1
|
Zhou P, Yang G, Xie W. Organization of cortical microtubules in differentiated cells. J Cell Physiol 2023; 238:1141-1147. [PMID: 36960617 DOI: 10.1002/jcp.31011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
The microtubule cytoskeleton plays a critical role in a variety of cellular activities, and its structures and functions have been extensively studied. However, little is known about cell differentiation-related microtubule remodeling, its regulatory mechanisms, and its physiological functions. Recent studies have shown that microtubule-binding proteins as well as cell junctions, such as desmosomes and adherens junctions, are involved in the remodeling of microtubules in response to cell differentiation. In addition, the microtubule-organizing activity and structural integrity of centrosomes undergo dramatic changes during cell differentiation to promote microtubule remodeling. Here we summarize recent advances revealing the dynamic changes in microtubule organization and functions during cell differentiation. We also highlight the molecular mechanisms underlying microtubule modeling in differentiated cells, focusing on the key roles played by microtubule-binding proteins, cell junctions, and centrosomes.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Abstract
In the context of animal or plant development, we tend to think of cells as small, simple, building blocks, such that complex patterns or shapes can only be constructed from large numbers of cells, with cells in different parts of the organism taking on different fates. However, cells themselves are far from simple, and often take on complex shapes with a remarkable degree of intracellular patterning. How do these patterns arise? As in embryogenesis, the development of structure inside a cell can be broken down into a number of basic processes. For each part of the cell, morphogenetic processes create internal structures such as organelles, which might correspond to organs at the level of a whole organism. Given that mechanisms exist to generate parts, patterning processes are required to ensure that the parts are distributed in the correct arrangement relative to the rest of the cell. Such patterning processes make reference to global polarity axes, requiring mechanisms for axiation which, in turn, require processes to break symmetry. These fundamental processes of symmetry breaking, axiation, patterning, and morphogenesis have been extensively studied in developmental biology but less so at the subcellular level. This review will focus on developmental processes that give eukaryotic cells their complex structures, with a focus on cytoskeletal organization in free-living cells, ciliates in particular, in which these processes are most readily apparent.
Collapse
|
4
|
Sallee JL, Crawford JM, Singh V, Kiehart DP. Mutations in Drosophila crinkled/Myosin VIIA disrupt denticle morphogenesis. Dev Biol 2021; 470:121-135. [PMID: 33248112 PMCID: PMC7855556 DOI: 10.1016/j.ydbio.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Actin filament crosslinking, bundling and molecular motor proteins are necessary for the assembly of epithelial projections such as microvilli, stereocilia, hairs, and bristles. Mutations in such proteins cause defects in the shape, structure, and function of these actin - based protrusions. One protein necessary for stereocilia formation, Myosin VIIA, is an actin - based motor protein conserved throughout phylogeny. In Drosophila melanogaster, severe mutations in the MyoVIIA homolog crinkled (ck) are "semi - lethal" with only a very small percentage of flies surviving to adulthood. Such survivors show morphological defects related to actin bundling in hairs and bristles. To better understand ck/MyoVIIA's function in bundled - actin structures, we used dominant female sterile approaches to analyze the loss of maternal and zygotic (M/Z) ck/MyoVIIA in the morphogenesis of denticles, small actin - based projections on the ventral epidermis of Drosophila embryos. M/Z ck mutants displayed severe defects in denticle morphology - actin filaments initiated in the correct location, but failed to elongate and bundle to form normal projections. Using deletion mutant constructs, we demonstrated that both of the C - terminal MyTH4 and FERM domains are necessary for proper denticle formation. Furthermore, we show that ck/MyoVIIA interacts genetically with dusky - like (dyl), a member of the ZPD family of proteins that links the extracellular matrix to the plasma membrane, and when mutated also disrupts normal denticle formation. Loss of either protein alone does not alter the localization of the other; however, loss of the two proteins together dramatically enhances the defects in denticle shape observed when either protein alone was absent. Our data indicate that ck/MyoVIIA plays a key role in the formation and/or organization of actin filament bundles, which drive proper shape of cellular projections.
Collapse
Affiliation(s)
- Jennifer L Sallee
- Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, North Central College, Naperville, IL, 60540, USA.
| | | | - Vinay Singh
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
5
|
Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell 2020; 181:306-324.e28. [PMID: 32302570 PMCID: PMC7816278 DOI: 10.1016/j.cell.2020.03.050] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S W Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Victoria Drake
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Joshua A Riback
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jorine M Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Allana Iwanicki
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alicia Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Gena Whitney
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
7
|
Pollard DA, Pollard TD, Pollard KS. Empowering statistical methods for cellular and molecular biologists. Mol Biol Cell 2020; 30:1359-1368. [PMID: 31145670 PMCID: PMC6724699 DOI: 10.1091/mbc.e15-02-0076] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We provide guidelines for using statistical methods to analyze the types of experiments reported in cellular and molecular biology journals such as Molecular Biology of the Cell. Our aim is to help experimentalists use these methods skillfully, avoid mistakes, and extract the maximum amount of information from their laboratory work. We focus on comparing the average values of control and experimental samples. A Supplemental Tutorial provides examples of how to analyze experimental data using R software.
Collapse
Affiliation(s)
- Daniel A Pollard
- Department of Biology, Western Washington University, Bellingham, WA 98225-9160
| | - Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology, Yale University, New Haven, CT 06520-8103
| | - Katherine S Pollard
- Gladstone Institutes, Chan-Zuckerberg Biohub, and University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
8
|
Sun T, Song Y, Dai J, Mao D, Ma M, Ni JQ, Liang X, Pastor-Pareja JC. Spectraplakin Shot Maintains Perinuclear Microtubule Organization in Drosophila Polyploid Cells. Dev Cell 2019; 49:731-747.e7. [DOI: 10.1016/j.devcel.2019.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 02/05/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|
9
|
Abstract
Individual cell types have characteristic sizes, suggesting that size sensing mechanisms may coordinate transcription, translation, and metabolism with cell growth rates. Two types of size-sensing mechanisms have been proposed: spatial sensing of the location or dimensions of a signal, subcellular structure or organelle; or titration-based sensing of the intracellular concentrations of key regulators. Here we propose that size sensing in animal cells combines both titration and spatial sensing elements in a dynamic mechanism whereby microtubule motor-dependent localization of RNA encoding importin β1 and mTOR, coupled with regulated local protein synthesis, enable cytoskeleton length sensing for cell growth regulation.
Collapse
Affiliation(s)
- Ida Rishal
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
10
|
Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development 2017; 144:3012-3021. [PMID: 28851722 DOI: 10.1242/dev.153171] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Suresh J, Harmston N, Lim KK, Kaur P, Jin HJ, Lusk JB, Petretto E, Tolwinski NS. An embryonic system to assess direct and indirect Wnt transcriptional targets. Sci Rep 2017; 7:11092. [PMID: 28894169 PMCID: PMC5593962 DOI: 10.1038/s41598-017-11519-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
During animal development, complex signals determine and organize a vast number of tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a β-catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that can be used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find specific sets of genes downstream of both β-catenin and TCF with an additional group of genes regulated by Wnt, while the non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.
Collapse
Affiliation(s)
- Jahnavi Suresh
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Nathan Harmston
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Ka Keat Lim
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Prameet Kaur
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Helen Jingshu Jin
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Jay B Lusk
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, 169857, Singapore, Republic of Singapore
| | - Nicholas S Tolwinski
- Yale-NUS College, 12 College Ave West, #01- 201, Singapore, 138610, Republic of Singapore. .,Department of Biological Sciences, National University of Singapore, Block MD6, Centre for Translational Medicine, Yong Loo Lin School of Medicine, 14 Medical Drive, Level 10 South, 10-02M, Singapore, 117599, Republic of Singapore.
| |
Collapse
|