents such as congo red and calcofluor white, as well as to fungicides such as fludioxonil, iprodione, and pyrrolnitrin. None of these phenotypes were observed in mutants of the SskA response regulator and SakA MAPK, which were thought to be downstream components of NikA. In contrast, in response to fludioxonil treatment, NikA was implicated in the phosphorylation of SakA MAPK and the transcriptional upregulation of catA, dprA, and dprB, which are regulated under the control of SakA. We then tested the idea that not only NikA, but also the other 13 histidine kinases play certain roles in the regulation of the HOG pathway. Interestingly, the expression of fos1, phkA, phkB, fhk5, and fhk6 increased by osmotic shock or fludioxonil treatment in a SakA-dependent manner. However, deletion mutants of the histidine kinases showed no significant defects in growth under the tested conditions. Collectively, although the signal transduction network related to NikA seems complicated, NikA plays a crucial role in several aspects of A. fumigatus physiology and, to a certain extent, modulates the HOG pathway.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, Jaspard E, Calmes B, Hamon B, Berruyer R, Juchaux M, Guillemette T. Dehydrin-like proteins in the necrotrophic fungus Alternaria brassicicola have a role in plant pathogenesis and stress response. PLoS One 2013; 8:e75143. [PMID: 24098369 PMCID: PMC3788798 DOI: 10.1371/journal.pone.0075143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.
Collapse
Affiliation(s)
- Stéphanie Pochon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Philippe Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Sandrine Pigné
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Samuel Balidas
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Nelly Bataillé-Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Claire Campion
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Emmanuel Jaspard
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Benoît Calmes
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Bruno Hamon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Romain Berruyer
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | | | - Thomas Guillemette
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- * E-mail:
| |
Collapse
|
32
|
Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics 2013; 14:246. [PMID: 23577966 PMCID: PMC3635940 DOI: 10.1186/1471-2164-14-246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/06/2013] [Indexed: 12/14/2022] Open
Abstract
Background Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using both next generation RNA-sequencing and GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes. Results The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate at the onset of germination implies its use as a source of nitrogen. The transcriptome of dormant conidia contained a significant component of antisense transcripts that changed during germination. Conclusion Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination. For some genes, antisense transcription is regulated in the transition from resting conidia to fully active germinants.
Collapse
|
33
|
van Leeuwen M, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wösten H, Dijksterhuis J. Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 2013; 74:59-70. [PMID: 23449598 PMCID: PMC3563291 DOI: 10.3114/sim0009] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The transcriptome of conidia of Aspergillus niger was analysed during the first 8 h of germination. Dormant conidia started to grow isotropically two h after inoculation in liquid medium. Isotropic growth changed to polarised growth after 6 h, which coincided with one round of mitosis. Dormant conidia contained transcripts from 4 626 genes. The number of genes with transcripts decreased to 3 557 after 2 h of germination, after which an increase was observed with 4 780 expressed genes 8 h after inoculation. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. The correlation coefficient between the RNA profiles of 0 h and 8 h was 0.46. They were between 0.76-0.93 when profiles of 2, 4 and 6 h were compared with that of 8 h. Dormant conidia were characterised by high levels of transcripts of genes involved in the formation of protecting components such as trehalose, mannitol, protective proteins (e.g. heat shock proteins and catalase). Transcripts belonging to the Functional Gene Categories (FunCat) protein synthesis, cell cycle and DNA processing and respiration were over-represented in the up-regulated genes at 2 h, whereas metabolism and cell cycle and DNA processing were over-represented in the up-regulated genes at 4 h. At 6 h and 8 h no functional gene classes were over- or under-represented in the differentially expressed genes. Taken together, it is concluded that the transcriptome of conidia changes dramatically during the first two h and that initiation of protein synthesis and respiration are important during early stages of germination.
Collapse
Affiliation(s)
- M.R. van Leeuwen
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P. Krijgsheld
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R. Bleichrodt
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - H. Menke
- DSM Food Specialties, PO Box 1, 2600 MA Delft, The Netherlands
| | - H. Stam
- DSM Food Specialties, PO Box 1, 2600 MA Delft, The Netherlands
| | - J. Stark
- DSM Food Specialties, PO Box 1, 2600 MA Delft, The Netherlands
| | - H.A.B. Wösten
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J. Dijksterhuis
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
34
|
Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia 2012; 175:13-23. [PMID: 23161019 DOI: 10.1007/s11046-012-9600-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is an important opportunistic fungal pathogen that causes lethal systemic invasive aspergillosis. It must be able to adapt to stress in the microenvironment during host invasion and systemic spread. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathway is a key element that controls adaptation to environmental stress. It plays a critical role in the virulence of several fungal pathogens. In this review, we summarize the current knowledge about the functions of different components of the HOG-MAPK pathway in A. fumigatus through mutant analysis or inferences from the genome annotation, focusing on their roles in adaptation to stress, regulation of infection-related morphogenesis, and effect on virulence. We also briefly compare the functions of the HOG pathway in A. fumigatus with those in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans as well as several other human and plant pathogens including Candida albicans, Cryptococcus neoformans, and Magnaporthe oryzae. The genes described in this review mainly include tcsB, fos1, skn7, sho1, pbs2, and sakA whose deletion mutants have already been established in A. fumigatus. Among them, fos1 has been considered a virulence factor in A. fumigatus, indicating that components of the HOG pathway may be suitable as targets for developing new fungicides. However, quite a few of the genes of this pathway, such as sskA (ssk1), sskB, steC, and downstream regulator genes, are not well characterized. System biology approaches may contribute to a more comprehensive understanding of HOG pathway functions with dynamic details.
Collapse
|
35
|
van Leeuwen MR, Krijgsheld P, Wyatt TT, Golovina EA, Menke H, Dekker A, Stark J, Stam H, Bleichrodt R, Wösten HAB, Dijksterhuis J. The effect of natamycin on the transcriptome of conidia of Aspergillus niger. Stud Mycol 2012; 74:71-85. [PMID: 23449730 PMCID: PMC3563292 DOI: 10.3114/sim0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The impact of natamycin on Aspergillus niger was analysed during the first 8 h of germination of conidia. Polarisation, germ tube formation, and mitosis were inhibited in the presence of 3 and 10 μM of the anti-fungal compound, while at 10 μM also isotropic growth was affected. Natamycin did not have an effect on the decrease of microviscosity during germination and the concomitant reduction in mannitol and trehalose levels. However, it did abolish the increase of intracellular levels of glycerol and glucose during the 8 h period of germination. Natamycin hardly affected the changes that occur in the RNA profile during the first 2 h of germination. During this time period, genes related to transcription, protein synthesis, energy and cell cycle and DNA processing were particularly up-regulated. Differential expression of 280 and 2586 genes was observed when 8 h old germlings were compared with conidia that had been exposed to 3 μM and 10 μM natamycin, respectively. For instance, genes involved in ergosterol biosynthesis were down-regulated. On the other hand, genes involved in endocytosis and the metabolism of compatible solutes, and genes encoding protective proteins were up-regulated in natamycin treated conidia.
Collapse
Affiliation(s)
- M R van Leeuwen
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. J Proteomics 2012; 75:4038-49. [PMID: 22634043 DOI: 10.1016/j.jprot.2012.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/04/2012] [Accepted: 05/13/2012] [Indexed: 12/29/2022]
Abstract
The isoprenoid alcohol farnesol represents a quorum-sensing molecule in pathogenic yeasts, but was also shown to inhibit the growth of many filamentous fungi. In order to gain a deeper insight into the antifungal activity of farnesol, we performed 2D-differential gel electrophoretic analysis (2D-DIGE) of Aspergillus nidulans exposed to farnesol. We observed an increased abundance of antioxidative enzymes and proteins involved in protein folding and the ubiquitin-mediated protein degradation. A striking finding was the strong up-regulation of a dehydrin-like protein (DlpA). Expression analyses suggested the involvement of DlpA in the cellular response to oxidative, osmotic and cold stress. In line with these data, we demonstrated that dlpA expression was regulated by the MAP kinase SakA/HogA. The generation of both a dlpA Tet(on) antisense RNA-producing A. nidulans strain (dlpA-inv) and a ΔdlpA deletion mutant indicated a role of DlpA in conidiation and stress resistance of dormant conidia against heat and ROS. Furthermore, the production of the secondary metabolite sterigmatocystin was absent in both strains dlpA-inv and ΔdlpA. Our results demonstrate the complexity of the farnesol-mediated stress response in A. nidulans and describe a farnesol-inducible dehydrin-like protein that contributes to the high tolerance of resting conidia against oxidative and heat stress.
Collapse
|