1
|
Ren J, Rieger R, Pereira de Sa N, Kelapire D, Del Poeta M, Hannun YA. Orm proteins control ceramide synthesis and endocytosis via LCB-mediated Ypk1 regulation. J Lipid Res 2024:100683. [PMID: 39490931 DOI: 10.1016/j.jlr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Sphingolipids (SPLs) are major components of cell membranes with significant functions. Their production is a highly-regulated multi-step process with the formation of two major intermediates, long chain bases (LCBs) and ceramides. Homologous Orm proteins in both yeast and mammals negatively regulate LCB production by inhibiting serine palmitoyltransferase (SPT), the first enzyme in SPL de novo synthesis. Orm proteins are therefore regarded as major regulator of SPL production. Combining targeted lipidomic profiling with phenotypic analysis of yeast mutants with both ORM1 and ORM2 deleted (orm1/2Δ), we report here that Ypk1, an AGC family protein kinase, signaling is compromised in an LCB-dependent manner. In orm1/2Δ, phosphorylation of Ypk1 at its activation sites is reduced, so does its in vivo activity shown by reduced phosphorylation of Ypk1 substrate, Lac1, the catalytic component of ceramide synthase (CerS). A corresponding defect in ceramide synthesis was detected, preventing the extra LCBs generated in orm1/2Δ from fully converting into downstream SPL products. The results suggest that Orm proteins play a complex role in regulating SPL production in yeast S. cerevisiae by exerting an extra and opposite effect on CerS. Functionally, we define an endocytosis and an actin polarization defect of orm1/2Δ and demonstrate the roles of Ypk1 in mediating the effects of Orm proteins on endocytosis. Collectively, the results reveal a previously unrecognized complexity of SPL de novo synthesis pathway and point to a potential role of Orm proteins as upstream regulators to control Ypk1-mediated biological functions via regulating LCB production.
Collapse
Affiliation(s)
- Jihui Ren
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert Rieger
- Biological Mass Spectrometry Core Facility, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Douglas Kelapire
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA; Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA; Northport Veterans Affairs Medical Center, Northport, New York 11768.
| |
Collapse
|
2
|
Esch BM, Walter S, Schmidt O, Fröhlich F. Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER. J Cell Sci 2023; 136:jcs261353. [PMID: 37982431 DOI: 10.1242/jcs.261353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.
Collapse
Affiliation(s)
- Bianca M Esch
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Fröhlich
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
3
|
Barmaki H, Nourazarian A, Khaki-Khatibi F. Proteostasis and neurodegeneration: a closer look at autophagy in Alzheimer's disease. Front Aging Neurosci 2023; 15:1281338. [PMID: 38020769 PMCID: PMC10652403 DOI: 10.3389/fnagi.2023.1281338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of misfolded amyloid-beta and tau proteins. Autophagy acts as a proteostasis process to remove protein clumps, although it progressively weakens with aging and AD, thus facilitating the accumulation of toxic proteins and causing neurodegeneration. This review examines the impact of impaired autophagy on the progression of AD disease pathology. Under normal circumstances, autophagy removes abnormal proteins and damaged organelles, but any dysfunction in this process can lead to the exacerbation of amyloid and tau pathology, particularly in AD. There is increasing attention to therapeutic tactics to revitalize autophagy, including reduced caloric intake, autophagy-stimulating drugs, and genetic therapy. However, the translation of these strategies into clinical practice faces several hurdles. In summary, this review integrates the understanding of the intricate role of autophagy dysfunction in Alzheimer's disease progression and reinforces the promising prospects of autophagy as a beneficial target for treatments to modify the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Haleh Barmaki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Usmani SA, Kumar M, Arya K, Ali B, Bhardwaj N, Gaur NA, Prasad R, Singh A. Beyond membrane components: uncovering the intriguing world of fungal sphingolipid synthesis and regulation. Res Microbiol 2023; 174:104087. [PMID: 37328042 DOI: 10.1016/j.resmic.2023.104087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping. These studies have provided a better understanding of SL biosynthesis, degradation and regulation networks in filamentous fungi, which are discussed and elaborated here.
Collapse
Affiliation(s)
- Sana Akhtar Usmani
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Mohit Kumar
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India; International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Khushboo Arya
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India
| | - Basharat Ali
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand 249404, India
| | - Naseem Akhtar Gaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health and Amity Institute of Biotechnology, Amity University Gurgaon, Haryana, India
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, 226024, India.
| |
Collapse
|
5
|
Limar S, Körner C, Martínez-Montañés F, Stancheva VG, Wolf VN, Walter S, Miller EA, Ejsing CS, Galassi VV, Fröhlich F. Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface. J Cell Biol 2023; 222:e202109162. [PMID: 36897280 PMCID: PMC10038888 DOI: 10.1083/jcb.202109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Ceramides are essential precursors of complex sphingolipids and act as potent signaling molecules. Ceramides are synthesized in the endoplasmic reticulum (ER) and receive their head-groups in the Golgi apparatus, yielding complex sphingolipids (SPs). Transport of ceramides between the ER and the Golgi is executed by the essential ceramide transport protein (CERT) in mammalian cells. However, yeast cells lack a CERT homolog, and the mechanism of ER to Golgi ceramide transport remains largely elusive. Here, we identified a role for yeast Svf1 in ceramide transport between the ER and the Golgi. Svf1 is dynamically targeted to membranes via an N-terminal amphipathic helix (AH). Svf1 binds ceramide via a hydrophobic binding pocket that is located in between two lipocalin domains. We showed that Svf1 membrane-targeting is important to maintain flux of ceramides into complex SPs. Together, our results show that Svf1 is a ceramide binding protein that contributes to sphingolipid metabolism at Golgi compartments.
Collapse
Affiliation(s)
- Sergej Limar
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Carolin Körner
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Fernando Martínez-Montañés
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Verena N. Wolf
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| | | | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vanesa Viviana Galassi
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Florian Fröhlich
- Department of Biology/Chemistry Bioanalytical Chemistry Section, Osnabrück University, Osnabrück, Germany
- Osnabrück University Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück, Germany
| |
Collapse
|
6
|
Brown RDR, Spiegel S. ORMDL in metabolic health and disease. Pharmacol Ther 2023; 245:108401. [PMID: 37003301 PMCID: PMC10148913 DOI: 10.1016/j.pharmthera.2023.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Obesity is a key risk factor for the development of metabolic disease. Bioactive sphingolipid metabolites are among the lipids increased in obesity. Obesogenic saturated fatty acids are substrates for serine palmitoyltransferase (SPT) the rate-limiting step in de novo sphingolipid biosynthesis. The mammalian orosomucoid-like protein isoforms ORMDL1-3 negatively regulate SPT activity. Here we summarize evidence that dysregulation of sphingolipid metabolism and SPT activity correlates with pathogenesis of obesity. This review also discusses the current understanding of the function of SPT and ORMDL in obesity and metabolic disease. Gaps and limitations in current knowledge are highlighted together with the need to further understand how ORMDL3, which has been identified as an obesity-related gene, contributes to the pathogenesis of obesity and development of metabolic disease related to its physiological functions. Finally, we point out the needs to move this young field of research forward.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
7
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
8
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
9
|
Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. mBio 2022; 13:e0354521. [PMID: 35038899 PMCID: PMC8764518 DOI: 10.1128/mbio.03545-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.
Collapse
|
10
|
De Novo Sphingolipid Biosynthesis in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:31-46. [DOI: 10.1007/978-981-19-0394-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 2021; 37:110149. [PMID: 34965436 DOI: 10.1016/j.celrep.2021.110149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.
Collapse
|
12
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
13
|
Erdbrügger P, Fröhlich F. The role of very long chain fatty acids in yeast physiology and human diseases. Biol Chem 2020; 402:25-38. [PMID: 33544487 DOI: 10.1515/hsz-2020-0234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
Fatty acids (FAs) are a highly diverse class of molecules that can have variable chain length, number of double bonds and hydroxylation sites. FAs with 22 or more carbon atoms are described as very long chain fatty acids (VLCFAs). VLCFAs are synthesized in the endoplasmic reticulum (ER) through a four-step elongation cycle by membrane embedded enzymes. VLCFAs are precursors for the synthesis of sphingolipids (SLs) and glycerophospholipids. Besides their role as lipid constituents, VLCFAs are also found as precursors of lipid mediators. Mis-regulation of VLCFA metabolism can result in a variety of inherited diseases ranging from ichthyosis, to myopathies and demyelination. The enzymes for VLCFA biosynthesis are evolutionary conserved and many of the pioneering studies were performed in the model organism Saccharomyces cerevisiae. A growing body of evidence suggests that VLCFA metabolism is intricately regulated to maintain lipid homeostasis. In this review we will describe the metabolism of VLCFAs, how they are synthesized, transported and degraded and how these processes are regulated, focusing on budding yeast. We will review how lipid metabolism and membrane properties are affected by VLCFAs and which impact mutations in the biosynthetic genes have on physiology. We will also briefly describe diseases caused by mis-regulation of VLCFAs in human cells.
Collapse
Affiliation(s)
- Pia Erdbrügger
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück, Osnabrück, Germany
| |
Collapse
|
14
|
Expression Patterns and Prognostic Values of ORMDL1 in Different Cancers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5178397. [PMID: 33145351 PMCID: PMC7596526 DOI: 10.1155/2020/5178397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023]
Abstract
The mammalian orosomucoid-like gene family (ORMDL), containing ORMDL1, ORMDL2, and ORMDL3, is the important regulator of sphingolipid metabolism, which is relevant to cell growth, proliferation, migration, and invasion. Since the role of ORMDL1 in cancers remained unclear, the main purpose of our study was to explore the expression patterns and prognostic values of ORMDL1 in different tumors, especially in cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse large B cell lymphoma (DLBCL), acute myeloid leukemia (LAML), and thymoma (THYM). Bioinformatics tools including GEPIA, CCLE, LinkedOmics, cBioPortal, and TIMER databases were used. As a result, the expression levels of ORMDL1 in tumor tissues and normal tissues varied in different cancers, especially significantly upregulated in CHOL, DLBCL, LAML, and THYM. Moreover, ORMDL1 mRNA was also highly expressed in cell lines of DLBCL and LAML. Further studies showed that ORMDL1 overexpression was associated with poor prognosis in DLBCL, but not significant in CHOL, LAML, and THYM. Consistently, there were genetic alterations of ORMDL1 in DLBCL, and patients with genetic alterations indicated worse survival. Coexpressed genes and related biological events with ORMDL1 in DLBCL were found via LinkedOmics, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The relationship between ORMDL1 and cancer immune cells was investigated, and ORMDL1 expression was positively correlated with infiltrating levels of B cells. In conclusion, ORMDL1 is suggested to be a tumorigenic factor and considered as the potential therapeutic target and prognostic biomarker in DLBCL.
Collapse
|
15
|
Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, Rohr R, Reggiori F, De Virgilio C, Dengjel J. Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 2020; 28:3486-3496.e6. [PMID: 31553916 DOI: 10.1016/j.celrep.2019.08.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rudolf Rohr
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
16
|
Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1008745. [PMID: 32845888 PMCID: PMC7478846 DOI: 10.1371/journal.pgen.1008745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/08/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism. Sphingolipids (SPs) are membrane lipids globally required for eukaryotic life. In contrast to other lipid classes, SPs cannot be stored in the cell and therefore their levels have to be tightly regulated. Failure to maintain sphingolipid homeostasis can result in pathologies including neurodegeneration, childhood asthma and cancer. However, we are only starting to understand how SP biosynthesis is adjusted according to need. In this study, we use genetic and biochemical methods to show that the uptake of exogenous serine is necessary to maintain SP homeostasis in Saccharomyces cerevisiae. Serine is one of the precursors of long chain bases in cells, the first intermediate of SP metabolism. Our results suggest that the uptake of serine is directly coupled to SP biosynthesis at ER-plasma membrane contact sites. Overall, our study identifies serine uptake as a novel regulatory factor of SP homeostasis. While we use yeast as a discovery tool, these results also provide valuable insights into mammalian SP biology especially under pathological conditions.
Collapse
|
17
|
Martínez-Montañés F, Casanovas A, Sprenger RR, Topolska M, Marshall DL, Moreno-Torres M, Poad BL, Blanksby SJ, Hermansson M, Jensen ON, Ejsing CS. Phosphoproteomic Analysis across the Yeast Life Cycle Reveals Control of Fatty Acyl Chain Length by Phosphorylation of the Fatty Acid Synthase Complex. Cell Rep 2020; 32:108024. [DOI: 10.1016/j.celrep.2020.108024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
|
18
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
19
|
Pkh1p-Ypk1p and Pkh1p-Sch9p Pathways Are Activated by Acetic Acid to Induce a Mitochondrial-Dependent Regulated Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095078. [PMID: 32318242 PMCID: PMC7154982 DOI: 10.1155/2020/7095078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces cerevisiae undergoes a mitochondrial-dependent regulated cell death (RCD) exhibiting typical markers of mammalian apoptosis. We have previously shown that ceramide production contributes to RCD induced by acetic acid and is involved in mitochondrial outer membrane permeabilization and cytochrome c release, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p. Recently, we also showed that Sch9p regulates the translocation of Isc1p from the endoplasmic reticulum into mitochondria, perturbing sphingolipid balance and determining cell fate. In this study, we addressed the role of other signaling proteins in acetic acid-induced RCD. We found that single deletion of PKH1 or YPK1, as shown for SCH9 and ISC1, leads to an increase in cell survival in response to acetic acid and that Pkh1/2p-dependent phosphorylation of Ypk1p and Sch9p increases under these conditions. These results indicate that Pkh1p regulates acetic acid-induced RCD through Ypk1p and Sch9p. In addition, our results suggest that Pkh1p-Ypk1p is necessary for isc1Δ resistance to acetic acid-induced RCD. Moreover, double deletion of ISC1 and PKH1 has a drastic effect on cell survival associated with increased ROS accumulation and release of cytochrome c, which is counteracted by overexpression of the PKA pathway negative regulator PDE2. Overall, our results suggest that Pkh1p-Ypk1p and Pkh1p-Sch9p pathways contribute to RCD induced by acetic acid.
Collapse
|
20
|
Su WC, Lin YH, Pagac M, Wang CW. Seipin negatively regulates sphingolipid production at the ER-LD contact site. J Cell Biol 2019; 218:3663-3680. [PMID: 31594806 PMCID: PMC6829658 DOI: 10.1083/jcb.201902072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/23/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
Su et al. show that seipin negatively regulates the production of sphingoid intermediates by binding the enzymes serine palmitoyltransferase and fatty acid elongase at discrete regions of the ER in close vicinity to lipid droplets, thereby mediating the synthesis of two major building blocks for sphingolipids. Seipin is known for its critical role in controlling lipid droplet (LD) assembly at the LD-forming subdomain of the endoplasmic reticulum (ER). Here, we identified a new function of seipin as a negative regulator for sphingolipid production. We show that yeast cells lacking seipin displayed altered sensitivity to sphingolipid inhibitors, accumulated sphingoid precursors and intermediates, and increased serine palmitoyltransferase (SPT) and fatty acid (FA) elongase activities. Seipin associated with SPT and FA elongase, and the interaction was reduced by inhibitors for sphingolipid synthesis in a concentration-dependent manner. We further show that the interactions of seipin with SPT and FA elongase occurred at ER–LD contacts and were likely regulated differentially. Further evidence indicated that LD biogenesis was intact when SPT activity was blocked, whereas excess sphingoid intermediates may affect LD morphology. Expression of human seipin rescued the altered sphingolipids in yeast seipin mutants, suggesting that the negative regulation of sphingolipid synthesis by seipin is likely an evolutionarily conserved process.
Collapse
Affiliation(s)
- Wei-Cheng Su
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Hsiu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Martin Pagac
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nangang, Taipei, Taiwan
| |
Collapse
|
21
|
Schmidt O, Weyer Y, Baumann V, Widerin MA, Eising S, Angelova M, Schleiffer A, Kremser L, Lindner H, Peter M, Fröhlich F, Teis D. Endosome and Golgi-associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism. EMBO J 2019; 38:e101433. [PMID: 31368600 PMCID: PMC6669922 DOI: 10.15252/embj.2018101433] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular homeostasis requires the ubiquitin-dependent degradation of membrane proteins. This was assumed to be mediated exclusively either by endoplasmic reticulum-associated degradation (ERAD) or by endosomal sorting complexes required for transport (ESCRT)-dependent lysosomal degradation. We identified in Saccharomyces cerevisiae an additional pathway that selectively extracts membrane proteins at Golgi and endosomes for degradation by cytosolic proteasomes. One endogenous substrate of this endosome and Golgi-associated degradation pathway (EGAD) is the ER-resident membrane protein Orm2, a negative regulator of sphingolipid biosynthesis. Orm2 degradation is initiated by phosphorylation, which triggers its ER export. Once on Golgi and endosomes, Orm2 is poly-ubiquitinated by the membrane-embedded "Defective in SREBP cleavage" (Dsc) ubiquitin ligase complex. Cdc48/VCP then extracts ubiquitinated Orm2 from membranes, which is tightly coupled to the proteasomal degradation of Orm2. Thereby, EGAD prevents the accumulation of Orm2 at the ER and in post-ER compartments and promotes the controlled de-repression of sphingolipid biosynthesis. Thus, the selective degradation of membrane proteins by EGAD contributes to proteostasis and lipid homeostasis in eukaryotic cells.
Collapse
Affiliation(s)
- Oliver Schmidt
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Yannick Weyer
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Verena Baumann
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
- Present address:
MFPLUniversity of ViennaViennaAustria
| | - Michael A Widerin
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sebastian Eising
- Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - Mihaela Angelova
- INSERMLaboratory of Integrative Cancer ImmunologySorbonne UniversitéSorbonne Paris CitéUniversité Paris DescartesCentre de Recherche des CordeliersUniversité Paris DiderotParisFrance
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Protein Micro‐Analysis FacilityBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Protein Micro‐Analysis FacilityBiocenterMedical University of InnsbruckInnsbruckAustria
| | | | - Florian Fröhlich
- Department of Biology/ChemistryUniversity of OsnabrückOsnabrückGermany
| | - David Teis
- Division of Cell BiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
22
|
James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 2019; 144:634-640. [PMID: 31376405 DOI: 10.1016/j.jaci.2019.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
There is a strong genetic component to asthma, and numerous genome-wide association studies have identified ORM1 (yeast)-like protein 3 (ORMDL3) as a gene associated with asthma susceptibility. However, how ORMDL3 contributes to asthma pathogenesis and its physiologic functions is not well understood and a matter of great debate. This rostrum describes recent advances and new insights in understanding of the multifaceted functions of ORMDL3 in patients with allergic asthma. We also suggest a potential unifying paradigm and discuss molecular mechanisms for the pathologic functions of ORMDL3 in asthma related to its evolutionarily conserved role in regulation of sphingolipid homeostasis. Finally, we briefly survey the utility of sphingolipid metabolites as potential biomarkers for allergic asthma.
Collapse
Affiliation(s)
- Briana James
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
23
|
Debeuf N, Zhakupova A, Steiner R, Van Gassen S, Deswarte K, Fayazpour F, Van Moorleghem J, Vergote K, Pavie B, Lemeire K, Hammad H, Hornemann T, Janssens S, Lambrecht BN. The ORMDL3 asthma susceptibility gene regulates systemic ceramide levels without altering key asthma features in mice. J Allergy Clin Immunol 2019; 144:1648-1659.e9. [PMID: 31330218 DOI: 10.1016/j.jaci.2019.06.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Assem Zhakupova
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Regula Steiner
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Karl Vergote
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Benjamin Pavie
- VIB Bioimaging Core, VIB Center for Inflammation Research, Ghent, Belgium; Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 2019; 17:66. [PMID: 31208443 PMCID: PMC6572760 DOI: 10.1186/s12964-019-0381-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.
Collapse
Affiliation(s)
- Marion Janschitz
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Children’s Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Current Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gina Varnavides
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | | | - Gabriela Gérecová
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Markus Hartl
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
25
|
Davis DL, Gable K, Suemitsu J, Dunn TM, Wattenberg BW. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: Reconstitution of SPT regulation in isolated membranes. J Biol Chem 2019; 294:5146-5156. [PMID: 30700557 DOI: 10.1074/jbc.ra118.007291] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
Sphingolipids compose a lipid family critical for membrane structure as well as intra- and intercellular signaling. De novo sphingolipid biosynthesis is initiated by the enzyme serine palmitoyltransferase (SPT), which resides in the endoplasmic reticulum (ER) membrane. In both yeast and mammalian species, SPT activity is homeostatically regulated through small ER membrane proteins, the Orms in yeast and the ORMDLs in mammalian cells. These proteins form stable complexes with SPT. In yeast, the homeostatic regulation of SPT relies, at least in part, on phosphorylation of the Orms. However, this does not appear to be the case for the mammalian ORMDLs. Here, we accomplished a cell-free reconstitution of the sphingolipid regulation of the ORMDL-SPT complex to probe the underlying regulatory mechanism. Sphingolipid and ORMDL-dependent regulation of SPT was demonstrated in isolated membranes, essentially free of cytosol. This suggests that this regulation does not require soluble cytosolic proteins or small molecules such as ATP. We found that this system is particularly responsive to the pro-apoptotic sphingolipid ceramide and that this response is strictly stereospecific, indicating that ceramide regulates the ORMDL-SPT complex via a specific binding interaction. Yeast membranes harboring the Orm-SPT system also directly responded to sphingolipid, suggesting that yeast cells have, in addition to Orm phosphorylation, an additional Orm-dependent SPT regulatory mechanism. Our results indicate that ORMDL/Orm-mediated regulation of SPT involves a direct interaction of sphingolipid with the membrane-bound components of the SPT-regulatory apparatus.
Collapse
Affiliation(s)
- Deanna L Davis
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - John Suemitsu
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Teresa M Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Binks W Wattenberg
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, .,the James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
26
|
Transmembrane topology of mammalian ORMDL proteins in the endoplasmic reticulum as revealed by the substituted cysteine accessibility method (SCAM™). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:382-395. [PMID: 30639427 DOI: 10.1016/j.bbapap.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 01/05/2023]
Abstract
Sphingolipids are diverse lipids with essential, and occasionally opposing, functions in the cell and therefore tight control over biosynthesis is vital. Mechanisms governing this regulation are not understood. Initial steps in sphingolipid biosynthesis take place on the cytosolic face of the endoplasmic reticulum (ER). Serine palmitoyltransferase (SPT) is an ER-resident enzyme catalyzing the first-committed step in sphingolipid biosynthesis. Not surprisingly, SPT activity is tightly regulated. ORMDLs are ER-resident proteins recently identified as regulators of SPT activity. ORMDL proteins interact directly with SPT but the nature of this interaction is unknown. ORMDL protein sequences contain hydrophobic regions, yet algorithm-based predictions of transmembrane segments are highly ambiguous, making topology of this key regulator unclear. Here we report use of substituted cysteine accessibility to analyze topology of mammalian ORMDLs. We constructed multiple mutant ORMDLs, each containing a single cysteine strategically placed along the protein length. Combined use of selective membrane permeabilization with an impermeant cysteine modification reagent allowed us to assign transmembrane and cytosolic segments of ORMDL. We confirmed that mammalian ORMDL proteins transit the membrane four times, with amino- and carboxy termini facing the cytosol along with a large cytosolic loop. This model will allow us to determine details of the ORMDL-SPT interaction and identify regions acting as the "lipid sensor" to detect changes in cellular sphingolipid levels. We also observe that SPT and ORMDL are substantially resistant to extraction from membranes with non-ionic detergent, indirectly suggesting that both proteins reside in a specialized subdomain of the ER.
Collapse
|
27
|
Han G, Gupta SD, Gable K, Bacikova D, Sengupta N, Somashekarappa N, Proia RL, Harmon JM, Dunn TM. The ORMs interact with transmembrane domain 1 of Lcb1 and regulate serine palmitoyltransferase oligomerization, activity and localization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:245-259. [PMID: 30529276 DOI: 10.1016/j.bbalip.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Serine palmitoyltransferase (SPT), an endoplasmic reticulum-localized membrane enzymecomposed of acatalytic LCB1/LCB2 heterodimer and a small activating subunit (Tsc3 in yeast; ssSPTs in mammals), is negatively regulated by the evolutionarily conserved family of proteins known as the ORMs. In yeast, SPT, the ORMs, and the PI4P phosphatase Sac1, copurify in the "SPOTs" complex. However, neither the mechanism of ORM inhibition of SPT nor details of the interactions of the ORMs and Sac1 with SPT are known. Here we report that the first transmembrane domain (TMD1) of Lcb1 is required for ORM binding to SPT. Loss of binding is not due to altered membrane topology of Lcb1 since replacing TMD1 with a heterologous TMD restores membrane topology but not ORM binding. TMD1 deletion also eliminates ORM-dependent formation of SPT oligomers as assessed by co-immunoprecipitation assays and in vivo imaging. Expression of ORMs lacking derepressive phosphorylation sites results in constitutive SPT oligomerization, while phosphomimetic ORMs fail to induce oligomerization under any conditions. Significantly, when LCB1-RFP and LCB1ΔTMD1-GFP were coexpressed, more LCB1ΔTMD1-GFP was in the peripheral ER, suggesting ORM regulation is partially accomplished by SPT redistribution. Tsc3 deletion does not abolish ORM inhibition of SPT, indicating the ORMs do not simply prevent activation by Tsc3. Binding of Sac1 to SPT requires Tsc3, but not the ORMs, and Sac1 does not influence ORM-mediated oligomerization of SPT. Finally, yeast mutants lacking ORM regulation of SPT require the LCB-P lyase Dpl1 to maintain long-chain bases at sublethal levels.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Dagmar Bacikova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Nivedita Sengupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Jeffrey M Harmon
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America.
| |
Collapse
|
28
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
29
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
30
|
Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci U S A 2018; 115:E3145-E3154. [PMID: 29559531 DOI: 10.1073/pnas.1719462115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.
Collapse
|
31
|
Reichel M, Rhein C, Hofmann LM, Monti J, Japtok L, Langgartner D, Füchsl AM, Kleuser B, Gulbins E, Hellerbrand C, Reber SO, Kornhuber J. Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation. Front Psychiatry 2018; 9:496. [PMID: 30386262 PMCID: PMC6198178 DOI: 10.3389/fpsyt.2018.00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-α (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders.
Collapse
Affiliation(s)
- Martin Reichel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena M Hofmann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukasz Japtok
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Andrea M Füchsl
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Yamaguchi Y, Katsuki Y, Tanaka S, Kawaguchi R, Denda H, Ikeda T, Funato K, Tani M. Protective role of the HOG pathway against the growth defect caused by impaired biosynthesis of complex sphingolipids in yeast Saccharomyces cerevisiae. Mol Microbiol 2017; 107:363-386. [PMID: 29215176 DOI: 10.1111/mmi.13886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 02/06/2023]
Abstract
Complex sphingolipids play critical roles in various cellular events in the yeast Saccharomyces cerevisiae. To identify genes that are related to the growth defect caused by disruption of complex sphingolipid biosynthesis, we screened for suppressor mutations and multicopy suppressor genes that confer resistance against repression of AUR1 encoding inositol phosphorylceramide synthase. From the results of this screening, we found that the activation of high-osmolarity glycerol (HOG) pathway is involved in suppression of growth defect caused by impaired biosynthesis of complex sphingolipids. Furthermore, it was found that transcriptional regulation via Msn2, Msn4 and Sko1 is involved in the suppressive effect of the HOG pathway. Lack of the HOG pathway did not enhance the reductions in complex sphingolipid levels or the increase in ceramide level caused by the AUR1 repression, implying that the suppressive effect of the HOG pathway on the growth defect is not attributed to restoration of impaired biosynthesis of complex sphingolipids. On the contrary, the HOG pathway and Msn2/4-mediated transcriptional activation was involved in suppression of aberrant reactive oxygen species accumulation caused by the AUR1 repression. These results indicated that the HOG pathway plays pivotal roles in maintaining cell growth under impaired biosynthesis of complex sphingolipids.
Collapse
Affiliation(s)
- Yutaro Yamaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Yuka Katsuki
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Seiya Tanaka
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Ryotaro Kawaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| | - Hiroto Denda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Takuma Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-3905, Japan
| |
Collapse
|
33
|
Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, Chauvel M, d'Enfert C, Chattopadhyay A, Gaur NA, Mondal AK, Prasad R. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling. J Biol Chem 2017; 293:412-432. [PMID: 29158264 DOI: 10.1074/jbc.m117.807032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters help export various substrates across the cell membrane and significantly contribute to drug resistance. However, a recent study reported an unusual case in which the loss of an ABC transporter in Candida albicans, orf19.4531 (previously named ROA1), increases resistance against antifungal azoles, which was attributed to an altered membrane potential in the mutant strain. To obtain further mechanistic insights into this phenomenon, here we confirmed that the plasma membrane-localized transporter (renamed CDR6/ROA1 for consistency with C. albicans nomenclature) could efflux xenobiotics such as berberine, rhodamine 123, and paraquat. Moreover, a CDR6/ROA1 null mutant, NKKY101, displayed increased susceptibility to these xenobiotics. Interestingly, fluorescence recovery after photobleaching (FRAP) results indicated that NKKY101 mutant cells exhibited increased plasma membrane rigidity, resulting in reduced azole accumulation and contributing to azole resistance. Transcriptional profiling revealed that ribosome biogenesis genes were significantly up-regulated in the NKKY101 mutant. As ribosome biogenesis is a well-known downstream phenomenon of target of rapamycin (TOR1) signaling, we suspected a link between ribosome biogenesis and TOR1 signaling in NKKY101. Therefore, we grew NKKY101 cells on rapamycin and observed TOR1 hyperactivation, which leads to Hsp90-dependent calcineurin stabilization and thereby increased azole resistance. This in vitro finding was supported by in vivo data from a mouse model of systemic infection in which NKKY101 cells led to higher fungal load after fluconazole challenge than wild-type cells. Taken together, our study uncovers a mechanism of azole resistance in C. albicans, involving increased membrane rigidity and TOR signaling.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India, and
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Parijat Sarkar
- the CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Brooke D Esquivel
- the School of Biological Sciences, Cell Biology, and Biophysics, University of Missouri, Kansas City, Missouri 64110
| | - Paola Coccetti
- the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.,SYSBIO, Centre of Systems Biology, 20126 Milan, Italy
| | - Ashutosh Singh
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the Department of Biochemistry, Lucknow University, Lucknow 226024, Uttar Pradesh, India
| | - Alix T Coste
- the Institute of Microbiology, University of Lausanne and University Hospital Center, Rue du Bugnon 48, Lausanne, CH-1011, Switzerland
| | - Meghna Gupta
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,the Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Dominique Sanglard
- the Institute of Microbiology, University of Lausanne and University Hospital Center, Rue du Bugnon 48, Lausanne, CH-1011, Switzerland
| | - Theodore C White
- the School of Biological Sciences, Cell Biology, and Biophysics, University of Missouri, Kansas City, Missouri 64110
| | - Murielle Chauvel
- the Département Génomes et Génétique, Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 75015 Paris, France
| | - Christophe d'Enfert
- the Département Génomes et Génétique, Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 75015 Paris, France
| | | | - Naseem A Gaur
- the International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India, and
| | - Alok Kumar Mondal
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Prasad
- From the School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India, .,the Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley Gurgaon-122413, India
| |
Collapse
|
34
|
Fröhlich F, Olson DK, Christiano R, Farese RV, Walther TC. Proteomic and phosphoproteomic analyses of yeast reveal the global cellular response to sphingolipid depletion. Proteomics 2017; 16:2759-2763. [PMID: 27717283 DOI: 10.1002/pmic.201600269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 11/06/2022]
Abstract
Sphingolipids are essential components of eukaryotic cells with important functions in membrane biology and cellular signaling. Their levels are tightly controlled and coordinated with the abundance of other membrane lipids. How sphingolipid homeostasis is achieved is not yet well understood. Studies performed primarily in yeast showed that the phosphorylation states of several enzymes and regulators of sphingolipid synthesis are important, although a global understanding for such regulation is lacking. Here, we used high-resolution MS-based proteomics and phosphoproteomics to analyze the cellular response to sphingolipid synthesis inhibition. Our dataset reveals that changes in protein phosphorylation, rather than protein abundance, dominate the response to blocking sphingolipid synthesis. We identified Ypk signaling as a pathway likely to be activated under these conditions, and we identified potential Ypk1 target proteins. Our data provide a rich resource for on-going mechanistic studies of key elements of the cellular response to the depletion of sphingolipid levels and the maintenance of sphingolipid homeostasis. All MS data have been deposited in the ProteomeXchange with identifier PXD003854 (http://proteomecentral.proteomexchange.org/dataset/PXD003854).
Collapse
Affiliation(s)
- Florian Fröhlich
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Molecular Membrane Biology Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Daniel K Olson
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
35
|
Varlakhanova NV, Mihalevic MJ, Bernstein KA, Ford MGJ. Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 2017; 130:3878-3890. [PMID: 28993463 DOI: 10.1242/jcs.207910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
The TORC1 complex is a key regulator of cell growth and metabolism in Saccharomyces cerevisiae The vacuole-associated EGO complex couples activation of TORC1 to the availability of amino acids, specifically glutamine and leucine. The EGO complex is also essential for reactivation of TORC1 following rapamycin-induced growth arrest and for its distribution on the vacuolar membrane. Pib2, a FYVE-containing phosphatidylinositol 3-phosphate (PI3P)-binding protein, is a newly discovered and poorly characterized activator of TORC1. Here, we show that Pib2 is required for reactivation of TORC1 following rapamycin-induced growth arrest. Pib2 is required for EGO complex-mediated activation of TORC1 by glutamine and leucine as well as for redistribution of Tor1 on the vacuolar membrane. Therefore, Pib2 and the EGO complex cooperate to activate TORC1 and connect phosphoinositide 3-kinase (PI3K) signaling and TORC1 activity.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Marijn G J Ford
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
36
|
Vilaça R, Barros I, Matmati N, Silva E, Martins T, Teixeira V, Hannun YA, Costa V. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 2017; 1864:79-88. [PMID: 28988886 DOI: 10.1016/j.bbadis.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
Collapse
Affiliation(s)
- Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Barros
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Elísio Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Telma Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
37
|
Sphingolipid accumulation causes mitochondrial dysregulation and cell death. Cell Death Differ 2017; 24:2044-2053. [PMID: 28800132 DOI: 10.1038/cdd.2017.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are structural components of cell membranes that have signaling roles to regulate many activities, including mitochondrial function and cell death. Sphingolipid metabolism is integrated with numerous metabolic networks, and dysregulated sphingolipid metabolism is associated with disease. Here, we describe a monogenic yeast model for sphingolipid accumulation. A csg2Δ mutant cannot readily metabolize and accumulates the complex sphingolipid inositol phosphorylceramide (IPC). In these cells, aberrant activation of Ras GTPase is IPC-dependent, and accompanied by increased mitochondrial reactive oxygen species (ROS) and reduced mitochondrial mass. Survival or death of csg2Δ cells depends on nutritional status. Abnormal Ras activation in csg2Δ cells is associated with impaired Snf1/AMPK protein kinase, a key regulator of energy homeostasis. csg2Δ cells are rescued from ROS production and death by overexpression of mitochondrial catalase Cta1, abrogation of Ras hyperactivity or genetic activation of Snf1/AMPK. These results suggest that sphingolipid dysregulation compromises metabolic integrity via Ras and Snf1/AMPK pathways.
Collapse
|
38
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
39
|
Guerreiro JF, Mira NP, Santos AXS, Riezman H, Sá-Correia I. Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids. Front Microbiol 2017; 8:1302. [PMID: 28747907 PMCID: PMC5506226 DOI: 10.3389/fmicb.2017.01302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Saccharomyces cerevisiae response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The HRK1 gene, encoding a protein kinase of unknown function belonging to the “Npr1-family” of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.0) and the effect of HRK1 expression on the phosphoproteome. Results from mass spectrometry analysis following the prefractionation and specific enrichment of phosphorylated peptides using TiO2 beads highlight the contribution of processes related with translation, protein folding and processing, transport, and cellular homeostasis in yeast response to acetic acid stress, with particular relevance for changes in phosphorylation of transport-related proteins, found to be highly dependent on the Hrk1 kinase. Twenty different phosphoproteins known to be involved in lipid and sterol metabolism were found to be differently phosphorylated in response to acetic acid stress, including several phosphopeptides that had not previously been described as being phosphorylated. The suggested occurrence of cellular lipid composition remodeling during the short term yeast response to acetic acid was confirmed: Hrk1 kinase-independent reduction in phytoceramide levels and a reduction in phosphatidylcholine and phosphatidylinositol levels under acetic acid stress in the more susceptible hrk1Δ strain were revealed by a lipidomic analysis.
Collapse
Affiliation(s)
- Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| | - Nuno P Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| | - Aline X S Santos
- Department of Biochemistry, University of GenevaGeneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of GenevaGeneva, Switzerland
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
40
|
Lindahl L, Santos AXS, Olsson H, Olsson L, Bettiga M. Membrane engineering of S. cerevisiae targeting sphingolipid metabolism. Sci Rep 2017; 7:41868. [PMID: 28145511 PMCID: PMC5286413 DOI: 10.1038/srep41868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/04/2017] [Indexed: 02/01/2023] Open
Abstract
The sustainable production of fuels and chemicals using microbial cell factories is now well established. However, many microbial production processes are still limited in scale due to inhibition from compounds that are present in the feedstock or are produced during fermentation. Some of these inhibitors interfere with cellular membranes and change the physicochemical properties of the membranes. Another group of molecules is dependent on their permeation rate through the membrane for their inhibition. We have investigated the use of membrane engineering to counteract the negative effects of inhibitors on the microorganism with focus on modulating the abundance of complex sphingolipids in the cell membrane of Saccharomyces cerevisiae. Overexpression of ELO3, involved in fatty acid elongation, and AUR1, which catalyses the formation of complex sphingolipids, had no effect on the membrane lipid profile or on cellular physiology. Deletion of the genes ORM1 and ORM2, encoding negative regulators of sphingolipid biosynthesis, decreased cell viability and considerably reduced phosphatidylinositol and complex sphingolipids. Additionally, combining ELO3 and AUR1 overexpression with orm1/2Δ improved cell viability and increased fatty acyl chain length compared with only orm1/2Δ. These findings can be used to further study the sphingolipid metabolism, as well as giving guidance in membrane engineering.
Collapse
Affiliation(s)
- Lina Lindahl
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Aline X. S. Santos
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helén Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
41
|
Liu LK, Choudhary V, Toulmay A, Prinz WA. An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J Cell Biol 2016; 216:131-147. [PMID: 28011845 PMCID: PMC5223604 DOI: 10.1083/jcb.201606059] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/20/2016] [Accepted: 12/07/2016] [Indexed: 01/27/2023] Open
Abstract
Liu et al. show that ER–Golgi tethering increases during ER stress in yeast. The protein Nvj2p is required for this tethering, which promotes nonvesicular ceramide transport from the ER to the Golgi to alleviate ceramide toxicity. Ceramides are key intermediates in sphingolipid biosynthesis and potent signaling molecules. However, excess ceramide is toxic, causing growth arrest and apoptosis. In this study, we identify a novel mechanism by which cells prevent the toxic accumulation of ceramides; they facilitate nonvesicular ceramide transfer from the endoplasmic reticulum (ER) to the Golgi complex, where ceramides are converted to complex sphingolipids. We find that the yeast protein Nvj2p promotes the nonvesicular transfer of ceramides from the ER to the Golgi complex. The protein is a tether that generates close contacts between these compartments and may directly transport ceramide. Nvj2p normally resides at contacts between the ER and other organelles, but during ER stress, it relocalizes to and increases ER–Golgi contacts. ER–Golgi contacts fail to form during ER stress in cells lacking Nvj2p. Our findings demonstrate that cells regulate ER–Golgi contacts in response to stress and reveal that nonvesicular ceramide transfer out of the ER prevents the buildup of toxic amounts of ceramides.
Collapse
Affiliation(s)
- Li-Ka Liu
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexandre Toulmay
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Li J, Yin J, Rong C, Li KE, Wu JX, Huang LQ, Zeng HY, Sahu SK, Yao N. Orosomucoid Proteins Interact with the Small Subunit of Serine Palmitoyltransferase and Contribute to Sphingolipid Homeostasis and Stress Responses in Arabidopsis. THE PLANT CELL 2016; 28:3038-3051. [PMID: 27923879 PMCID: PMC5240739 DOI: 10.1105/tpc.16.00574] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/15/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Serine palmitoyltransferase (SPT), a pyridoxyl-5'-phosphate-dependent enzyme, catalyzes the first and rate-limiting step in sphingolipid biosynthesis. In humans and yeast, orosomucoid proteins (ORMs) negatively regulate SPT and thus play an important role in maintaining sphingolipid levels. Despite the importance of sphingoid intermediates as bioactive molecules, the regulation of sphingolipid biosynthesis through SPT is not well understood in plants. Here, we identified and characterized the Arabidopsis thaliana ORMs, ORM1 and ORM2. Loss of function of both ORM1 and ORM2 (orm1 amiR-ORM2) stimulated de novo sphingolipid biosynthesis, leading to strong sphingolipid accumulation, especially of long-chain bases and ceramides. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays confirmed that ORM1 and ORM2 physically interact with the small subunit of SPT (ssSPT), indicating that ORMs inhibit ssSPT function. We found that orm1 amiR-ORM2 plants exhibited an early-senescence phenotype accompanied by H2O2 production at the cell wall and in mitochondria, active vesicular trafficking, and formation of cell wall appositions. Strikingly, the orm1 amiR-ORM2 plants showed increased expression of genes related to endoplasmic reticulum stress and defenses and also had enhanced resistance to oxidative stress and pathogen infection. Taken together, our findings indicate that ORMs interact with SPT to regulate sphingolipid homeostasis and play a pivotal role in environmental stress tolerance in plants.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Kai-En Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Sunil Kumar Sahu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
43
|
Lebesgue N, Megyeri M, Cristobal A, Scholten A, Chuartzman SG, Voichek Y, Scheltema RA, Mohammed S, Futerman AH, Schuldiner M, Heck AJR, Lemeer S. Combining Deep Sequencing, Proteomics, Phosphoproteomics, and Functional Screens To Discover Novel Regulators of Sphingolipid Homeostasis. J Proteome Res 2016; 16:571-582. [PMID: 28152593 DOI: 10.1021/acs.jproteome.6b00691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sphingolipids (SLs) are essential components of cell membranes and are broad-range bioactive signaling molecules. SL levels must be tightly regulated as imbalances affect cellular function and contribute to pathologies ranging from neurodegenerative and metabolic disorders to cancer and aging. Deciphering how SL homeostasis is maintained and uncovering new regulators is required for understanding lipid biology and for identifying new targets for therapeutic interventions. Here we combine omics technologies to identify the changes of the transcriptome, proteome, and phosphoproteome in the yeast Saccharomyces cerevisiae upon SL depletion induced by myriocin. Surprisingly, while SL depletion triggers important changes in the expression of regulatory proteins involved in SL homeostasis, the most dramatic regulation occurs at the level of the phosphoproteome, suggesting that maintaining SL homeostasis demands rapid responses. To discover which of the phosphoproteomic changes are required for the cell's first-line response to SL depletion, we overlaid our omics results with systematic growth screens for genes required during growth in myriocin. By following the rate of SL biosynthesis in those candidates that are both affecting growth and are phosphorylated in response to the drug, we uncovered Atg9, Stp4, and Gvp36 as putative new regulators of SL homeostasis.
Collapse
Affiliation(s)
- Nicolas Lebesgue
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 7610001, Israel.,Department of Chemical Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Anthony H Futerman
- Department of Chemical Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
44
|
Sasset L, Zhang Y, Dunn TM, Di Lorenzo A. Sphingolipid De Novo Biosynthesis: A Rheostat of Cardiovascular Homeostasis. Trends Endocrinol Metab 2016; 27:807-819. [PMID: 27562337 PMCID: PMC5075255 DOI: 10.1016/j.tem.2016.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
Sphingolipids (SL) are both fundamental structural components of the eukaryotic membranes and signaling molecules that regulate a variety of biological functions. The highly-bioactive lipids, ceramide and sphingosine-1-phosphate, have emerged as important regulators of cardiovascular function in health and disease. In this review we discuss recent insights into the role of SLs, particularly ceramide and sphingosine-1-phosphate, in the pathophysiology of the cardiovascular system. We also highlight advances into the molecular mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo SL biosynthesis, with an emphasis on the recently discovered inhibitors of serine palmitoyltransferase, ORMDL and NOGO-B proteins. Understanding the molecular mechanisms regulating this biosynthetic pathway may lead to the development of novel therapeutic approaches for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Linda Sasset
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Yi Zhang
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annarita Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
45
|
Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J 2016; 473:4311-4325. [PMID: 27671892 DOI: 10.1042/bcj20160565] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.
Collapse
|
46
|
Zhakupova A, Debeuf N, Krols M, Toussaint W, Vanhoutte L, Alecu I, Kutalik Z, Vollenweider P, Ernst D, von Eckardstein A, Lambrecht BN, Janssens S, Hornemann T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB J 2016; 30:4289-4300. [PMID: 27645259 DOI: 10.1096/fj.201600639r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 01/21/2023]
Abstract
ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3-/-) and transgenic (Ormdl3Tg/wt) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3-/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C18-long chain bases were not significantly altered in the plasma and tissues of Ormdl3-/- mice, whereas C18-sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3-/- mice did not show an altered SPT activity compared with Ormdl3+/- and Ormdl3+/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S., Hornemann, T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.
Collapse
Affiliation(s)
- Assem Zhakupova
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Michiel Krols
- Department of Molecular Genetics, VIB Antwerp University, Antwerp, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium
| | - Leen Vanhoutte
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium
| | - Irina Alecu
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; and
| | - Daniela Ernst
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sophie Janssens
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
47
|
Martínez-Montañés F, Lone MA, Hsu FF, Schneiter R. Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether. J Lipid Res 2016; 57:2040-2050. [PMID: 27561298 DOI: 10.1194/jlr.m070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 02/07/2023] Open
Abstract
Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells.
Collapse
Affiliation(s)
| | - Museer A Lone
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
48
|
Paulenda T, Draber P. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma. Allergy 2016; 71:918-30. [PMID: 26969910 DOI: 10.1111/all.12877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
A family of widely expressed ORM-like (ORMDL) proteins has been recently linked to asthma in genomewide association studies in humans and extensively explored in in vivo studies in mice. ORMDL proteins are key regulators of serine palmitoyltransferase, an enzyme catalyzing the initial step of sphingolipid biosynthesis. Sphingolipids play prominent roles in cell signaling and response to stress, and they affect the mechanistic properties of cellular membranes. Deregulation of sphingolipid biosynthesis and their recycling has been proven to support and even cause several diseases including allergy, inflammation, and asthma. ORMDL3, the most extensively studied member of the ORMDL family, has been shown to be important for endoplasmic reticulum homeostasis by regulating the unfolded protein response and calcium response. In immune cells, ORMDL3 is involved in migration and in the production of proinflammatory cytokines. Furthermore, changes in the expression level of ORMDL3 are important in allergen-induced asthma pathologies. This review focuses on functional aspects of the ORMDL family proteins, which may serve as new therapeutic targets for the treatment of asthma and some other life-threatening diseases.
Collapse
Affiliation(s)
- T. Paulenda
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - P. Draber
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
49
|
Toume M, Tani M. Yeast lacking the amphiphysin family protein Rvs167 is sensitive to disruptions in sphingolipid levels. FEBS J 2016; 283:2911-28. [PMID: 27312128 DOI: 10.1111/febs.13783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/23/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Rvs167 and Rvs161 in Saccharomyces cerevisiae are amphiphysin family proteins, which are involved in several important cellular events, such as invagination and scission of endocytic vesicles, and actin cytoskeleton organization. It has been reported that cellular dysfunctions caused by deletion of RVS167 or RVS161 are rescued by deletion of specific nonessential sphingolipid-metabolizing enzyme genes. Here, we found that yeast cells lacking RVS167 or RVS161 exhibit a decrease in sphingolipid levels. In rvs167∆ cells, the expression level of Orm2, a negative regulator of serine palmitoyltransferase (SPT) catalyzing the initial step of sphingolipid biosynthesis, was increased in a calcineurin-dependent manner, and the decrease in sphingolipid levels in rvs167∆ cells was reversed on deletion of ORM2. Moreover, repression of both ORM1 and ORM2 expression or overexpression of SPT caused a strong growth defect of rvs167∆ cells, indicating that enhancement of de novo sphingolipid biosynthesis is detrimental to rvs167∆ cells. In contrast, partial repression of LCB1-encoding SPT suppressed abnormal phenotypes caused by the deletion of RVS167, including supersensitivity to high temperature and salt stress, and impairment of endocytosis and actin cytoskeleton organization. In addition, the partial repression of SPT activity suppressed the temperature supersensitivity and abnormal vacuolar morphology caused by deletion of VPS1 encoding a dynamin-like GTPase, which is required for vesicle scission and is functionally closely related to Rvs167/Rvs161, whereas repression of both ORM1 and ORM2 expression in vps1∆ cells caused a growth defect. Thus, it was suggested that proper regulation of SPT activity is indispensable for amphiphysin-deficient cells.
Collapse
Affiliation(s)
- Moeko Toume
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
50
|
Cai L, Oyeniran C, Biswas DD, Allegood J, Milstien S, Kordula T, Maceyka M, Spiegel S. ORMDL proteins regulate ceramide levels during sterile inflammation. J Lipid Res 2016; 57:1412-22. [PMID: 27313060 DOI: 10.1194/jlr.m065920] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/21/2022] Open
Abstract
The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM2 proteins negatively regulate ceramide levels through inhibition of serine palmitoyltransferase, the first committed step in ceramide biosynthesis, we examined the functions of individual mammalian ORM orthologs, ORM (yeast)-like (ORMDL)1-3, in regulation of ceramide levels. In HepG2 liver cells, downregulation of ORMDL3 markedly increased the ceramide precursors, dihydrosphingosine and dihydroceramide, primarily from de novo biosynthesis based on [U-(13)C]palmitate incorporation into base-labeled and dual-labeled dihydroceramides, whereas downregulation of each isoform increased dihydroceramides [(13)C]labeled in only the amide-linked fatty acid. IL-1 and the IL-6 family cytokine, oncostatin M, increased dihydroceramide and ceramide levels in HepG2 cells and concomitantly decreased ORMDL proteins. Moreover, during irritant-induced sterile inflammation in mice leading to induction of the acute-phase response, which is dependent on IL-1, expression of ORMDL proteins in the liver was strongly downregulated and accompanied by increased ceramide levels in the liver and accumulation in the blood. Together, our results suggest that ORMDLs may be involved in regulation of ceramides during IL-1-mediated sterile inflammation.
Collapse
Affiliation(s)
- Lin Cai
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|