1
|
Ding R, Cao W, Chen Y, Zhu Y, Yin D. SnRNA-seq reveals differential functional transcriptional pathway alterations in three mutant types of dilated cardiomyopathy. Int J Biol Macromol 2024; 281:136353. [PMID: 39395510 DOI: 10.1016/j.ijbiomac.2024.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, characterized by ventricular dilation, thinning of the ventricular walls, and systolic dysfunction in either the left or both ventricles, often accompanied by fibrosis. Human cardiac tissue is composed of various cell types, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), macrophages, lymphocytes and so on. In DCM patients, these cells frequently undergo functional and phenotypic changes, contributing to contractile dysfunction, inflammation, fibrosis, and cell death, thereby increasing the risk of heart failure. This study focuses on DCM patients with mutations (LMNA, RBM20, and TTN) and analyzes functional changes in subpopulations of four cardiac cell types. The study involves functional annotation of subpopulations within each cell type and explores the association between gene mutations and specific functions and pathways. Additionally, the SCENIC method is employed of a particular cell subpopulation with significant functional importance, aiming to identify key transcriptional regulators in specific cell states. By analyzing the expression levels of ligand-receptor pairs in vCM4, vFB2, EC5.0, T cells, and NK cells across the DCM mutant genotypes, we predicted their signaling pathways and communications. This research provides insights into the molecular mechanisms of DCM and potential therapeutic targets.
Collapse
Affiliation(s)
- Rui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Wenzhao Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yongbo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yanrui Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Micolonghi C, Perrone F, Fabiani M, Caroselli S, Savio C, Pizzuti A, Germani A, Visco V, Petrucci S, Rubattu S, Piane M. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci 2024; 25:9787. [PMID: 39337275 PMCID: PMC11431948 DOI: 10.3390/ijms25189787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hereditary cardiomyopathies (CMPs), including arrhythmogenic cardiomyopathy (ACM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy (HCM), represent a group of heart disorders that significantly contribute to cardiovascular morbidity and mortality and are often driven by genetic factors. Recent advances in next-generation sequencing (NGS) technology have enabled the identification of rare variants in both well-established and minor genes associated with CMPs. Nowadays, a set of core genes is included in diagnostic panels for ACM, DCM, and HCM. On the other hand, despite their lesser-known status, variants in the minor genes may contribute to disease mechanisms and influence prognosis. This review evaluates the current evidence supporting the involvement of the minor genes in CMPs, considering their potential pathogenicity and clinical significance. A comprehensive analysis of databases, such as ClinGen, ClinVar, and GeneReviews, along with recent literature and diagnostic guidelines provides a thorough overview of the genetic landscape of minor genes in CMPs and offers guidance in clinical practice, evaluating each case individually based on the clinical referral, and insights for future research. Given the increasing knowledge on these less understood genetic factors, future studies are essential to clearly assess their roles, ultimately leading to improved diagnostic precision and therapeutic strategies in hereditary CMPs.
Collapse
Affiliation(s)
- Caterina Micolonghi
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Perrone
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marco Fabiani
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- ALTAMEDICA, Human Genetics, 00198 Rome, Italy
| | - Silvia Caroselli
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Juno Genetics, Reproductive Genetics, 00188 Rome, Italy
| | | | - Antonio Pizzuti
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vincenzo Visco
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Simona Petrucci
- S. Andrea University Hospital, 00189 Rome, Italy
- Medical Genetics Unit, IRCCS Mendel Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Speranza Rubattu
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Piane
- S. Andrea University Hospital, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
3
|
Pradeau-Phélut L, Etienne-Manneville S. Cytoskeletal crosstalk: A focus on intermediate filaments. Curr Opin Cell Biol 2024; 87:102325. [PMID: 38359728 DOI: 10.1016/j.ceb.2024.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The cytoskeleton, comprising actin microfilaments, microtubules, and intermediate filaments, is crucial for cell motility and tissue integrity. While prior studies largely focused on individual cytoskeletal networks, recent research underscores the interconnected nature of these systems in fundamental cellular functions like adhesion, migration, and division. Understanding the coordination of these distinct networks in both time and space is essential. This review synthesizes current findings on the intricate interplay between these networks, emphasizing the pivotal role of intermediate filaments. Notably, these filaments engage in extensive crosstalk with microfilaments and microtubules through direct molecular interactions, cytoskeletal linkers, and molecular motors that form molecular bridges, as well as via more complex regulation of intracellular signaling.
Collapse
Affiliation(s)
- Lucas Pradeau-Phélut
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, 4 place Jussieu, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Université Paris-Cité, Équipe Labellisée Ligue Nationale Contre le Cancer 2023, 25 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
4
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
6
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Maurya S, Mills RW, Kahnert K, Chiang DY, Bertoli G, Lundegaard PR, Duran MPH, Zhang M, Rothenberg E, George AL, MacRae CA, Delmar M, Lundby A. Outlining cardiac ion channel protein interactors and their signature in the human electrocardiogram. NATURE CARDIOVASCULAR RESEARCH 2023; 2:673-692. [PMID: 38666184 PMCID: PMC11041666 DOI: 10.1038/s44161-023-00294-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2023] [Indexed: 04/28/2024]
Abstract
Protein-protein interactions are essential for normal cellular processes and signaling events. Defining these interaction networks is therefore crucial for understanding complex cellular functions and interpretation of disease-associated gene variants. We need to build a comprehensive picture of the interactions, their affinities and interdependencies in the specific organ to decipher hitherto poorly understood signaling mechanisms through ion channels. Here we report the experimental identification of the ensemble of protein interactors for 13 types of ion channels in murine cardiac tissue. Of these, we validated the functional importance of ten interactors on cardiac electrophysiology through genetic knockouts in zebrafish, gene silencing in mice, super-resolution microscopy and patch clamp experiments. Furthermore, we establish a computational framework to reconstruct human cardiomyocyte ion channel networks from deep proteome mapping of human heart tissue and human heart single-cell gene expression data. Finally, we integrate the ion channel interactome with human population genetics data to identify proteins that influence the electrocardiogram (ECG). We demonstrate that the combined channel network is enriched for proteins influencing the ECG, with 44% of the network proteins significantly associated with an ECG phenotype. Altogether, we define interactomes of 13 major cardiac ion channels, contextualize their relevance to human electrophysiology and validate functional roles of ten interactors, including two regulators of the sodium current (epsin-2 and gelsolin). Overall, our data provide a roadmap for our understanding of the molecular machinery that regulates cardiac electrophysiology.
Collapse
Affiliation(s)
- Svetlana Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert W. Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Y. Chiang
- Cardiovascular Medicine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Giorgia Bertoli
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mingliang Zhang
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Eli Rothenberg
- Division of Pharmacology, NYU School of Medicine, New York, NY USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Calum A. MacRae
- Cardiovascular Medicine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Falk Z, Wargowsky R, Goldman J, Jones D, Shtokalo D, Antonets D, Jepson T, Fetisova A, Jaatinen K, Ree N, Ri M. RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100033. [PMID: 37303712 PMCID: PMC10256136 DOI: 10.1016/j.jmccpl.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- Department of Clinical Research and Leadership, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Zhaoqing Yang
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Katz
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jonathan Reiner
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Palak Shah
- INOVA Heart and Vascular Institute, 3300 Gallows Road, Fairfax, VA 22042, United States of America
| | - Zachary Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Dan Jones
- SeqLL, Inc., 3 Federal Street, Billerica, MA 01821, United States of America
| | - Dmitry Shtokalo
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| | - Denis Antonets
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Anastasia Fetisova
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kalingrad 236040, Russia
| | - Maxim Ri
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
10
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
11
|
Chen J, Li H, Guo S, Yang Z, Sun S, Zeng J, Gou H, Chen Y, Wang F, Lin Y, Huang K, Yue H, Ma Y, Lin Y. Whole exome sequencing in Brugada and long QT syndromes revealed novel rare and potential pathogenic mutations related to the dysfunction of the cardiac sodium channel. Orphanet J Rare Dis 2022; 17:394. [PMID: 36303204 PMCID: PMC9615250 DOI: 10.1186/s13023-022-02542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
Background Brugada syndrome (Brs) and long QT syndrome (LQTs) are the most observed “inherited primary arrhythmia syndromes” and “channelopathies”, which lead to sudden cardiac death. Methods Detailed clinical information of Brs and LQTs patients was collected. Genomic DNA samples of peripheral blood were conducted for whole-exome sequencing on the Illumina HiSeq 2000 platform. Then, we performed bioinformatics analysis for 200 genes susceptible to arrhythmias and cardiomyopathies. Protein interaction and transcriptomic co-expression were analyzed using the online website and GTEx database.
Results All sixteen cases of Brs and six cases of LQTs were enrolled in the current study. Four Brs carried known pathogenic or likely pathogenic of single-point mutations, including SCN5A p.R661W, SCN5A p.R965C, and KCNH2 p.R692Q. One Brs carried the heterozygous compound mutations of DSG2 p.F531C and SCN5A p.A1374S. Two Brs carried the novel heterozygous truncated mutations (MAF < 0.001) of NEBL (p.R882X) and NPPA (p.R107X), respectively. Except for the indirect interaction between NEBL and SCN5A, NPPA directly interacts with SCN5A. These gene expressions had a specific and significant positive correlation in myocardial tissue, with high degrees of co-expression and synergy. Two Brs carried MYH7 p.E1902Q and MYH6 p.R1820Q, which were predicted as "damaging/possibly damaging" and "damaging/damaging" by Polyphen and SIFT algorithm. Two LQTs elicited the pathogenic single splicing mutation of KCNQ1 (c.922-1G > C). Three LQTs carried a single pathogenic mutation of SCN5A p.R1880H, KCNH2 p.D161N, and KCNQ1 p.R243S, respectively. One patient of LQTs carried a frameshift mutation of KCNH2 p. A188Gfs*143. Conclusions The truncated mutations of NEBL (p.R882X) and NPPA (p.R107X) may induce Brugada syndrome by abnormally affecting cardiac sodium channel. SCN5A (p.R661W, p.R965C and p.A1374S) and KCNH2 (p.R692Q) may cause Brugada syndrome, while SCN5A (p.R1880H), KCNQ1 (c.922-1G > C and p.R243S) and KCNH2 (p.D161N and p.A188Gfs*143) may lead to long QT syndrome.
Collapse
Affiliation(s)
- Jia Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China.,The Second Department of Cardiology, Department of Obstetrics and Gynecology, The Second People's Hospital of Guangdong Province, Guangzhou, 510310, Guangdong Province, China
| | - Hong Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China.,The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518048, Guangdong Province, China
| | - Sicheng Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China.,College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Zhe Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China.,Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated to Jinan University, Zhuhai, 519000, Guangdong Province, China
| | - Shaoping Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China
| | - JunJie Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China
| | - Hongjuan Gou
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China
| | - Yechang Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China
| | - Feng Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong Province, China
| | - Yanping Lin
- The Second Department of Cardiology, Department of Obstetrics and Gynecology, The Second People's Hospital of Guangdong Province, Guangzhou, 510310, Guangdong Province, China
| | - Kun Huang
- The Second Department of Cardiology, Department of Obstetrics and Gynecology, The Second People's Hospital of Guangdong Province, Guangzhou, 510310, Guangdong Province, China
| | - Hong Yue
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China.
| | - Yuting Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yubi Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong Province, China. .,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangdong Cardiovascular Institute, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
12
|
Gomes G, Seixas MR, Azevedo S, Audi K, Jurberg AD, Mermelstein C, Costa ML. What does desmin do: A bibliometric assessment of the functions of the muscle intermediate filament. Exp Biol Med (Maywood) 2022; 247:538-550. [PMID: 35130760 DOI: 10.1177/15353702221075035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intermediate filaments were first described in muscle in 1968, and desmin was biochemically identified about 10 years afterwards. Its importance grew after the identification of desminopathies and desmin mutations that cause mostly cardiopathies. Since its characterization until recently, different functions have been attributed to desmin. Here, we use bibliometric tools to evaluate the articles published about desmin and to assess its several putative functions. We identified the most productive authors and the relationships between research groups. We studied the more frequent words among 9734 articles (September 2021) containing "desmin" on the title and abstract, to identify the major research focus. We generated an interactive spreadsheet with the 934 papers that contain "desmin" only on the title that can be used to search and quantify terms in the abstract. We further selected the articles that contained the terms "function" or "role" from the spreadsheet, which we then classified according to type of function, organelle, or tissue involved. Based on the bibliographic analysis, we assess comparatively the putative functions, and we propose an alternative explanation for the desmin function.
Collapse
Affiliation(s)
- Geyse Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Marianna R Seixas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Sarah Azevedo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Karina Audi
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Arnon D Jurberg
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil.,Faculdade de Medicina, Universidade Estácio de Sá, Rio de Janeiro 20071-001, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-970, Brazil
| |
Collapse
|
13
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Rodriguez JM, Pozo F, Cerdán-Vélez D, Di Domenico T, Vázquez J, Tress M. APPRIS: selecting functionally important isoforms. Nucleic Acids Res 2022; 50:D54-D59. [PMID: 34755885 PMCID: PMC8728124 DOI: 10.1093/nar/gkab1058] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
APPRIS (https://appris.bioinfo.cnio.es) is a well-established database housing annotations for protein isoforms for a range of species. APPRIS selects principal isoforms based on protein structure and function features and on cross-species conservation. Most coding genes produce a single main protein isoform and the principal isoforms chosen by the APPRIS database best represent this main cellular isoform. Human genetic data, experimental protein evidence and the distribution of clinical variants all support the relevance of APPRIS principal isoforms. APPRIS annotations and principal isoforms have now been expanded to 10 model organisms. In this paper we highlight the most recent updates to the database. APPRIS annotations have been generated for two new species, cow and chicken, the protein structural information has been augmented with reliable models from the EMBL-EBI AlphaFold database, and we have substantially expanded the confirmatory proteomics evidence available for the human genome. The most significant change in APPRIS has been the implementation of TRIFID functional isoform scores. TRIFID functional scores are assigned to all splice isoforms, and APPRIS uses the TRIFID functional scores and proteomics evidence to determine principal isoforms when core methods cannot.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Tomás Di Domenico
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Institute, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| |
Collapse
|
15
|
Axelsson E, Ljungvall I, Bhoumik P, Conn LB, Muren E, Ohlsson Å, Olsen LH, Engdahl K, Hagman R, Hanson J, Kryvokhyzha D, Pettersson M, Grenet O, Moggs J, Del Rio-Espinola A, Epe C, Taillon B, Tawari N, Mane S, Hawkins T, Hedhammar Å, Gruet P, Häggström J, Lindblad-Toh K. The genetic consequences of dog breed formation-Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genet 2021; 17:e1009726. [PMID: 34473707 PMCID: PMC8412370 DOI: 10.1371/journal.pgen.1009726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Selective breeding for desirable traits in strictly controlled populations has generated an extraordinary diversity in canine morphology and behaviour, but has also led to loss of genetic variation and random entrapment of disease alleles. As a consequence, specific diseases are now prevalent in certain breeds, but whether the recent breeding practice led to an overall increase in genetic load remains unclear. Here we generate whole genome sequencing (WGS) data from 20 dogs per breed from eight breeds and document a ~10% rise in the number of derived alleles per genome at evolutionarily conserved sites in the heavily bottlenecked cavalier King Charles spaniel breed (cKCs) relative to in most breeds studied here. Our finding represents the first clear indication of a relative increase in levels of deleterious genetic variation in a specific breed, arguing that recent breeding practices probably were associated with an accumulation of genetic load in dogs. We then use the WGS data to identify candidate risk alleles for the most common cause for veterinary care in cKCs–the heart disease myxomatous mitral valve disease (MMVD). We verify a potential link to MMVD for candidate variants near the heart specific NEBL gene in a dachshund population and show that two of the NEBL candidate variants have regulatory potential in heart-derived cell lines and are associated with reduced NEBL isoform nebulette expression in papillary muscle (but not in mitral valve, nor in left ventricular wall). Alleles linked to reduced nebulette expression may hence predispose cKCs and other breeds to MMVD via loss of papillary muscle integrity. As a consequence of selective breeding, specific disease-causing mutations have become more frequent in certain dog breeds. Whether the breeding practice also resulted in a general increase in the overall number of disease-causing mutations per dog genome is however not clear. To address this question, we compare the amount of harmful, potentially disease-causing, mutations in dogs from eight common breeds that have experienced varying degrees of intense selective breeding. We find that individuals belonging to the breed affected by the most intense breeding—cavalier King Charles spaniel (cKCs)—carry more harmful variants than other breeds, indicating that past breeding practices may have increased the overall levels of harmful genetic variation in dogs. The most common disease in cKCs is myxomatous mitral valve disease (MMVD). To identify variants linked to this disease we next characterize mutations that are common in cKCs, but rare in other breeds, and then investigate if these mutations can predict MMVD in dachshunds. We find that variants that regulate the expression of the gene NEBL in papillary muscles may increase the risk of the disease, indicating that loss of papillary muscle integrity could contribute to the development of MMVD.
Collapse
Affiliation(s)
- Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Priyasma Bhoumik
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Laura Bas Conn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Muren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Olivier Grenet
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Christian Epe
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Bruce Taillon
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Nilesh Tawari
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Shrinivas Mane
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Troy Hawkins
- Elanco Animal Health, Greenfield, Indiana, United States of America
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
16
|
Joanne P, Hovhannisyan Y, Bencze M, Daher MT, Parlakian A, Toutirais G, Gao-Li J, Lilienbaum A, Li Z, Kordeli E, Ferry A, Agbulut O. Absence of Desmin Results in Impaired Adaptive Response to Mechanical Overloading of Skeletal Muscle. Front Cell Dev Biol 2021; 9:662133. [PMID: 34336827 PMCID: PMC8320001 DOI: 10.3389/fcell.2021.662133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Desmin is a muscle-specific protein belonging to the intermediate filament family. Desmin mutations are linked to skeletal muscle defects, including inherited myopathies with severe clinical manifestations. The aim of this study was to examine the role of desmin in skeletal muscle remodeling and performance gain induced by muscle mechanical overloading which mimics resistance training. Methods: Plantaris muscles were overloaded by surgical ablation of gastrocnemius and soleus muscles. The functional response of plantaris muscle to mechanical overloading in desmin-deficient mice (DesKO, n = 32) was compared to that of control mice (n = 36) after 7-days or 1-month overloading. To elucidate the molecular mechanisms implicated in the observed partial adaptive response of DesKO muscle, we examined the expression levels of genes involved in muscle growth, myogenesis, inflammation and oxidative energetic metabolism. Moreover, ultrastructure and the proteolysis pathway were explored. Results: Contrary to control, absolute maximal force did not increase in DesKO muscle following 1-month mechanical overloading. Fatigue resistance was also less increased in DesKO as compared to control muscle. Despite impaired functional adaptive response of DesKO mice to mechanical overloading, muscle weight and the number of oxidative MHC2a-positive fibers per cross-section similarly increased in both genotypes after 1-month overloading. However, mechanical overloading-elicited remodeling failed to activate a normal myogenic program after 7-days overloading, resulting in proportionally reduced activation and differentiation of muscle stem cells. Ultrastructural analysis of the plantaris muscle after 1-month overloading revealed muscle fiber damage in DesKO, as indicated by the loss of sarcomere integrity and mitochondrial abnormalities. Moreover, the observed accumulation of autophagosomes and lysosomes in DesKO muscle fibers could indicate a blockage of autophagy. To address this issue, two main proteolysis pathways, the ubiquitin-proteasome system and autophagy, were explored in DesKO and control muscle. Our results suggested an alteration of proteolysis pathways in DesKO muscle in response to mechanical overloading. Conclusion: Taken together, our results show that mechanical overloading increases the negative impact of the lack of desmin on myofibril organization and mitochondria. Furthermore, our results suggest that under these conditions, the repairing activity of autophagy is disturbed. Consequently, force generation is not improved despite muscle growth, suggesting that desmin is required for a complete response to resistance training in skeletal muscle.
Collapse
Affiliation(s)
- Pierre Joanne
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Maximilien Bencze
- U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPEC, ENVA, EFS, Créteil, France
| | - Marie-Thérèse Daher
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Geraldine Toutirais
- Muséum National d'Histoire Naturelle (MNHN), Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS UMR 7245, Plateau technique de Microscopie Electronique (PtME), Paris, France
| | - Jacqueline Gao-Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Alain Lilienbaum
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université de Paris, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Ekaterini Kordeli
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Institut de Myologie, INSERM U974, Centre de Recherche en Myologie, Sorbonne Université, Paris, France.,Université de Paris, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
17
|
Vejandla RM, Orgil BO, Alberson NR, Li N, Munkhsaikhan U, Khuchua Z, Martherus R, Azeloglu EU, Xu F, Lu L, Towbin JA, Purevjav E. Deficiency in nebulin repeats of sarcomeric nebulette is detrimental for cardiomyocyte tolerance to exercise and biomechanical stress. Am J Physiol Heart Circ Physiol 2021; 320:H2130-H2146. [PMID: 33861145 DOI: 10.1152/ajpheart.00732.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin-binding sarcomeric nebulette (NEBL) protein provides efficient contractile flexibility via interaction with desmin intermediate filaments. NEBL gene mutations affecting the nebulin repeat (NR) domain are known to induce cardiomyopathy. The study aimed to explore the roles of NEBL in exercise and biomechanical stress response. We ablated exon3 encoding the first NR of Nebl and created global Neblex3-/ex3- knockout mice. Cardiac function, structure, and transcriptome were assessed before and after a 4-wk treadmill regimen. A Nebl-based exercise signaling network was constructed using systems genetics methods. H9C2 and neonatal rat cardiomyocytes (NRCs) expressing wild-type or mutant NEBL underwent cyclic mechanical strain. Neblex3-/ex3- mice demonstrated diastolic dysfunction with preserved systolic function at 6 mo of age. After treadmill running, 4-mo-old Neblex3-/ex3- mice developed concentric cardiac hypertrophy and left ventricular dilation compared with running Nebl+/+ and sedentary Neblex3-/ex3- mice. Disturbance of sarcomeric Z-disks and thin filaments architecture and disruption of intercalated disks and mitochondria were found in exercised Neblex3-/ex3- mice. A Nebl-based exercise signaling network included Csrp3, Des, Fbox32, Jup, Myh6, and Myh7. Disturbed expression of TM1, DES, JUP, β-catenin, MLP, α-actinin2, and vinculin proteins was demonstrated. In H9C2 cells, NEBL was recruited into focal adhesions at 24-h poststrain and redistributed along with F-actin at 72-h poststrain, suggesting time-dependent redistribution of NEBL in response to strain. NEBL mutations cause desmin disorganization in NRCs upon stretch. We conclude that Nebl's NR ablation causes disturbed sarcomere, Z-disks, and desmin organization, and prevents NEBL redistribution to focal adhesions in cardiomyocytes, weakening cardiac tolerance to biomechanical stress.NEW & NOTEWORTHY We demonstrate that ablation of first nebulin-repeats of sarcomeric nebulette (Nebl) causes diastolic dysfunction in Neblex3-/ex3- mice. Exercise-induced development of diastolic dysfunction, cardiac hypertrophy and ventricular dilation in knockouts. This was associated with sarcomere disturbance, intercalated disks disruption, and mitochondrial distortion upon stress and altered expression of genes involved in Nebl-based stress network. We demonstrate that G202R and A592 mutations alter actin and desmin expression causing disorganization of desmin filaments upon cyclic strain.
Collapse
Affiliation(s)
- Ramona M Vejandla
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Neely R Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Ning Li
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Department of Cardiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Undral Munkhsaikhan
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Zaza Khuchua
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Biochemistry, Sechenov University, Moscow, Russia.,Department of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - Ruben Martherus
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Evren U Azeloglu
- Department of Medicine, Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeffrey A Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee.,Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
18
|
Murakami K, Sato M, Miyasaka Y, Hatori K. Selective association of desmin intermediate filaments with a phospholipid layer in droplets. Biochem Biophys Res Commun 2021; 555:109-114. [PMID: 33813269 DOI: 10.1016/j.bbrc.2021.03.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/24/2021] [Indexed: 10/24/2022]
Abstract
Desmin, an intermediate filament protein expressed in muscle cells, plays a key role in the integrity and regulation of the contractile system. Furthermore, the distribution of desmin in cells and its interplay with plasma and organelle membranes are crucial for cell functions; however, the fundamental properties of lipid-desmin interactions remain unknown. Using a water-in-oil method for a limited space system in vitro, we examined the distribution of desmin in three types of phospholipid droplets: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS). When fluorescent-labeled desmin was observed for 60 min after desmin assembly was initiated by adding 25 mM KCl, desmin accumulated on both the DOPE and DOPS layers; however, it did not accumulate on the DOPC layer of droplets. An increase in salt concentration did not moderate the accumulation. The initial form of either oligomer or mature filament affected the accumulation on each lipid layer. When liposomes were included in the droplets, desmin was associated with DOPE but not on DOPC liposomes. These results suggest that desmin has the potential for association with phospholipids concerning desmin form and lipid shape. The behavior and composition of living membranes may affect the distribution of desmin networks.
Collapse
Affiliation(s)
- Keigo Murakami
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Masashi Sato
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Yoshiya Miyasaka
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Kuniyuki Hatori
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan.
| |
Collapse
|
19
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
20
|
Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput Biol 2020; 16:e1008287. [PMID: 33017396 PMCID: PMC7561204 DOI: 10.1371/journal.pcbi.1008287] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/15/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023] Open
Abstract
The role of alternative splicing is one of the great unanswered questions in cellular biology. There is strong evidence for alternative splicing at the transcript level, and transcriptomics experiments show that many splice events are tissue specific. It has been suggested that alternative splicing evolved in order to remodel tissue-specific protein-protein networks. Here we investigated the evidence for tissue-specific splicing among splice isoforms detected in a large-scale proteomics analysis. Although the data supporting alternative splicing is limited at the protein level, clear patterns emerged among the small numbers of alternative splice events that we could detect in the proteomics data. More than a third of these splice events were tissue-specific and most were ancient: over 95% of splice events that were tissue-specific in both proteomics and RNAseq analyses evolved prior to the ancestors of lobe-finned fish, at least 400 million years ago. By way of contrast, three in four alternative exons in the human gene set arose in the primate lineage, so our results cannot be extrapolated to the whole genome. Tissue-specific alternative protein forms in the proteomics analysis were particularly abundant in nervous and muscle tissues and their genes had roles related to the cytoskeleton and either the structure of muscle fibres or cell-cell connections. Our results suggest that this conserved tissue-specific alternative splicing may have played a role in the development of the vertebrate brain and heart. We manually curated a set of 255 splice events detected in a large-scale tissue-based proteomics experiment and found that more than a third had evidence of significant tissue-specific differences. Events that were significantly tissue-specific at the protein level were highly conserved; almost 75% evolved over 400 million years ago. The tissues in which we found most evidence for tissue-specific splicing were nervous tissues and cardiac tissues. Genes with tissue-specific events in these two tissues had functions related to important cellular structures in brain and heart tissues. These splice events may have been essential for the development of vertebrate heart and muscle. However, our data set may not be representative of alternative exons as a whole. We found that most tissue specific splicing was strongly conserved, but just 5% of annotated alternative exons in the human gene set are ancient. More than three quarters of alternative exons are primate-derived. Although the analysis does not provide a definitive answer to the question of the functional role of alternative splicing, our results do indicate that alternative splice variants may have played a significant part in the evolution of brain and heart tissues in vertebrates.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Tomas di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
| | - Jesus Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernandez, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Michael L. Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernandez, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
22
|
Miyasaka Y, Murakami K, Ito K, Kumaki J, Makabe K, Hatori K. Condensed desmin and actin cytoskeletal communication in lipid droplets. Cytoskeleton (Hoboken) 2019; 76:477-490. [DOI: 10.1002/cm.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yoshiya Miyasaka
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Keigo Murakami
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Koji Ito
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University Yamagata Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Kuniyuki Hatori
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| |
Collapse
|
23
|
Kulus M, Sujka-Kordowska P, Konwerska A, Celichowski P, Kranc W, Kulus J, Piotrowska-Kempisty H, Antosik P, Bukowska D, Iżycki D, Bruska M, Zabel M, Nowicki M, Kempisty B. New Molecular Markers Involved in Regulation of Ovarian Granulosa Cell Morphogenesis, Development and Differentiation during Short-Term Primary In Vitro Culture-Transcriptomic and Histochemical Study Based on Ovaries and Individual Separated Follicles. Int J Mol Sci 2019; 20:ijms20163966. [PMID: 31443152 PMCID: PMC6721001 DOI: 10.3390/ijms20163966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Nowadays, science has a lot of knowledge about the physiology of ovarian processes, especially folliculogenesis, hormone production and ovulation. However, the molecular basis for these processes remains largely undiscovered. The cell layer surrounding the growing oocyte—granulosa cells—are characterized by high physiological capabilities (e.g., proliferation, differentiation) and potential for growth in primary cultures, which predisposes them for analysis in the context of possible application of their cultures in advanced methods of assisted reproduction. In this study, we have used standard molecular approaches to analyze markers of these processes in primarily in vitro cultured porcine granulosa, subjected to conditions usually applied to cultures of similar cells. The material for our research came from commercially slaughtered pigs. The cells were obtained by enzymatic digestion of tissues and in vitro culture in appropriate conditions. The obtained genetic material (RNA) was collected at specific time intervals (0 h—before culture; reference, 48, 98, 144 h) and then analyzed using expression microarrays. Genes that showed a fold change greater than |2| and an adjusted p value lower than 0.05 were described as differentially expressed. Three groups of genes: “Cell morphogenesis”, “cell differentiation” and “cell development” were analyzed. From 265 differently expressed genes that belong to chosen ontology groups we have selected DAPL1, CXCL10, NEBL, IHH, TGFBR3, SCUBE1, DAB1, ITM2A, MCOLN3, IGF1 which are most downregulated and PDPN, CAV1, TMOD1, TAGLN, IGFBP5, ITGB3, LAMB1, FN1, ITGA2, POSTN genes whose expression is upregulated through the time of culture, on which we focused in downstream analysis. The results were also validated using RT-qPCR. The aim of our work was to conduct primary in vitro culture of granulosa cells, as well as to analyze the expression of gene groups in relation to the proliferation of follicular granulosa cells in the model of primary culture in real time. This knowledge should provide us with a molecular insight into the processes occurring during the in vitro cultures of porcine granulosa cells, serving as a basic molecular entry on the extent of the loss of their physiological properties, as well as gain of new, culture-specific traits.
Collapse
Affiliation(s)
- Magdalena Kulus
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jakub Kulus
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | | | - Paweł Antosik
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Dorota Bukowska
- Veterinary Center, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Dariusz Iżycki
- Chair of Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Gora, 65-417 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznan, Poland.
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland.
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic.
| |
Collapse
|
24
|
Capraro A, O'Meally D, Waters SA, Patel HR, Georges A, Waters PD. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps. BMC Genomics 2019; 20:460. [PMID: 31170930 PMCID: PMC6555745 DOI: 10.1186/s12864-019-5750-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. Results We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. Conclusions These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression. Electronic supplementary material The online version of this article (10.1186/s12864-019-5750-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Capraro
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present address: Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Shafagh A Waters
- School of Women's & Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
25
|
Tsikitis M, Galata Z, Mavroidis M, Psarras S, Capetanaki Y. Intermediate filaments in cardiomyopathy. Biophys Rev 2018; 10:1007-1031. [PMID: 30027462 DOI: 10.1007/s12551-018-0443-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intermediate filament (IF) proteins are critical regulators in health and disease. The discovery of hundreds of mutations in IF genes and posttranslational modifications has been linked to a plethora of human diseases, including, among others, cardiomyopathies, muscular dystrophies, progeria, blistering diseases of the epidermis, and neurodegenerative diseases. The major IF proteins that have been linked to cardiomyopathies and heart failure are the muscle-specific cytoskeletal IF protein desmin and the nuclear IF protein lamin, as a subgroup of the known desminopathies and laminopathies, respectively. The studies so far, both with healthy and diseased heart, have demonstrated the importance of these IF protein networks in intracellular and intercellular integration of structure and function, mechanotransduction and gene activation, cardiomyocyte differentiation and survival, mitochondrial homeostasis, and regulation of metabolism. The high coordination of all these processes is obviously of great importance for the maintenance of proper, life-lasting, and continuous contraction of this highly organized cardiac striated muscle and consequently a healthy heart. In this review, we will cover most known information on the role of IFs in the above processes and how their deficiency or disruption leads to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Zoi Galata
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527, Athens, Greece.
| |
Collapse
|
26
|
Hol EM, Capetanaki Y. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harb Perspect Biol 2017; 9:9/12/a021642. [PMID: 29196434 DOI: 10.1101/cshperspect.a021642] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SummaryType III intermediate filament (IF) proteins assemble into cytoplasmic homopolymeric and heteropolymeric filaments with other type III and some type IV IFs. These highly dynamic structures form an integral component of the cytoskeleton of muscle, brain, and mesenchymal cells. Here, we review the current ideas on the role of type III IFs in health and disease. It turns out that they not only offer resilience to mechanical strains, but, most importantly, they facilitate very efficiently the integration of cell structure and function, thus providing the necessary scaffolds for optimal cellular responses upon biochemical stresses and protecting against cell death, disease, and aging.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
27
|
Sharma S, Conover GM, Elliott JL, Der Perng M, Herrmann H, Quinlan RA. αB-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress Chaperones 2017; 22:613-626. [PMID: 28470624 PMCID: PMC5465037 DOI: 10.1007/s12192-017-0788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.
Collapse
Affiliation(s)
- Sarika Sharma
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Gloria M Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jayne L Elliott
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Ming Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roy A Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK.
| |
Collapse
|