1
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
2
|
Mann MJ, Melendez-Suchi C, Vorndran HE, Sukhoplyasova M, Flory AR, Irvine MC, Iyer AR, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum function. Mol Biol Cell 2024; 35:ar59. [PMID: 38446639 PMCID: PMC11064666 DOI: 10.1091/mbc.e24-01-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Chris Melendez-Suchi
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Mary Carson Irvine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Anuradha R. Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
3
|
Zhou S, Sheng L, Zhang L, Zhang J, Wang L. METTL3/IGF2BP3-regulated m6A modification of HYOU1 confers doxorubicin resistance in breast cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130542. [PMID: 38103759 DOI: 10.1016/j.bbagen.2023.130542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chemoresistance is a main reason for therapeutic failure and poor prognosis for breast cancer (BC) patients, especially for triple-negative BC patients. How the molecular mechanisms underlying the chemoresistance to doxorubicin (Dox) in BC is not well understood. Here, we revealed that METTL3/IGF2BP3-regulated m6A modification of HYOU1 increased Dox resistance in BC cells. CCK-8 and Annexin V-FITC/PI staining assays were employed to measure viability and cell death. Western blotting and qRT-PCR assays were applied to assay the expression of genes. Knockdown and rescue experiments were used to assay the role of METTL3, IGF2BP3 and HYOU1 in regulating BC cell responses to Dox. RIP, MeRIP and dual-luciferase activity assays were applied to examine the function of METTL3/IGF2BP3 in the m6A modification of HYOU1 mRNA. It was found that global mRNA m6A methylation levels were upregulated in Dox-resistant BC cell lines. The methyltransferase METTL3 was upregulated in Dox-resistant BC cell lines, and downregulation of METTL3 could overcome this resistance. Furthermore, HYOU1 was identified as a downstream target of METTL3-mediated m6A modification. Downregulation of HYOU1 could overcome Dox resistance, while forced expression of HYOU1 resulted in Dox resistance in BC cells. METTL3 cooperated with IGF2BP3 to modulate the m6A modification of HYOU1 mRNA and increase its stability. Collectively, our findings unveiled the key roles of the METTL3/IGF2BP3/HYOU1 axis in modulating Dox sensitivity in BC cells; thus, targeting this axis might be a potential strategy to increase Dox efficacy in the treatment of BC.
Collapse
Affiliation(s)
- Shaocheng Zhou
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Lijuan Sheng
- Gulou Street Community Health Service Center, Haishu District, Ningbo, Zhejiang, China
| | - Lin Zhang
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Jianan Zhang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Lei Wang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Mann MJ, Melendez-Suchi C, Sukhoplyasova M, Flory AR, Carson Irvine M, Iyer AR, Vorndran H, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563191. [PMID: 37905119 PMCID: PMC10614942 DOI: 10.1101/2023.10.19.563191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.
Collapse
|
5
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
6
|
Wang Z, Tan C, Duan C, Wu J, Zhou D, Hou L, Qian W, Han C, Hou X. FUT2-dependent fucosylation of HYOU1 protects intestinal stem cells against inflammatory injury by regulating unfolded protein response. Redox Biol 2023; 60:102618. [PMID: 36724577 PMCID: PMC9923227 DOI: 10.1016/j.redox.2023.102618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
The intestinal epithelial repair after injury is coordinated by intestinal stem cells (ISCs). Fucosylation catalyzed by fucosyltransferase 2 (FUT2) of the intestinal epithelium is beneficial to mucosal healing but poorly defined is the influence on ISCs. The dextran sulfate sodium (DSS) and lipopolysaccharide (LPS) model were used to assess the role of FUT2 on ISCs after injury. The apoptosis, function, and stemness of ISCs were analyzed using intestinal organoids from WT and Fut2ΔISC (ISC-specific Fut2 knockout) mice incubated with LPS and fucose. N-glycoproteomics, UEA-1 chromatography, and site-directed mutagenesis were monitored to dissect the regulatory mechanism, identify the target fucosylated protein and the corresponding modification site. Fucose could alleviate intestinal epithelial damage via upregulating FUT2 and α-1,2-fucosylation of ISCs. Oxidative stress, mitochondrial dysfunction, and cell apoptosis were impeded by fucose. Meanwhile, fucose sustained the growth and proliferation capacity of intestinal organoids treated with LPS. Contrarily, FUT2 depletion in ISCs aggravated the epithelial damage and disrupted the growth and proliferation capacity of ISCs via escalating LPS-induced endoplasmic reticulum (ER) stress and initiating the IRE1/TRAF2/ASK1/JNK branch of unfolded protein response (UPR). Fucosylation of the chaperone protein HYOU1 at the N-glycosylation site of asparagine (Asn) 862 mediated by FUT2 was identified to facilitate ISCs survival and self-renewal, and improve ISCs resistance to ER stress and inflammatory injury. Our study highlights a fucosylation-dependent protective mechanism of ISCs against inflammation, which may provide a fascinating strategy for treating intestinal injury disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Wang W, Jiang X, Xia F, Chen X, Li G, Liu L, Xu Q, Zhu M, Chen C. HYOU1 promotes cell proliferation, migration, and invasion via the PI3K/AKT/FOXO1 feedback loop in bladder cancer. Mol Biol Rep 2023; 50:453-464. [PMID: 36348197 DOI: 10.1007/s11033-022-07978-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxia up-regulated 1 (HYOU1) was identified as a proto-oncogene and involved in tumorigenesis and progression in several cancer. Nonetheless, the biological function and mechanism of HYOU1 in bladder cancer (BCa) remian unclear. METHODS The HYOU1 level in BCa tissues and cells was examined using RT-qPCR and western blot methods. The relationship between HYOU1 expression and clinicopathologic characteristics of BCa was analyzed. The biological role of HYOU1 on BCa cell proliferation, apoptosis, migration and invasion were analyzed via counting kit-8 (CCK-8), flow cytometry, wound healing and Transwell assays, respectively. The association between HYOU1 and the PI3K/AKT/Forkhead box O1 (FOXO1) signalling was assessed via western blot assay, meanwhile the the association of FOXO1 with HYOU1 was also investigated. RESULTS HYOU1 was up-regulated in BCa tissues and cell lines, and the high level of HYOU1 was associated with bladder cancer histological grade and pathologic stage. Moreover, patients with high expression of HYOU1 showed poor overall survival from Kaplan-Meier Plotter. HYOU1 depletion impeded cell proliferation, migration and invasion, and induced cell apoptosis, while HYOU1 overexpression promoted cell proliferation, migration and invasion. Mechanically, our results showed that HYOU1 knockdown repressed PI3K/AKT/FOXO1 pathway and HYOU1 was negative regulated by FOXO1 in BCa. Significantly, we confirmed that the HYOU1/PI3K-AKT/FOXO1 negative feedback loop was involved in BCa cell proliferation, migration and invasion. CONCLUSION These findings revealed that HYOU1 acted as a pro-oncogene on BCa progression, and it will be a possible target for BCa treatment.
Collapse
Affiliation(s)
- Weiguo Wang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xinjie Jiang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Fei Xia
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xudong Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Guojun Li
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Lizhuan Liu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Qiang Xu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Min Zhu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Cheng Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China.
| |
Collapse
|
8
|
Hale MD, Koal T, Pham TH, Bowden JA, Parrott BB. Transcriptional networks underlying a primary ovarian insufficiency disorder in alligators naturally exposed to EDCs. Mol Cell Endocrinol 2022; 557:111751. [PMID: 35963581 DOI: 10.1016/j.mce.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Interactions between the endocrine system and environmental contaminants are responsible for impairing reproductive development and function. Despite the taxonomic diversity of affected species and attendant complexity inherent to natural systems, the underlying signaling pathways and cellular consequences are mostly studied in lab models. To resolve the genetic and endocrine pathways that mediate affected ovarian function in organisms exposed to endocrine disrupting contaminants in their natural environments, we assessed broad-scale transcriptional and steroidogenic responses to exogenous gonadotropin stimulation in juvenile alligators (Alligator missippiensis) originating from a lake with well-documented pollution (Lake Apopka, FL) and a nearby reference site (Lake Woodruff, FL). We found that individuals from Lake Apopka are characterized by hyperandrogenism and display hyper-sensitive transcriptional responses to gonadotropin stimulation when compared to individuals from Lake Woodruff. Site-specific transcriptomic divergence appears to be driven by wholly distinct subsets of transcriptional regulators, indicating alterations to fundamental genetic pathways governing ovarian function. Consistent with broad-scale transcriptional differences, ovaries of Lake Apopka alligators displayed impediments to folliculogenesis, with larger germinal beds and decreased numbers of late-stage follicles. After resolving the ovarian transcriptome into clusters of co-expressed genes, most site-associated modules were correlated to ovarian follicule phenotypes across individuals. However, expression of two site-specific clusters were independent of ovarian cellular architecture and are hypothesized to represent alterations to cell-autonomous transcriptional programs. Collectively, our findings provide high resolution mapping of transcriptional patterns to specific reproductive function and advance our mechanistic understanding regarding impaired reproductive health in an established model of environmental endocrine disruption.
Collapse
Affiliation(s)
- Matthew D Hale
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | - John A Bowden
- Center for Environmental and Human Toxicology, Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA; Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| |
Collapse
|
9
|
Viruses Hijack ERAD to Regulate Their Replication and Propagation. Int J Mol Sci 2022; 23:ijms23169398. [PMID: 36012666 PMCID: PMC9408921 DOI: 10.3390/ijms23169398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission of the virus in the host is a process of a “game” with the host. It can be assumed that the virus has evolved various mechanisms to use the host’s functions for its replication and transmission, including ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use various processes of ERAD to promote their transmission. This review describes the occurrence of ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and immune response of the host, and we will focus on the role of E3 ubiquitin ligase.
Collapse
|
10
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
11
|
Porter AW, Nguyen DN, Clayton DR, Ruiz WG, Mutchler SM, Ray EC, Marciszyn AL, Nkashama LJ, Subramanya AR, Gingras S, Kleyman TR, Apodaca G, Hendershot LM, Brodsky JL, Buck TM. The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight 2022; 7:e151869. [PMID: 35104250 PMCID: PMC8983141 DOI: 10.1172/jci.insight.151869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/28/2022] [Indexed: 01/26/2023] Open
Abstract
Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 - and, more generally, molecular chaperones in kidney physiology - we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.
Collapse
Affiliation(s)
- Aidan W. Porter
- Department of Biological Sciences
- Department of Pediatrics, Nephrology Division
| | | | | | - Wily G. Ruiz
- Department of Medicine, Renal-Electrolyte Division
| | | | - Evan C. Ray
- Department of Medicine, Renal-Electrolyte Division
| | | | | | | | | | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
12
|
Karatas E, Raymond AA, Leon C, Dupuy JW, Di-Tommaso S, Senant N, Collardeau-Frachon S, Ruiz M, Lachaux A, Saltel F, Bouchecareilh M. Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Rep 2021; 3:100297. [PMID: 34151245 PMCID: PMC8192868 DOI: 10.1016/j.jhepr.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background & Aims A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. Methods Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. Results We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. Conclusions PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. Lay summary Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease. PDIA4 is upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. Knockdown of PDIA4 by siRNA or inhibition upon cysteamine treatment leads to improvements in features of AATD. RNA interference against PDIA4 or cysteamine represent approaches for treatment of AATD-mediated liver disease.
Collapse
Key Words
- AAT, alpha 1-antitrypsin
- AATD, alpha 1-antitrypsin deficiency
- Alpha 1-antitrypsin deficiency
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cysteamine
- ER, endoplasmic reticulum
- FFPE, formalin-fixed paraffin-embedded
- FKBP10, FK506-binding protein (FKBP) isoform 10
- HCC, hepatocellular carcinoma
- IHC, immunohistochemistry
- IP, immunoprecipitation
- Liver damage
- NHK, null Hong Kong variant of AAT
- P4HB, prolyl 4-hydroxylase subunit beta/PDIA1
- PDI, protein disulfide isomerase
- PDIA3, protein disulfide isomerase family A member 3/ERP57
- PDIA4
- PDIA4, protein disulfide isomerase family A member 4/ERP70/ERP72
- PDIi, PDI inhibitors
- Protein disulfide isomerase
- ROS, reactive oxygen species
- SURF4, proteins Surfeit 4
- Scr, scramble
- TRX, thioredoxin
- TXNDC5, thioredoxin domain containing 5/PDIA15
- Treatment
- WT, wild-type
- Z-AAT, alpha 1-antitrypsin Z variant
- ZZ, homozygosis for the Z mutant allele
- siRNA, small RNA interference
- ΔF508-CFTR, most common mutation of CFTR, which deletes phenylalanine508
Collapse
Affiliation(s)
- Esra Karatas
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Céline Leon
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | | | - Sylvaine Di-Tommaso
- Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Nathalie Senant
- Plateforme d'histopathologie, TBM-Core US 005, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Lachaux
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Saltel
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | | |
Collapse
|
13
|
Wang JM, Jiang JY, Zhang DL, Du X, Wu T, Du ZX. HYOU1 facilitates proliferation, invasion and glycolysis of papillary thyroid cancer via stabilizing LDHB mRNA. J Cell Mol Med 2021; 25:4814-4825. [PMID: 33792181 PMCID: PMC8107106 DOI: 10.1111/jcmm.16453] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
HYOU1 is upregulated in many kinds of cancer cells, and its high expression is associated with tumour invasiveness and poor prognosis. However, the role of HYOU1 in papillary thyroid cancer (PTC) development and progression remains to be elucidated. Here, we reported that HYOU1 was highly expressed in human PTC and associated with poor prognosis. HYOU1 silencing suppressed the proliferation, migration and invasion of PTC cells. Mechanistic analyses showed that HYOU1 silencing promoted oxidative phosphorylation while inhibited aerobic glycolysis via downregulating LDHB at the posttranscriptional level. We further confirmed that the 3'UTR of LDHB mRNA is the indirect target of HYOU1 silencing and HYOU1 silencing increased miR‐375‐3p levels. While LDHB overexpression significantly suppressed the inhibitory effects of HYOU1 silencing on aerobic glycolysis, proliferation, migration and invasion in PTC cells. Taken together, our findings suggest that HYOU1 promotes glycolysis and malignant progression in PTC cells via upregulating LDHB expression, providing a potential target for developing novel anticancer agents.
Collapse
Affiliation(s)
- Jia-Mei Wang
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China.,Clinical medical laboratory, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Xin Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Tong Wu
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Rao S, Oyang L, Liang J, Yi P, Han Y, Luo X, Xia L, Lin J, Tan S, Hu J, Wang H, Tang L, Pan Q, Tang Y, Zhou Y, Liao Q. Biological Function of HYOU1 in Tumors and Other Diseases. Onco Targets Ther 2021; 14:1727-1735. [PMID: 33707955 PMCID: PMC7943547 DOI: 10.2147/ott.s297332] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
Various stimuli induce an unfolded protein response to endoplasmic reticulum stress, accompanied by the expression of endoplasmic reticulum molecular chaperones. Hypoxia-upregulated 1 gene (HYOU1) is a chaperone protein located in the endoplasmic reticulum. HYOU1 expression was upregulated in many diseases, including various cancers and endoplasmic reticulum stress-related diseases. HYOU1 does not only play an important protective role in the occurrence and development of tumors, but also is a potential therapeutic target for cancer. HYOU1 may also be used as an immune stimulation adjuvant because of its anti-tumor immune response, and a molecular target for therapy of many endoplasmic reticulum-related diseases. In this article, we summarize the updates in HYOU1 and discuss the potential therapeutic effects of HYOU1.
Collapse
Affiliation(s)
- Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.,University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| |
Collapse
|
15
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
16
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Xu Y, Fang D. Endoplasmic reticulum-associated degradation and beyond: The multitasking roles for HRD1 in immune regulation and autoimmunity. J Autoimmun 2020; 109:102423. [PMID: 32057541 DOI: 10.1016/j.jaut.2020.102423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism against ER stress, wherein unfolded/misfolded proteins accumulated in the ER are transported to the cytosol for degradation by the ubiquitin-proteasome system. The ER resident E3 ubiquitin ligase HRD1 has been identified as a key ERAD factor that directly catalyzes ubiquitin conjugation onto the unfolded or misfolded proteins for proteasomal degradation. The abnormally increased HRD1 expression was discovered in rheumatoid synovial cells, providing the first evidence for HRD1 dysregulation involved in human inflammatory pathogenesis. Further studies shown that inflammatory cytokines involved in rheumatoid pathogenesis including IL-1β, TNF-α, IL-17 and IL-26 induce HRD1 expression. Recent studies using mice with tissue-specific targeted deletion of HRD1 gene have revealed important functions of HRD1 in immune regulation and inflammatory diseases. HRD1 has been shown critical for dendritic cell expression of antigens to both CD4 and CD8 T cells. Both TCR and costimulatory receptor CD28 signaling induces HRD1 expression, which promotes T cell clonal expansion and IL-2 production. Together with the fact that HRD1 is required for maintaining the stability of regulatory T cell (Treg) stability, HRD1 appears to fine tone T cell immunity. In addition, HRD1 is involved in humoral immune response by regulating early B cell development and maintaining B cell survival upon recognition of specific antigen. HRD1 appears to target its substrates for ubiquitination through, either ERAD-dependent or -independent, at least two distinct molecular mechanisms in a cell or tissue specific manner to achieve its physiological functions. Dysregulation of HRD1 expression and/or it functions are involved in autoimmune inflammatory diseases in particular rheumatoid arthritis and lupus. Here, we review current findings on the mechanism of HRD1 protein in immune regulation and the involvement of HRD1 in the pathogenesis of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Xu Y, Melo-Cardenas J, Zhang Y, Gau I, Wei J, Montauti E, Zhang Y, Gao B, Jin H, Sun Z, Lee SM, Fang D. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 2019; 4:121887. [PMID: 30843874 DOI: 10.1172/jci.insight.121887] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Treg differentiation, maintenance, and function are controlled by the transcription factor FoxP3, which can be destabilized under inflammatory or other pathological conditions. Tregs can be destabilized under inflammatory or other pathological conditions, but the underlying mechanisms are not fully defined. Herein, we show that inflammatory cytokines induce ER stress response, which destabilizes Tregs by suppressing FoxP3 expression, suggesting a critical role of the ER stress response in maintaining Treg stability. Indeed, genetic deletion of Hrd1, an E3 ligase critical in suppressing the ER stress response, leads to elevated expression of ER stress-responsive genes in Treg and largely diminishes Treg suppressive functions under inflammatory condition. Mice with Treg-specific ablation of Hrd1 displayed massive multiorgan lymphocyte infiltration, body weight loss, and the development of severe small intestine inflammation with aging. At the molecular level, the deletion of Hrd1 led to the activation of both the ER stress sensor IRE1α and its downstream MAPK p38. Pharmacological suppression of IRE1α kinase, but not its endoribonuclease activity, diminished the elevated p38 activation and fully rescued the stability of Hrd1-null Tregs. Taken together, our studies reveal ER stress response as a previously unappreciated mechanism underlying Treg instability and that Hrd1 is crucial for maintaining Treg stability and functions through suppressing the IRE1α-mediated ER stress response.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Isabella Gau
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhaolin Sun
- Department of Pharmacology School of Pharmacy, Dalian Medical University, Dalian, China
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, South Korea
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Pagare PP, Wang H, Wang XY, Zhang Y. Understanding the role of glucose regulated protein 170 (GRP170) as a nucleotide exchange factor through molecular simulations. J Mol Graph Model 2018; 85:160-170. [PMID: 30205291 PMCID: PMC6197907 DOI: 10.1016/j.jmgm.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 01/10/2023]
Abstract
Glucose Regulated Protein 170 (GRP170), also called Oxygen Regulated Protein 150 (ORP150), is a major molecular chaperone resident in the endoplasmic reticulum (ER). It belongs to the heat shock protein (HSP70) super family and can be induced by conditions such as hypoxia, ischemia and interferences in calcium homeostasis. It was recently reported that GRP170 may act as a nucleotide exchange factor (NEF) for GRP78 or binding immunoglobulin protein (BiP), and the ER canonical HSP70. However, little is known about the mechanism underlying its NEF activity. In this study, two homology models of GRP170 were constructed based on the X-ray crystal structures of ADP and ATP bound HSP110, a cytosolic homolog of GRP170, in order to characterize the differences in the binding modes of both ligands. It was observed that the differences in the binding modes of ADP and ATP led to a conformation change in the substrate binding domain which could potentially influence the binding of its substrates such as BiP. Our findings help understand the effect of nucleotide binding on the function of this chaperone protein as a NEF as well as the structural differences between GRP170 and its family members.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Ravindran MS. Molecular chaperones: from proteostasis to pathogenesis. FEBS J 2018; 285:3353-3361. [PMID: 29890022 PMCID: PMC7164077 DOI: 10.1111/febs.14576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/12/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Biocon Bristol‐Myers Squibb R&D CenterBiocon Park, Bommasandra Jigani Link RdBengaluruKarnataka560099India
| |
Collapse
|
21
|
Ichhaporia VP, Kim J, Kavdia K, Vogel P, Horner L, Frase S, Hendershot LM. SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. Dis Model Mech 2018; 11:dmm.033043. [PMID: 29666155 PMCID: PMC5992605 DOI: 10.1242/dmm.033043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy. Editor's choice: This study provides molecular insights into the progressive myopathy and cellular compensatory responses attempted upon loss of SIL1, a component of the endoplasmic-reticulum-resident Hsp70 protein-folding machinery.
Collapse
Affiliation(s)
- Viraj P Ichhaporia
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jieun Kim
- Small Animal Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Dept of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda Horner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Dept of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA .,Dept of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
22
|
Cunningham CN, He K, Arunagiri A, Paton AW, Paton JC, Arvan P, Tsai B. Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion. Diabetes 2017; 66:741-753. [PMID: 28028074 PMCID: PMC5319713 DOI: 10.2337/db16-1338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
In heterozygous patients with a diabetic syndrome called mutant INS gene-induced diabetes of youth (MIDY), there is decreased insulin secretion when mutant proinsulin expression prevents wild-type (WT) proinsulin from exiting the endoplasmic reticulum (ER), which is essential for insulin production. Our previous results revealed that mutant Akita proinsulin is triaged by ER-associated degradation (ERAD). We now find that the ER chaperone Grp170 participates in the degradation process by shifting Akita proinsulin from high-molecular weight (MW) complexes toward smaller oligomeric species that are competent to undergo ERAD. Strikingly, overexpressing Grp170 also liberates WT proinsulin, which is no longer trapped in these high-MW complexes, enhancing ERAD of Akita proinsulin and restoring WT insulin secretion. Our data reveal that Grp170 participates in preparing mutant proinsulin for degradation while enabling WT proinsulin escape from the ER. In principle, selective destruction of mutant proinsulin offers a rational approach to rectify the insulin secretion problem in MIDY.
Collapse
Affiliation(s)
- Corey N Cunningham
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
| | - Kaiyu He
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Anoop Arunagiri
- Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Peter Arvan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
- Division of Metabolism Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
23
|
Buck TM, Jordahl AS, Yates ME, Preston GM, Cook E, Kleyman TR, Brodsky JL. Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochem J 2017; 474:357-376. [PMID: 27903760 PMCID: PMC5423784 DOI: 10.1042/bcj20160760] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emily Cook
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
24
|
How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses 2016; 8:v8090242. [PMID: 27589785 PMCID: PMC5035956 DOI: 10.3390/v8090242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
To infect cells, polyomavirus (PyV) traffics from the cell surface to the endoplasmic reticulum (ER) where it hijacks elements of the ER-associated degradation (ERAD) machinery to penetrate the ER membrane and reach the cytosol. From the cytosol, the virus transports to the nucleus, enabling transcription and replication of the viral genome that leads to lytic infection or cellular transformation. How PyV exploits the ERAD machinery to cross the ER membrane and access the cytosol, a decisive infection step, remains enigmatic. However, recent studies have slowly unraveled many aspects of this process. These emerging insights should advance our efforts to develop more effective therapies against PyV-induced human diseases.
Collapse
|