1
|
Dai B, Polack L, Sperl A, Dame H, Huynh T, Deveney C, Lee C, Doench JG, Heldwein EE. CLCC1 promotes membrane fusion during herpesvirus nuclear egress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614151. [PMID: 39386602 PMCID: PMC11463520 DOI: 10.1101/2024.09.23.614151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herpesvirales are an ancient viral order that infects species from mollusks to humans for life. During infection, these viruses translocate their large capsids from the nucleus to the cytoplasm independently from the canonical route through the nuclear pore. Instead, capsids dock at the inner nuclear membrane and bud into the perinuclear space. These perinuclear enveloped virions fuse with the outer nuclear membrane releasing the capsids into the cytoplasm for maturation into infectious virions. The budding stage is mediated by virally encoded proteins. But the mediator of the subsequent fusion stage is unknown. Here, using a whole-genome CRISPR screen with herpes simplex virus 1, we identified CLCC1 as an essential host factor for the fusion stage of nuclear egress. Loss of CLCC1 results in a defect in nuclear egress, accumulation of capsid-containing perinuclear vesicles, and a drop in viral titers. In uninfected cells, loss of CLCC1 causes a defect in nuclear pore complex insertion. Viral homologs of CLCC1 are present in herpesviruses that infect mollusks and fish. Our findings uncover an ancient cellular membrane fusion mechanism important for the fundamental cellular process of nuclear envelope morphogenesis that herpesviruses hijack for capsid transport.
Collapse
Affiliation(s)
- Bing Dai
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lucas Polack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Adrian Sperl
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Haley Dame
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Tien Huynh
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Chloe Deveney
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Chanyoung Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics, Molecular, and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Kim S, Phan S, Tran HT, Shaw TR, Shahmoradian SH, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for neuronal nuclear pore complex localization and maturation. Nat Cell Biol 2024; 26:1482-1495. [PMID: 39117796 PMCID: PMC11542706 DOI: 10.1038/s41556-024-01480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
As lifelong interphase cells, neurons face an array of unique challenges. A key challenge is regulating nuclear pore complex (NPC) biogenesis and localization, the mechanisms of which are largely unknown. Here we identify neuronal maturation as a period of strongly upregulated NPC biogenesis. We demonstrate that the AAA+ protein torsinA, whose dysfunction causes the neurodevelopmental movement disorder DYT-TOR1A dystonia and co-ordinates NPC spatial organization without impacting total NPC density. We generated an endogenous Nup107-HaloTag mouse line to directly visualize NPC organization in developing neurons and find that torsinA is essential for proper NPC localization. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized nascent NPCs, and the formation of complete NPCs is delayed. Our work demonstrates that NPC spatial organization and number are independently determined and identifies NPC biogenesis as a process vulnerable to neurodevelopmental disease insults.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hung Tri Tran
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
| | - Thomas R Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sarah H Shahmoradian
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern, Dallas, TX, USA
- Department of Biophysics, UT Southwestern, Dallas, TX, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Program in Applied Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX, USA.
- Department of Neurology, UT Southwestern, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
3
|
Solà Colom M, Fu Z, Gunkel P, Güttler T, Trakhanov S, Srinivasan V, Gregor K, Pleiner T, Görlich D. A checkpoint function for Nup98 in nuclear pore formation suggested by novel inhibitory nanobodies. EMBO J 2024; 43:2198-2232. [PMID: 38649536 PMCID: PMC11148069 DOI: 10.1038/s44318-024-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies. During interphase, NPCs are inserted into a pre-existing nuclear envelope. Monitoring this process is challenging because newly assembled NPCs are indistinguishable from pre-existing ones. We overcame this problem by inserting Xenopus-derived NPCs into human nuclear envelopes and using frog-specific anti-Nup nanobodies for detection. We further asked whether anti-Nup nanobodies could serve as NPC assembly inhibitors. Using a selection strategy against conserved epitopes, we obtained anti-Nup93, Nup98, and Nup155 nanobodies that block Nup-Nup interfaces and arrest NPC assembly. We solved structures of nanobody-target complexes and identified roles for the Nup93 α-solenoid domain in recruiting Nup358 and the Nup214·88·62 complex, as well as for Nup155 and the Nup98 autoproteolytic domain in NPC scaffold assembly. The latter suggests a checkpoint linking pore formation to the assembly of the Nup98-dominated permeability barrier.
Collapse
Affiliation(s)
- Mireia Solà Colom
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- AI Proteins, 20 Overland St., Boston, MA, USA
| | - Zhenglin Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Philip Gunkel
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas Güttler
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Octapharma Biopharmaceuticals, Im Neuenheimer Feld 590, 69120, Heidelberg, Germany
| | - Sergei Trakhanov
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vasundara Srinivasan
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, Universität Hamburg, Hamburg, Germany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tino Pleiner
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
5
|
Saeirad S, LeDoux MS. TOR2A Variants in Blepharospasm. Tremor Other Hyperkinet Mov (N Y) 2023; 13:44. [PMID: 38076033 PMCID: PMC10705022 DOI: 10.5334/tohm.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Background Genetic factors have been implicated in the pathogenesis of blepharospasm (BSP), a dystonia characterized by excessive blinking and involuntary eyelid closure. Previous research identified a co-segregating deleterious TOR2A variant (GRCh38/hg38, NC_000009.12: g.127733410G>A, NM_001085347.3:c.568C>T, p. Arg190Cys) in three subjects with BSP and three carriers within a multi-generation pedigree. Other TOR2A variants have been reported in patients with dystonia. Methods Sanger sequencing was used to screen a cohort of 307 subjects with isolated BSP or BSP-plus dystonia affecting additional anatomical segments (BSP+). We also utilized computational tools to uniformly assess the deleteriousness and potential pathogenicity of previously reported TOR2A variants. Results There were no highly deleterious TOR2A variants in the coding or contiguous splice site regions of TOR2A within our cohort of 307 subjects. Discussion Highly deleterious variants in TOR2A are rare in patients with BSP/BSP+ phenotypes. Highlights Over 300 patients with BSP were screened for variants in TOR2A, a TOR1A (DYT1) homologue. No highly deleterious variants were identified in our cohort. The role of TOR2A in BSP and other forms of dystonia remains indeterminant.
Collapse
Affiliation(s)
| | - Mark S LeDoux
- University of Memphis, Memphis, Tennessee, USA
- Veracity Neuroscience LLC, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023; 14:2178184. [PMID: 36814098 PMCID: PMC9980700 DOI: 10.1080/19491034.2023.2178184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Filomena Broeskamp
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Dimitra Panagaki
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Sean D. Speese
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR, 97201, USA
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Johanna L. Höög
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| |
Collapse
|
7
|
Kuiper EFE, Prophet SM, Schlieker C. Coordinating nucleoporin condensation and nuclear pore complex assembly. FEBS Lett 2023; 597:2534-2545. [PMID: 37620293 DOI: 10.1002/1873-3468.14725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The nuclear pore complex (NPC) is among the most elaborate protein complexes in eukaryotes. While ribosomes and proteasomes are known to require dedicated assembly machinery, our understanding of NPC assembly is at a relatively early stage. Defects in NPC assembly or homeostasis are tied to movement disorders, including dystonia and amyotrophic lateral sclerosis (ALS), as well as aging, requiring a better understanding of these processes to enable therapeutic intervention. Here, we discuss recent progress in the understanding of NPC assembly and highlight how related defects in human disorders can shed light on NPC biogenesis. We propose that the condensation of phenylalanine-glycine repeat nucleoporins needs to be carefully controlled during NPC assembly to prevent aberrant condensation, aggregation, or amyloid formation.
Collapse
Affiliation(s)
- E F Elsiena Kuiper
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Sarah M Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Fan Y, Si Z, Wang L, Zhang L. DYT- TOR1A dystonia: an update on pathogenesis and treatment. Front Neurosci 2023; 17:1216929. [PMID: 37638318 PMCID: PMC10448058 DOI: 10.3389/fnins.2023.1216929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
DYT-TOR1A dystonia is a neurological disorder characterized by involuntary muscle contractions and abnormal movements. It is a severe genetic form of dystonia caused by mutations in the TOR1A gene. TorsinA is a member of the AAA + family of adenosine triphosphatases (ATPases) involved in a variety of cellular functions, including protein folding, lipid metabolism, cytoskeletal organization, and nucleocytoskeletal coupling. Almost all patients with TOR1A-related dystonia harbor the same mutation, an in-frame GAG deletion (ΔGAG) in the last of its 5 exons. This recurrent variant results in the deletion of one of two tandem glutamic acid residues (i.e., E302/303) in a protein named torsinA [torsinA(△E)]. Although the mutation is hereditary, not all carriers will develop DYT-TOR1A dystonia, indicating the involvement of other factors in the disease process. The current understanding of the pathophysiology of DYT-TOR1A dystonia involves multiple factors, including abnormal protein folding, signaling between neurons and glial cells, and dysfunction of the protein quality control system. As there are currently no curative treatments for DYT-TOR1A dystonia, progress in research provides insight into its pathogenesis, leading to potential therapeutic and preventative strategies. This review summarizes the latest research advances in the pathogenesis, diagnosis, and treatment of DYT-TOR1A dystonia.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| | - Zhibo Si
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Linlin Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
10
|
Kim S, Phan S, Shaw TR, Ellisman MH, Veatch SL, Barmada SJ, Pappas SS, Dauer WT. TorsinA is essential for the timing and localization of neuronal nuclear pore complex biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538491. [PMID: 37162852 PMCID: PMC10168336 DOI: 10.1101/2023.04.26.538491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nuclear pore complexes (NPCs) regulate information transfer between the nucleus and cytoplasm. NPC defects are linked to several neurological diseases, but the processes governing NPC biogenesis and spatial organization are poorly understood. Here, we identify a temporal window of strongly upregulated NPC biogenesis during neuronal maturation. We demonstrate that the AAA+ protein torsinA, whose loss of function causes the neurodevelopmental movement disorder DYT-TOR1A (DYT1) dystonia, coordinates NPC spatial organization during this period without impacting total NPC density. Using a new mouse line in which endogenous Nup107 is Halo-Tagged, we find that torsinA is essential for correct localization of NPC formation. In the absence of torsinA, the inner nuclear membrane buds excessively at sites of mislocalized, nascent NPCs, and NPC assembly completion is delayed. Our work implies that NPC spatial organization and number are independently regulated and suggests that torsinA is critical for the normal localization and assembly kinetics of NPCs.
Collapse
Affiliation(s)
- Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Sébastien Phan
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Thomas R. Shaw
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research on Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI
| | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, UT Southwestern, Dallas, TX
- Department of Neurology, UT Southwestern, Dallas, TX
- Department of Neuroscience, UT Southwestern, Dallas, TX
| |
Collapse
|
11
|
TOR1B: a predictor of bone metastasis in breast cancer patients. Sci Rep 2023; 13:1495. [PMID: 36707670 PMCID: PMC9883392 DOI: 10.1038/s41598-023-28140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.
Collapse
|
12
|
The chaperone DNAJB6 surveils FG-nucleoporins and is required for interphase nuclear pore complex biogenesis. Nat Cell Biol 2022; 24:1584-1594. [PMID: 36302971 DOI: 10.1038/s41556-022-01010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
Biogenesis of nuclear pore complexes (NPCs) includes the formation of the permeability barrier composed of phenylalanine-glycine-rich nucleoporins (FG-Nups) that regulate the selective passage of biomolecules across the nuclear envelope. The FG-Nups are intrinsically disordered and prone to liquid-liquid phase separation and aggregation when isolated. How FG-Nups are protected from making inappropriate interactions during NPC biogenesis is not fully understood. Here we find that DNAJB6, a molecular chaperone of the heat shock protein network, forms foci in close proximity to NPCs. The number of these foci decreases upon removal of proteins involved in the early steps of interphase NPC biogenesis. Conversely, when this process is stalled in the last steps, the number of DNAJB6-containing foci increases and these foci are identified as herniations at the nuclear envelope. Immunoelectron tomography shows that DNAJB6 localizes inside the lumen of the herniations arising at NPC biogenesis intermediates. Loss of DNAJB6 results in the accumulation of cytosolic annulate lamellae, which are structures containing partly assembled NPCs, a feature associated with disturbances in NPC biogenesis. We find that DNAJB6 binds to FG-Nups and can prevent the aggregation of the FG region of several FG-Nups in cells and in vitro. Together, our data show that the molecular chaperone DNAJB6 provides quality control during NPC biogenesis and is involved in the surveillance of native intrinsically disordered FG-Nups.
Collapse
|
13
|
Atypical nuclear envelope condensates linked to neurological disorders reveal nucleoporin-directed chaperone activities. Nat Cell Biol 2022; 24:1630-1641. [PMID: 36302970 PMCID: PMC10041656 DOI: 10.1038/s41556-022-01001-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
DYT1 dystonia is a debilitating neurological movement disorder arising from mutation in the AAA+ ATPase TorsinA. The hallmark of Torsin dysfunction is nuclear envelope blebbing resulting from defects in nuclear pore complex biogenesis. Whether blebs actively contribute to disease manifestation is unknown. We report that FG-nucleoporins in the bleb lumen form aberrant condensates and contribute to DYT1 dystonia by provoking two proteotoxic insults. Short-lived ubiquitylated proteins that are normally rapidly degraded partition into the bleb lumen and become stabilized. In addition, blebs selectively sequester a specific HSP40-HSP70 chaperone network that is modulated by the bleb component MLF2. MLF2 suppresses the ectopic accumulation of FG-nucleoporins and modulates the selective properties and size of condensates in vitro. Our study identifies dual mechanisms of proteotoxicity in the context of condensate formation and establishes FG-nucleoporin-directed activities for a nuclear chaperone network.
Collapse
|
14
|
Kralt A, Wojtynek M, Fischer JS, Agote-Aran A, Mancini R, Dultz E, Noor E, Uliana F, Tatarek-Nossol M, Antonin W, Onischenko E, Medalia O, Weis K. An amphipathic helix in Brl1 is required for nuclear pore complex biogenesis in S. cerevisiae. eLife 2022; 11:78385. [PMID: 36000978 PMCID: PMC9402233 DOI: 10.7554/elife.78385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 12/28/2022] Open
Abstract
The nuclear pore complex (NPC) is the central portal for macromolecular exchange between the nucleus and cytoplasm. In all eukaryotes, NPCs assemble into an intact nuclear envelope (NE) during interphase, but the process of NPC biogenesis remains poorly characterized. Furthermore, little is known about how NPC assembly leads to the fusion of the outer and inner NE, and no factors have been identified that could trigger this event. Here, we characterize the transmembrane protein Brl1 as an NPC assembly factor required for NE fusion in budding yeast. Brl1 preferentially associates with NPC assembly intermediates and its depletion halts NPC biogenesis, leading to NE herniations that contain inner and outer ring nucleoporins but lack the cytoplasmic export platform. Furthermore, we identify an essential amphipathic helix in the luminal domain of Brl1 that mediates interactions with lipid bilayers. Mutations in this amphipathic helix lead to NPC assembly defects, and cryo-electron tomography analyses reveal multilayered herniations of the inner nuclear membrane with NPC-like structures at the neck, indicating a failure in NE fusion. Taken together, our results identify a role for Brl1 in NPC assembly and suggest a function of its amphipathic helix in mediating the fusion of the inner and outer nuclear membranes.
Collapse
Affiliation(s)
- Annemarie Kralt
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.,Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | - Jonas S Fischer
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Arantxa Agote-Aran
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Roberta Mancini
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
16
|
Prophet SM, Naughton BS, Schlieker C. p97/UBXD1 Generate Ubiquitylated Proteins That Are Sequestered into Nuclear Envelope Herniations in Torsin-Deficient Cells. Int J Mol Sci 2022; 23:4627. [PMID: 35563018 PMCID: PMC9100061 DOI: 10.3390/ijms23094627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.
Collapse
Affiliation(s)
- Sarah M. Prophet
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Brigitte S. Naughton
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; (S.M.P.); (B.S.N.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
18
|
Sanchez V, Britt W. Human Cytomegalovirus Egress: Overcoming Barriers and Co-Opting Cellular Functions. Viruses 2021; 14:v14010015. [PMID: 35062219 PMCID: PMC8778548 DOI: 10.3390/v14010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
The assembly of human cytomegalovirus (HCMV) and other herpesviruses includes both nuclear and cytoplasmic phases. During the prolonged replication cycle of HCMV, the cell undergoes remarkable changes in cellular architecture that include marked increases in nuclear size and structure as well as the reorganization of membranes in cytoplasm. Similarly, significant changes occur in cellular metabolism, protein trafficking, and cellular homeostatic functions. These cellular modifications are considered integral in the efficient assembly of infectious progeny in productively infected cells. Nuclear egress of HCMV nucleocapsids is thought to follow a pathway similar to that proposed for other members of the herpesvirus family. During this process, viral nucleocapsids must overcome structural barriers in the nucleus that limit transit and, ultimately, their delivery to the cytoplasm for final assembly of progeny virions. HCMV, similar to other herpesviruses, encodes viral functions that co-opt cellular functions to overcome these barriers and to bridge the bilaminar nuclear membrane. In this brief review, we will highlight some of the mechanisms that define our current understanding of HCMV egress, relying heavily on the current understanding of egress of the more well-studied α-herpesviruses, HSV-1 and PRV.
Collapse
Affiliation(s)
- Veronica Sanchez
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Correspondence:
| | - William Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL 35294, USA;
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
20
|
DYT-TOR1A subcellular proteomics reveals selective vulnerability of the nuclear proteome to cell stress. Neurobiol Dis 2021; 158:105464. [PMID: 34358617 DOI: 10.1016/j.nbd.2021.105464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.
Collapse
|
21
|
Jacquemyn J, Foroozandeh J, Vints K, Swerts J, Verstreken P, Gounko NV, Gallego SF, Goodchild R. Torsin and NEP1R1-CTDNEP1 phosphatase affect interphase nuclear pore complex insertion by lipid-dependent and lipid-independent mechanisms. EMBO J 2021; 40:e106914. [PMID: 34313336 PMCID: PMC8408595 DOI: 10.15252/embj.2020106914] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The interphase nuclear envelope (NE) is extensively remodeled during nuclear pore complex (NPC) insertion. How this remodeling occurs and why it requires Torsin ATPases, which also regulate lipid metabolism, remains poorly understood. Here, we show that Drosophila Torsin (dTorsin) affects lipid metabolism via the NEP1R1‐CTDNEP1 phosphatase and the Lipin phosphatidic acid (PA) phosphatase. This includes that Torsins remove NEP1R1‐CTDNEP1 from the NE in fly and mouse cells, leading to subsequent Lipin exclusion from the nucleus. NEP1R1‐CTDNEP1 downregulation also restores nuclear pore membrane fusion in post‐mitotic dTorsinKO fat body cells. However, dTorsin‐associated nuclear pore defects do not correlate with lipidomic abnormalities and are not resolved by silencing of Lipin. Further testing confirmed that membrane fusion continues in cells with hyperactivated Lipin. It also led to the surprising finding that excessive PA metabolism inhibits recruitment of the inner ring complex Nup35 subunit, resulting in elongated channel‐like structures in place of mature nuclear pores. We conclude that the NEP1R1‐CTDNEP1 phosphatase affects interphase NPC biogenesis by lipid‐dependent and lipid‐independent mechanisms, explaining some of the pleiotropic effects of Torsins.
Collapse
Affiliation(s)
- Julie Jacquemyn
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
23
|
Host and Viral Factors Involved in Nuclear Egress of Herpes Simplex Virus 1. Viruses 2021; 13:v13050754. [PMID: 33923040 PMCID: PMC8146395 DOI: 10.3390/v13050754] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.
Collapse
|
24
|
Li J, Levin DS, Kim AJ, Pappas SS, Dauer WT. TorsinA restoration in a mouse model identifies a critical therapeutic window for DYT1 dystonia. J Clin Invest 2021; 131:139606. [PMID: 33529159 DOI: 10.1172/jci139606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
In inherited neurodevelopmental diseases, pathogenic processes unique to critical periods during early brain development may preclude the effectiveness of gene modification therapies applied later in life. We explored this question in a mouse model of DYT1 dystonia, a neurodevelopmental disease caused by a loss-of-function mutation in the TOR1A gene encoding torsinA. To define the temporal requirements for torsinA in normal motor function and gene replacement therapy, we developed a mouse line enabling spatiotemporal control of the endogenous torsinA allele. Suppressing torsinA during embryogenesis caused dystonia-mimicking behavioral and neuropathological phenotypes. Suppressing torsinA during adulthood, however, elicited no discernible abnormalities, establishing an essential requirement for torsinA during a developmental critical period. The developing CNS exhibited a parallel "therapeutic critical period" for torsinA repletion. Although restoring torsinA in juvenile DYT1 mice rescued motor phenotypes, there was no benefit from adult torsinA repletion. These data establish a unique requirement for torsinA in the developing nervous system and demonstrate that the critical period genetic insult provokes permanent pathophysiology mechanistically delinked from torsinA function. These findings imply that to be effective, torsinA-based therapeutic strategies must be employed early in the course of DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program.,Cellular and Molecular Biology Graduate Program
| | - Daniel S Levin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Ding B, Tang Y, Ma S, Akter M, Liu ML, Zang T, Zhang CL. Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia. J Neurosci 2021; 41:2024-2038. [PMID: 33468570 PMCID: PMC7939088 DOI: 10.1523/jneurosci.2507-20.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023] Open
Abstract
DYT1 dystonia is a hereditary neurologic movement disorder characterized by uncontrollable muscle contractions. It is caused by a heterozygous mutation in Torsin A (TOR1A), a gene encoding a membrane-embedded ATPase. While animal models provide insights into disease mechanisms, significant species-dependent differences exist since animals with the identical heterozygous mutation fail to show pathology. Here, we model DYT1 by using human patient-specific cholinergic motor neurons (MNs) that are generated through either direct conversion of patients' skin fibroblasts or differentiation of induced pluripotent stem cells (iPSCs). These human MNs with the heterozygous TOR1A mutation show reduced neurite length and branches, markedly thickened nuclear lamina, disrupted nuclear morphology, and impaired nucleocytoplasmic transport (NCT) of mRNAs and proteins, whereas they lack the perinuclear "blebs" that are often observed in animal models. Furthermore, we uncover that the nuclear lamina protein LMNB1 is upregulated in DYT1 cells and exhibits abnormal subcellular distribution in a cholinergic MNs-specific manner. Such dysregulation of LMNB1 can be recapitulated by either ectopic expression of the mutant TOR1A gene or shRNA-mediated downregulation of endogenous TOR1A in healthy control MNs. Interestingly, downregulation of LMNB1 can largely ameliorate all the cellular defects in DYT1 MNs. These results reveal the value of disease modeling with human patient-specific neurons and indicate that dysregulation of LMNB1, a crucial component of the nuclear lamina, may constitute a major molecular mechanism underlying DYT1 pathology.SIGNIFICANCE STATEMENT Inaccessibility to patient neurons greatly impedes our understanding of the pathologic mechanisms for dystonia. In this study, we employ reprogrammed human patient-specific motor neurons (MNs) to model DYT1, the most severe hereditary form of dystonia. Our results reveal disease-dependent deficits in nuclear morphology and nucleocytoplasmic transport (NCT). Most importantly, we further identify LMNB1 dysregulation as a major contributor to these deficits, uncovering a new pathologic mechanism for DYT1 dystonia.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Yu Tang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Masuma Akter
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70503
| | - Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tong Zang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
26
|
Thaller DJ, Tong D, Marklew CJ, Ader NR, Mannino PJ, Borah S, King MC, Ciani B, Lusk CP. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J Cell Biol 2021; 220:e202004222. [PMID: 33464310 PMCID: PMC7816628 DOI: 10.1083/jcb.202004222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Mechanisms that control nuclear membrane remodeling are essential to maintain the integrity of the nucleus but remain to be fully defined. Here, we identify a phosphatidic acid (PA)-binding capacity in the nuclear envelope (NE)-specific ESCRT, Chm7, in budding yeast. Chm7's interaction with PA-rich membranes is mediated through a conserved hydrophobic stretch of amino acids, which confers recruitment to the NE in a manner that is independent of but required for Chm7's interaction with the LAP2-emerin-MAN1 (LEM) domain protein Heh1 (LEM2). Consistent with the functional importance of PA binding, mutation of this region abrogates recruitment of Chm7 to membranes and abolishes Chm7 function in the context of NE herniations that form during defective nuclear pore complex (NPC) biogenesis. In fact, we show that a PA sensor specifically accumulates within these NE herniations. We suggest that local control of PA metabolism is important for ensuring productive NE remodeling and that its dysregulation may contribute to pathologies associated with defective NPC assembly.
Collapse
Affiliation(s)
- David J. Thaller
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Danqing Tong
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Christopher J. Marklew
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - Nicholas R. Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | - Sapan Borah
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Barbara Ciani
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
27
|
Li J, Kim S, Pappas SS, Dauer WT. CNS critical periods: implications for dystonia and other neurodevelopmental disorders. JCI Insight 2021; 6:142483. [PMID: 33616084 PMCID: PMC7934928 DOI: 10.1172/jci.insight.142483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Critical periods are discrete developmental stages when the nervous system is especially sensitive to stimuli that facilitate circuit maturation. The distinctive landscapes assumed by the developing CNS create analogous periods of susceptibility to pathogenic insults and responsiveness to therapy. Here, we review critical periods in nervous system development and disease, with an emphasis on the neurodevelopmental disorder DYT1 dystonia. We highlight clinical and laboratory observations supporting the existence of a critical period during which the DYT1 mutation is uniquely harmful, and the implications for future therapeutic development.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Sumin Kim
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Cascalho A, Foroozandeh J, Hennebel L, Swerts J, Klein C, Rous S, Dominguez Gonzalez B, Pisani A, Meringolo M, Gallego SF, Verstreken P, Seibler P, Goodchild RE. Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia. Brain 2021; 143:1746-1765. [PMID: 32516804 DOI: 10.1093/brain/awaa139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Accepted: 03/09/2020] [Indexed: 11/14/2022] Open
Abstract
TOR1A/TorsinA mutations cause two incurable diseases: a recessive congenital syndrome that can be lethal, and a dominantly-inherited childhood-onset dystonia (DYT-TOR1A). TorsinA has been linked to phosphatidic acid lipid metabolism in Drosophila melanogaster. Here we evaluate the role of phosphatidic acid phosphatase (PAP) enzymes in TOR1A diseases using induced pluripotent stem cell-derived neurons from patients, and mouse models of recessive Tor1a disease. We find that Lipin PAP enzyme activity is abnormally elevated in human DYT-TOR1A dystonia patient cells and in the brains of four different Tor1a mouse models. Its severity also correlated with the dosage of Tor1a/TOR1A mutation. We assessed the role of excess Lipin activity in the neurological dysfunction of Tor1a disease mouse models by interbreeding these with Lpin1 knock-out mice. Genetic reduction of Lpin1 improved the survival of recessive Tor1a disease-model mice, alongside suppressing neurodegeneration, motor dysfunction, and nuclear membrane pathology. These data establish that TOR1A disease mutations cause abnormal phosphatidic acid metabolism, and suggest that approaches that suppress Lipin PAP enzyme activity could be therapeutically useful for TOR1A diseases.
Collapse
Affiliation(s)
- Ana Cascalho
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Joyce Foroozandeh
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Lise Hennebel
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Stef Rous
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Antonio Pisani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia and Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Sandra F Gallego
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rose E Goodchild
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Decreased mechanotransduction prevents nuclear collapse in a Caenorhabditis elegans laminopathy. Proc Natl Acad Sci U S A 2020; 117:31301-31308. [PMID: 33229589 PMCID: PMC7733798 DOI: 10.1073/pnas.2015050117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelopathies are a complex group of human diseases caused by mutations in nuclear envelope proteins, including progeria, myopathy, and dystonia. Here, we used the Caenorhabditis elegans germline as a model system to investigate the function of the OOC-5/torsinA AAA+ ATPase, which localizes to the nuclear envelope and is mutated in early-onset DYT1 dystonia in humans. We show that OOC-5/torsinA promotes the function of the LINC complex, which spans the nuclear envelope and transmits forces to the nuclear lamina. Remarkably, decreasing the function of OOC-5/torsinA or the LINC complex prevents nuclear collapse in the absence of a functional nuclear lamina. Therapeutics targeting torsinA or the LINC complex might prevent nuclear damage from endogenous forces in certain nuclear envelopathies. The function of the nucleus depends on the integrity of the nuclear lamina, an intermediate filament network associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex. The LINC complex spans the nuclear envelope and mediates nuclear mechanotransduction, the process by which mechanical signals and forces are transmitted across the nuclear envelope. In turn, the AAA+ ATPase torsinA is thought to regulate force transmission from the cytoskeleton to the nucleus. In humans, mutations affecting nuclear envelope-associated proteins cause laminopathies, including progeria, myopathy, and dystonia, though the extent to which endogenous mechanical stresses contribute to these pathologies is unclear. Here, we use the Caenorhabditis elegans germline as a model to investigate mechanisms that maintain nuclear integrity as germ cell nuclei progress through meiotic development and migrate for gametogenesis—processes that require LINC complex function. We report that decreasing the function of the C. elegans torsinA homolog, OOC-5, rescues the sterility and premature aging caused by a null mutation in the single worm lamin homolog. We show that decreasing OOC-5/torsinA activity prevents nuclear collapse in lamin mutants by disrupting the function of the LINC complex. At a mechanistic level, OOC-5/torsinA promotes the assembly or maintenance of the lamin-associated LINC complex and this activity is also important for interphase nuclear pore complex insertion into growing germline nuclei. These results demonstrate that LINC complex-transmitted forces damage nuclei with a compromised nuclear lamina. Thus, the torsinA–LINC complex nexus might comprise a therapeutic target for certain laminopathies by preventing damage from endogenous cellular forces.
Collapse
|
30
|
Lord CL, Wente SR. Nuclear envelope-vacuole contacts mitigate nuclear pore complex assembly stress. J Cell Biol 2020; 219:211463. [PMID: 33053148 PMCID: PMC7563749 DOI: 10.1083/jcb.202001165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023] Open
Abstract
The intricacy of nuclear pore complex (NPC) biogenesis imposes risks of failure that can cause defects in nuclear transport and nuclear envelope (NE) morphology; however, cellular mechanisms used to alleviate NPC assembly stress are not well defined. In the budding yeast Saccharomyces cerevisiae, we demonstrate that NVJ1- and MDM1-enriched NE-vacuole contacts increase when NPC assembly is compromised in several nup mutants, including nup116ΔGLFG cells. These interorganelle nucleus-vacuole junctions (NVJs) cooperate with lipid droplets to maintain viability and enhance NPC formation in assembly mutants. Additionally, NVJs function with ATG1 to remodel the NE and promote vacuole-dependent degradation of specific nucleoporins in nup116ΔGLFG cells. Importantly, NVJs significantly improve the physiology of NPC assembly mutants, despite having only negligible effects when NPC biogenesis is unperturbed. These results therefore define how NE-vacuole interorganelle contacts coordinate responses to mitigate deleterious cellular effects caused by disrupted NPC assembly.
Collapse
|
31
|
Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turoňová B, Karius K, Börmel M, Zhang X, Müller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 2020; 586:796-800. [PMID: 32879490 DOI: 10.1038/s41586-020-2670-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange1,2. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood. Here we combine in situ structural biology and integrative modelling with correlative light and electron microscopy and molecular perturbation to structurally analyse NPCs in intact Saccharomyces cerevisiae cells within the context of nuclear envelope remodelling. We find an in situ conformation and configuration of the Nup subcomplexes that was unexpected from the results of previous in vitro analyses. The configuration of the Nup159 complex appears critical to spatially accommodate its function as an mRNA export platform, and as a mediator of NPC turnover. The omega-shaped nuclear envelope herniae that accumulate in nup116Δ cells3 conceal partially assembled NPCs lacking multiple subcomplexes, including the Nup159 complex. Under conditions of starvation, herniae of a second type are formed that cytoplasmically expose NPCs. These results point to a model of NPC turnover in which NPC-containing vesicles bud off from the nuclear envelope before degradation by the autophagy machinery. Our study emphasizes the importance of investigating the structure-function relationship of macromolecular complexes in their cellular context.
Collapse
Affiliation(s)
- Matteo Allegretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian E Zimmerli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory, Hamburg, Germany
| | | | - Paolo Ronchi
- Electron Microscopy Core Facility (EMCF), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chia-Wei Lee
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wim Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Beata Turoňová
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kai Karius
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory, Hamburg, Germany
| | - Mandy Börmel
- Electron Microscopy Core Facility (EMCF), European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility (EMCF), European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Boris Pfander
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory, Hamburg, Germany.
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany. .,Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
32
|
Verboon JM, Nakamura M, Davidson KA, Decker JR, Nandakumar V, Parkhurst SM. Drosophila Wash and the Wash regulatory complex function in nuclear envelope budding. J Cell Sci 2020; 133:jcs243576. [PMID: 32503943 PMCID: PMC7358131 DOI: 10.1242/jcs.243576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nuclear envelope (NE) budding is a recently described phenomenon wherein large macromolecular complexes are packaged inside the nucleus and extruded through the nuclear membranes. Although a general outline of the cellular events occurring during NE budding is now in place, little is yet known about the molecular machinery and mechanisms underlying the physical aspects of NE bud formation. Using a multidisciplinary approach, we identify Wash, its regulatory complex (SHRC), capping protein and Arp2/3 as new molecular components involved in the physical aspects of NE bud formation in a Drosophila model system. Interestingly, Wash affects NE budding in two ways: indirectly through general nuclear lamina disruption via an SHRC-independent interaction with Lamin B leading to inefficient NE bud formation, and directly by blocking NE bud formation along with its SHRC, capping protein and Arp2/3. In addition to NE budding emerging as an important cellular process, it shares many similarities with herpesvirus nuclear egress mechanisms, suggesting new avenues for exploration in both normal and disease biology.
Collapse
Affiliation(s)
- Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kerri A Davidson
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Vivek Nandakumar
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Surkan PJ, Hong X, Zhang B, Nawa N, Ji H, Tang WY, Ji Y, Kimmel MC, Wang G, Pearson C, Wang X. Can social support during pregnancy affect maternal DNA methylation? Findings from a cohort of African-Americans. Pediatr Res 2020; 88:131-138. [PMID: 31349361 PMCID: PMC6982603 DOI: 10.1038/s41390-019-0512-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND While stress and the absence of social support during pregnancy have been linked to poor health outcomes, the underlying biological mechanisms are unclear. METHODS We examined whether adverse experiences during pregnancy alter DNA methylation (DNAm) in maternal epigenomes. Analyses included 250 African-American mothers from the Boston Birth Cohort. Genome-wide DNAm profiling was performed in maternal blood collected after delivery, using the Infinium HumanMethylation450 Beadchip. Linear regression models, with adjustment of pertinent covariates, were applied. RESULTS While self-reported maternal psychosocial lifetime stress and stress during pregnancy was not associated with DNAm alterations, we found that absence of support from the baby's father was significantly associated with maternal DNAm changes in TOR3A, IQCB1, C7orf36, and MYH7B and that lack of support from family and friends was associated with maternal DNA hypermethylation on multiple genes, including PRDM16 and BANKL. CONCLUSIONS This study provides intriguing results suggesting biological embedding of social support during pregnancy on maternal DNAm, warranting additional investigation, and replication.
Collapse
Affiliation(s)
- Pamela J. Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,Corresponding author: Pamela J. Surkan, Social and Behavioral Interventions Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St., Room E5523, Baltimore, MD, USA, 21205-2179. . Phone: 410-502-7396. Fax: 410-502-6733
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Nobutoshi Nawa
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hongkai Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mary C. Kimmel
- Department of Psychiatry, University of North Carolina at Chapel Hill’s School of Medicine, Chapel Hill, North Carolina
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland,Division of General Pediatrics & Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
35
|
Rampello AJ, Laudermilch E, Vishnoi N, Prophet SM, Shao L, Zhao C, Lusk CP, Schlieker C. Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2. J Cell Biol 2020; 219:151708. [PMID: 32342107 PMCID: PMC7265317 DOI: 10.1083/jcb.201910185] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/11/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear envelope herniations (blebs) containing FG-nucleoporins and ubiquitin are the phenotypic hallmark of Torsin ATPase manipulation. Both the dynamics of blebbing and the connection to nuclear pore biogenesis remain poorly understood. We employ a proteomics-based approach to identify myeloid leukemia factor 2 (MLF2) as a luminal component of the bleb. Using an MLF2-based live-cell imaging platform, we demonstrate that nuclear envelope blebbing occurs rapidly and synchronously immediately after nuclear envelope reformation during mitosis. Bleb formation is independent of ubiquitin conjugation within the bleb, but strictly dependent on POM121, a transmembrane nucleoporin essential for interphase nuclear pore biogenesis. Nup358, a late marker for interphase nuclear pore complex (NPC) biogenesis, is underrepresented relative to FG-nucleoporins in nuclear envelopes of Torsin-deficient cells. The kinetics of bleb formation, its dependence on POM121, and a reduction of mature NPCs in Torsin-deficient cells lead us to conclude that the hallmark phenotype of Torsin manipulation represents aberrant NPC intermediates.
Collapse
Affiliation(s)
- Anthony J Rampello
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Nidhi Vishnoi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Sarah M Prophet
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT
| | - Chenguang Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
36
|
Prophet SM, Schlieker C. An unbiased approach de-livers unexpected insight into torsin biology. J Clin Invest 2020; 129:4576-4579. [PMID: 31589164 DOI: 10.1172/jci132442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations affecting the integrity of the essential torsin ATPase/cofactor system have been identified in a steadily increasing number of congenital disorders. Since most of these mutations affect brain function, much of the research has focused on deciphering disease etiology in the brain. However, torsin is expressed in a wide variety of nonneural tissues and is strictly conserved across species, including the lowest metazoans, suggesting that it plays roles extending beyond neurons. In this issue of the JCI, Shin et al. explored torsin function in the mammalian liver. The group reports major defects in hepatic lipid metabolism when the torsin system is compromised in mice. Remarkably, conditional deletion of either torsinA or its cofactor, lamina-associated polypeptide 1 (LAP1), resulted in fatty liver disease and steatohepatitis, likely from a secretion defect of VLDLs. This study considerably expands our understanding of torsin biology, while providing defined opportunities for future investigations of torsin function and dysfunction in human pathologies.
Collapse
Affiliation(s)
- Sarah M Prophet
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Li J, Liang CC, Pappas SS, Dauer WT. TorsinB overexpression prevents abnormal twisting in DYT1 dystonia mouse models. eLife 2020; 9:e54285. [PMID: 32202496 PMCID: PMC7141835 DOI: 10.7554/elife.54285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic redundancy can be exploited to identify therapeutic targets for inherited disorders. We explored this possibility in DYT1 dystonia, a neurodevelopmental movement disorder caused by a loss-of-function (LOF) mutation in the TOR1A gene encoding torsinA. Prior work demonstrates that torsinA and its paralog torsinB have conserved functions at the nuclear envelope. This work established that low neuronal levels of torsinB dictate the neuronal selective phenotype of nuclear membrane budding. Here, we examined whether torsinB expression levels impact the onset or severity of abnormal movements or neuropathological features in DYT1 mouse models. We demonstrate that torsinB levels bidirectionally regulate these phenotypes. Reducing torsinB levels causes a dose-dependent worsening whereas torsinB overexpression rescues torsinA LOF-mediated abnormal movements and neurodegeneration. These findings identify torsinB as a potent modifier of torsinA LOF phenotypes and suggest that augmentation of torsinB expression may retard or prevent symptom development in DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program, University of MichiganAnn ArborUnited States
- Cellular and Molecular Biology Graduate Program, University of MichiganAnn ArborUnited States
| | - Chun-Chi Liang
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| | - William T Dauer
- Department of Neurology, University of MichiganAnn ArborUnited States
- Peter O’Donnell Jr. Brain Institute, Departments of Neuroscience and Neurology & Neurotherapeutics, University of Texas SouthwesternDallasUnited States
| |
Collapse
|
38
|
The Role of Torsin AAA+ Proteins in Preserving Nuclear Envelope Integrity and Safeguarding Against Disease. Biomolecules 2020; 10:biom10030468. [PMID: 32204310 PMCID: PMC7175109 DOI: 10.3390/biom10030468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.
Collapse
|
39
|
Hölper JE, Klupp BG, Luxton GWG, Franzke K, Mettenleiter TC. Function of Torsin AAA+ ATPases in Pseudorabies Virus Nuclear Egress. Cells 2020; 9:cells9030738. [PMID: 32192107 PMCID: PMC7140721 DOI: 10.3390/cells9030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this, they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM). While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of the primary virion envelope with the ONM are still mostly enigmatic but might include cellular proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells showed decreased viral titers at early time points of infection and an accumulation of primary virions in the PNS pointing to a delay in capsid release during nuclear egress.
Collapse
Affiliation(s)
- Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
| | - G. W. Gant Luxton
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (J.E.H.); (B.G.K.)
- Correspondence: ; Tel.: +49-38351-71250; Fax: +49-38351-71151
| |
Collapse
|
40
|
"The nuclear envelope, a meiotic jack-of-all-trades". Curr Opin Cell Biol 2020; 64:34-42. [PMID: 32109733 DOI: 10.1016/j.ceb.2019.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.
Collapse
|
41
|
Rempel IL, Steen A, Veenhoff LM. Poor old pores-The challenge of making and maintaining nuclear pore complexes in aging. FEBS J 2020; 287:1058-1075. [PMID: 31912972 PMCID: PMC7154712 DOI: 10.1111/febs.15205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
The nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry. Secondly, once assembled, some components of the NPC persist for an extremely long time and, as a result, are susceptible to accumulate damage. Lastly, a significant proportion of the NPC is composed of intrinsically disordered proteins that are prone to aggregation. In this review, we summarize how the quality of NPCs is guarded in young cells and discuss the current knowledge on the fate of NPCs during normal aging in different tissues and organisms. We discuss the extent to which current data supports a hypothesis that NPCs are poorly maintained during aging of nondividing cells, while in dividing cells the main challenge is related to the assembly of new NPCs. Our survey of current knowledge points toward NPC quality control as an important node in aging of both dividing and nondividing cells. Here, the loss of protein homeostasis during aging is central and the NPC appears to both be impacted by, and to drive, this process.
Collapse
Affiliation(s)
- Irina L Rempel
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
42
|
The AAA + ATPase TorsinA polymerizes into hollow helical tubes with 8.5 subunits per turn. Nat Commun 2019; 10:3262. [PMID: 31332180 PMCID: PMC6646356 DOI: 10.1038/s41467-019-11194-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 01/25/2023] Open
Abstract
TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.
Collapse
|
43
|
Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Luxton GWG, Rowat AC. DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Front Cell Dev Biol 2019; 7:103. [PMID: 31294022 PMCID: PMC6606767 DOI: 10.3389/fcell.2019.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton (LINC) complexes, and consequently the mechanical integration of the nucleus and the cytoskeleton. Despite the potential implications of altered mechanobiology in dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype, or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated from DYT1 dystonia patients. We find that the deletion of torsinA or the expression of torsinA containing the DYT1 dystonia-causing ΔE302/303 (ΔE) mutation results in more deformable cells. We observe a similar increased deformability of mouse fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1. Consistent with these findings, we also determine that DYT1 dystonia patient-derived fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals. DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and decreased viability following mechanical stretch. Taken together, our results establish the foundation for future mechanistic studies of the role of cellular mechanotype and LINC-dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to mechanical stresses.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chau Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|
45
|
Chalfant M, Barber KW, Borah S, Thaller D, Lusk CP. Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components. Mol Biol Cell 2019; 30:530-541. [PMID: 30625036 PMCID: PMC6589686 DOI: 10.1091/mbc.e18-09-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.
Collapse
Affiliation(s)
| | - Karl W. Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520
- Systems Biology Institute, Yale University, West Haven, CT 06477
| | - Sapan Borah
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - David Thaller
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
46
|
Pappas SS, Liang CC, Kim S, Rivera CO, Dauer WT. TorsinA dysfunction causes persistent neuronal nuclear pore defects. Hum Mol Genet 2019; 27:407-420. [PMID: 29186574 DOI: 10.1093/hmg/ddx405] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023] Open
Abstract
A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology.
Collapse
Affiliation(s)
| | | | - Sumin Kim
- Cellular and Molecular Biology Program
| | | | - William T Dauer
- Department of Neurology.,Cellular and Molecular Biology Program.,Department of Cell and Developmental Biology.,VA Ann Arbor Health System, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Fantastic nuclear envelope herniations and where to find them. Biochem Soc Trans 2018; 46:877-889. [PMID: 30026368 DOI: 10.1042/bst20170442] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Morphological abnormalities of the bounding membranes of the nucleus have long been associated with human diseases from cancer to premature aging to neurodegeneration. Studies over the past few decades support that there are both cell intrinsic and extrinsic factors (e.g. mechanical force) that can lead to nuclear envelope 'herniations', a broad catch-all term that reveals little about the underlying molecular mechanisms that contribute to these morphological defects. While there are many genetic perturbations that could ultimately change nuclear shape, here, we focus on a subset of nuclear envelope herniations that likely arise as a consequence of disrupting physiological nuclear membrane remodeling pathways required to maintain nuclear envelope homeostasis. For example, stalling of the interphase nuclear pore complex (NPC) biogenesis pathway and/or triggering of NPC quality control mechanisms can lead to herniations in budding yeast, which are remarkably similar to those observed in human disease models of early-onset dystonia. By also examining the provenance of nuclear envelope herniations associated with emerging nuclear autophagy and nuclear egress pathways, we will provide a framework to help understand the molecular pathways that contribute to nuclear deformation.
Collapse
|
48
|
Tian J, Vemula SR, Xiao J, Valente EM, Defazio G, Petrucci S, Gigante AF, Rudzińska‐Bar M, Wszolek ZK, Kennelly KD, Uitti RJ, van Gerpen JA, Hedera P, Trimble EJ, LeDoux MS. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med 2018; 6:601-626. [PMID: 29770609 PMCID: PMC6081235 DOI: 10.1002/mgg3.411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/01/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. METHODS We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. RESULTS Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. CONCLUSIONS Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns.
Collapse
Affiliation(s)
- Jun Tian
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
- Department of NeurologySecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Satya R. Vemula
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Neurogenetics UnitIRCCS Santa Lucia FoundationRomeItaly
| | - Giovanni Defazio
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Simona Petrucci
- Department of Neurology and PsychiatrySapienza University of RomeRomeItaly
| | - Angelo Fabio Gigante
- Department of Basic Clinical Sciences, Neuroscience and Sense OrgansAldo Moro University of BariBariItaly
| | - Monika Rudzińska‐Bar
- Department of NeurologyFaculty of MedicineMedical University of SilesiaKatowicePoland
| | | | | | - Ryan J. Uitti
- Department of NeurologyMayo Clinic FloridaJacksonvilleFlorida
| | | | - Peter Hedera
- Department of NeurologyVanderbilt UniversityNashvilleTennessee
| | - Elizabeth J. Trimble
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Mark S. LeDoux
- Departments of Neurology and Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisTennessee
| |
Collapse
|
49
|
|
50
|
Zhang W, Neuner A, Rüthnick D, Sachsenheimer T, Lüchtenborg C, Brügger B, Schiebel E. Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. J Cell Biol 2018; 217:877-894. [PMID: 29439116 PMCID: PMC5839787 DOI: 10.1083/jcb.201706024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved paralogous Brr6 and Brl1 promote NPC biogenesis in an unclear manner. Here, Zhang et al. show that both transmembrane proteins transiently associate with NPC assembly intermediates and directly promote NPC biogenesis. The paralogous Brr6 and Brl1 are conserved integral membrane proteins of the nuclear envelope (NE) with an unclear role in nuclear pore complex (NPC) biogenesis. Here, we analyzed double-degron mutants of Brr6/Brl1 to understand this function. Depletion of Brr6 and Brl1 caused defects in NPC biogenesis, whereas the already assembled NPCs remained unaffected. This NPC biogenesis defect was not accompanied by a change in lipid composition. However, Brl1 interacted with Ndc1 and Nup188 by immunoprecipitation, and with transmembrane and outer and inner ring NPC components by split yellow fluorescent protein analysis, indicating a direct role in NPC biogenesis. Consistently, we found that Brr6 and Brl1 associated with a subpopulation of NPCs and emerging NPC assembly sites. Moreover, BRL1 overexpression affected NE morphology without a change in lipid composition and completely suppressed the nuclear pore biogenesis defect of nup116Δ and gle2Δ cells. We propose that Brr6 and Brl1 transiently associate with NPC assembly sites where they promote NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|