1
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Park D, Chung WC, Gong S, Ravichandran S, Lee GM, Han M, Kim KK, Ahn JH. G-quadruplex as an essential structural element in cytomegalovirus replication origin. Nat Commun 2024; 15:7353. [PMID: 39191758 PMCID: PMC11350156 DOI: 10.1038/s41467-024-51797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
G-quadruplex (G4) structures are found in eukaryotic cell replication origins, but their role in origin function remains unclear. In this study G4 motifs are found in the lytic DNA replication origin (oriLyt) of human cytomegalovirus (HCMV) and recombinant viruses show that a G4 motif in oriLyt essential region I (ER-I) is necessary for viral growth. Replication assays of oriLyt-containing plasmids and biochemical/biophysical analyses show that G4 formation in ER-I is crucial for viral DNA replication. G4 pull-down analysis identifies viral DNA replication factors, such as IE2, UL84, and UL44, as G4-binding proteins. In enzyme-linked immunosorbent assays, specific G4-binding ligands inhibit G4 binding by the viral proteins. The Epstein-Barr virus oriLyt core element also forms a stable G4 that could substitute for the oriLyt ER-I G4 in HCMV. These results demonstrate that viral G4s in replication origins represent an essential structural element in recruiting replication factors and might be a therapeutic target against viral infections.
Collapse
Affiliation(s)
- Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Shuang Gong
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Minji Han
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Terui R, Berger SE, Sambel LA, Song D, Chistol G. Single-molecule imaging reveals the mechanism of bidirectional replication initiation in metazoa. Cell 2024; 187:3992-4009.e25. [PMID: 38866019 PMCID: PMC11283366 DOI: 10.1016/j.cell.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Scott E Berger
- Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Larissa A Sambel
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dan Song
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA; BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Padayachy L, Ntallis SG, Halazonetis TD. RECQL4 is not critical for firing of human DNA replication origins. Sci Rep 2024; 14:7708. [PMID: 38565932 PMCID: PMC10987555 DOI: 10.1038/s41598-024-58404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.
Collapse
Affiliation(s)
- Laura Padayachy
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Sotirios G Ntallis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205, Geneva, Switzerland.
| |
Collapse
|
5
|
Terui R, Berger S, Sambel L, Song D, Chistol G. Single-Molecule Imaging Reveals the Mechanism of Bidirectional Replication Initiation in Metazoa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587265. [PMID: 38585807 PMCID: PMC10996697 DOI: 10.1101/2024.03.28.587265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG (Cdc45•Mcm2-7•GINS) helicases at each origin. This requires several firing factors (including TopBP1, RecQL4, DONSON) whose exact roles remain unclear. How two helicases are correctly assembled and activated at every single origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered a surprisingly dynamic picture of initiation. Firing factors transiently bind origins but do not travel with replisomes. Two Cdc45 simultaneously arrive at each origin and two GINS are recruited together, even though neither protein can dimerize. The synchronized delivery of two GINS is mediated by DONSON, which acts as a dimerization scaffold. We show that RecQL4 promotes DONSON dissociation and facilitates helicase activation. The high fidelity of bidirectional origin firing can be explained by a Hopfield-style kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Riki Terui
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Scott Berger
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
| | - Larissa Sambel
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
| | - Dan Song
- Current Address: Eikon Therapeutics Inc
| | - Gheorghe Chistol
- Chemical and Systems Biology, Stanford School of Medicine, Stanford CA94305
- Biophysics Program, Stanford School of Medicine, Stanford CA94305
- Cancer Biology Program, Stanford School of Medicine, Stanford CA94305
- Stanford Cancer Institute, Stanford School of Medicine, Stanford CA94305
- BioX Interdisciplinary Institute, Stanford School of Medicine, Stanford CA94305
| |
Collapse
|
6
|
Geng Y, Liu C, Xu N, Shi X, Suen MC, Zhou B, Yan B, Wu C, Li H, Song Y, Chen X, Wang Z, Cai Q, Zhu G. The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex. Int J Biol Macromol 2024; 260:129487. [PMID: 38237821 DOI: 10.1016/j.ijbiomac.2024.129487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiao Shi
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bo Zhou
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bing Yan
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Noble TD, Sansam CG, Wittig KA, Majchrzycka B, Sansam CL. Cell Cycle-Dependent TICRR/TRESLIN and MTBP Chromatin Binding Mechanisms and Patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578516. [PMID: 38370757 PMCID: PMC10871258 DOI: 10.1101/2024.02.02.578516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The selection of replication origins is a defining characteristic of DNA replication in eukaryotes, yet its mechanism in humans has not been well-defined. In this study, we use Cut&Run to examine genomic binding locations for TICRR/TRESLIN and MTBP, the human orthologs for the yeast DNA replication initiation factors Sld3 and Sld7. We mapped TRESLIN and MTBP binding in HCT116 colorectal cancer cells using asynchronous and G1 synchronized populations. Our data show that TRESLIN and MTBP binding patterns are more defined in a G1 synchronized population compared to asynchronously cycling cells. We also examined whether TRESLIN and MTBP are dependent on one another for binding. Our data suggest MTBP is dependent on TRESLIN for proper association with chromatin during G1 but not S phase. Finally, we asked whether TRESLIN and MTBP binding to chromatin requires licensed origins. Using cell lines with a non-degradable inducible Geminin to inhibit licensing, we show TRESLIN and MTBP binding does not require loaded MCMs. Altogether, our Cut&Run data provides evidence for a chromatin binding mechanism of TRESLIN-MTBP during G1 that is dependent on TRESLIN and does not require interactions with licensed origins.
Collapse
Affiliation(s)
- Tyler D Noble
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Courtney G Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Kimberlie A Wittig
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Blanka Majchrzycka
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Christopher L Sansam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
8
|
Stewart GS. DONSON: Slding in 2 the limelight. DNA Repair (Amst) 2024; 134:103616. [PMID: 38159447 DOI: 10.1016/j.dnarep.2023.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
For over a decade, it has been known that yeast Sld2, Dpb11, GINS and Polε form the pre-loading complex (pre-LC), which is recruited to a CDC45-bound MCM2-7 complex by the Sld3/Sld7 heterodimer in a phospho-dependent manner. Whilst functional orthologs of Dbp11 (TOPBP1), Sld3 (TICRR) and Sld7 (MTBP) have been identified in metazoans, controversy has surrounded the identity of the Sld2 ortholog. It was originally proposed that the RECQ helicase, RECQL4, which is mutated in Rothmund-Thomson syndrome, represented the closest vertebrate ortholog of Sld2 due to a small region of sequence homology at its N-Terminus. However, there is no clear evidence that RECQL4 is required for CMG loading. Recently, new findings suggest that the functional ortholog of Sld2 is actually DONSON, a replication fork stability factor mutated in a range of neurodevelopmental disorders characterised by microcephaly, short stature and limb abnormalities. These studies show that DONSON forms a complex with TOPBP1, GINS and Polε analogous to the pre-LC in yeast, which is required to position the GINS complex on the MCM complex and initiate DNA replication. Taken together with previously published functions for DONSON, these observations indicate that DONSON plays two roles in regulating DNA replication, one in promoting replication initiation and one in stabilising the fork during elongation. Combined, these findings may help to uncover why DONSON mutations are associated with such a wide range of clinical deficits.
Collapse
Affiliation(s)
- Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Kingsley G, Skagia A, Passaretti P, Fernandez-Cuesta C, Reynolds-Winczura A, Koscielniak K, Gambus A. DONSON facilitates Cdc45 and GINS chromatin association and is essential for DNA replication initiation. Nucleic Acids Res 2023; 51:9748-9763. [PMID: 37638758 PMCID: PMC10570026 DOI: 10.1093/nar/gkad694] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome. The mechanism of origin activation has been well characterised and reconstituted in yeast, however, an equal understanding of this process in higher eukaryotes is lacking. The firing of replication origins is driven by S-phase kinases (CDKs and DDK) and results in the activation of the replicative helicase and generation of two bi-directional replication forks. Our data, generated from cell-free Xenopus laevis egg extracts, show that DONSON is required for assembly of the active replicative helicase (CMG complex) at origins during replication initiation. DONSON has previously been shown to be essential during DNA replication, both in human cells and in Drosophila, but the mechanism of DONSON's action was unknown. Here we show that DONSON's presence is essential for replication initiation as it is required for Cdc45 and GINS association with Mcm2-7 complexes and helicase activation. To fulfil this role, DONSON interacts with the initiation factor, TopBP1, in a CDK-dependent manner. Following its initiation role, DONSON also forms a part of the replisome during the elongation stage of DNA replication. Mutations in DONSON have recently been shown to lead to the Meier-Gorlin syndrome; this novel replication initiation role of DONSON therefore provides the explanation for the phenotypes caused by DONSON mutations in patients.
Collapse
Affiliation(s)
- Georgia Kingsley
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Aggeliki Skagia
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Paolo Passaretti
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Cyntia Fernandez-Cuesta
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Alicja Reynolds-Winczura
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Kinga Koscielniak
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| | - Agnieszka Gambus
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK
| |
Collapse
|
10
|
Lim Y, Tamayo-Orrego L, Schmid E, Tarnauskaite Z, Kochenova OV, Gruar R, Muramatsu S, Lynch L, Schlie AV, Carroll PL, Chistol G, Reijns MAM, Kanemaki MT, Jackson AP, Walter JC. In silico protein interaction screening uncovers DONSON's role in replication initiation. Science 2023; 381:eadi3448. [PMID: 37590370 PMCID: PMC10801813 DOI: 10.1126/science.adi3448] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
CDC45-MCM2-7-GINS (CMG) helicase assembly is the central event in eukaryotic replication initiation. In yeast, a multi-subunit "pre-loading complex" (pre-LC) accompanies GINS to chromatin-bound MCM2-7, leading to CMG formation. Here, we report that DONSON, a metazoan protein mutated in microcephalic primordial dwarfism, is required for CMG assembly in vertebrates. Using AlphaFold to screen for protein-protein interactions followed by experimental validation, we show that DONSON scaffolds a vertebrate pre-LC containing GINS, TOPBP1, and DNA pol ε. Our evidence suggests that DONSON docks the pre-LC onto MCM2-7, delivering GINS to its binding site in CMG. A patient-derived DONSON mutation compromises CMG assembly and recapitulates microcephalic dwarfism in mice. These results unify our understanding of eukaryotic replication initiation, implicate defective CMG assembly in microcephalic dwarfism, and illustrate how in silico protein-protein interaction screening accelerates mechanistic discovery.
Collapse
Affiliation(s)
- Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Lukas Tamayo-Orrego
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Zygimante Tarnauskaite
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Rhian Gruar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sachiko Muramatsu
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS); Mishima, Shizuoka 411-8540, Japan
| | - Luke Lynch
- Biochemistry Department, Stanford School of Medicine; Stanford, CA 94305, USA
| | - Aitana Verdu Schlie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Paula L. Carroll
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Gheorghe Chistol
- Chemical and Systems Biology Department, Stanford School of Medicine; Stanford, CA 94305, USA
| | - Martin A. M. Reijns
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Masato T. Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS); Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI; Mishima, Shizuoka 411-8540, Japan
- Department of Biological Science, The University of Tokyo; Tokyo 113-0033, Japan
| | - Andrew P. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh, EH4 2XU, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| |
Collapse
|
11
|
Hashimoto Y, Sadano K, Miyata N, Ito H, Tanaka H. Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation. EMBO J 2023; 42:e114131. [PMID: 37458194 PMCID: PMC10476173 DOI: 10.15252/embj.2023114131] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kota Sadano
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Nene Miyata
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Haruka Ito
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hirofumi Tanaka
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
12
|
Poulet-Benedetti J, Tonnerre-Doncarli C, Valton AL, Laurent M, Gérard M, Barinova N, Parisis N, Massip F, Picard F, Prioleau MN. Dimeric G-quadruplex motifs-induced NFRs determine strong replication origins in vertebrates. Nat Commun 2023; 14:4843. [PMID: 37563125 PMCID: PMC10415359 DOI: 10.1038/s41467-023-40441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Replication of vertebrate genomes is tightly regulated to ensure accurate duplication, but our understanding of the interplay between genetic and epigenetic factors in this regulation remains incomplete. Here, we investigated the involvement of three elements enriched at gene promoters and replication origins: guanine-rich motifs potentially forming G-quadruplexes (pG4s), nucleosome-free regions (NFRs), and the histone variant H2A.Z, in the firing of origins of replication in vertebrates. We show that two pG4s on the same DNA strand (dimeric pG4s) are sufficient to induce the assembly of an efficient minimal replication origin without inducing transcription in avian DT40 cells. Dimeric pG4s in replication origins are associated with formation of an NFR next to precisely-positioned nucleosomes enriched in H2A.Z on this minimal origin and genome-wide. Thus, our data suggest that dimeric pG4s are important for the organization and duplication of vertebrate genomes. It supports the hypothesis that a nucleosome close to an NFR is a shared signal for the formation of replication origins in eukaryotes.
Collapse
Affiliation(s)
| | | | - Anne-Laure Valton
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Marc Laurent
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Marie Gérard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalja Barinova
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nikolaos Parisis
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Florian Massip
- MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 75006, Paris, France
- Institut Curie, Paris, Cedex, France
- INSERM, U900, Paris, Cedex, France
| | - Franck Picard
- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
| | | |
Collapse
|
13
|
Haccard O, Ciardo D, Narrissamprakash H, Bronchain O, Kumagai A, Dunphy WG, Goldar A, Marheineke K. Rif1 restrains the rate of replication origin firing in Xenopus laevis. Commun Biol 2023; 6:788. [PMID: 37516798 PMCID: PMC10387115 DOI: 10.1038/s42003-023-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Metazoan genomes are duplicated by the coordinated activation of clusters of replication origins at different times during S phase, but the underlying mechanisms of this temporal program remain unclear during early development. Rif1, a key replication timing factor, inhibits origin firing by recruiting protein phosphatase 1 (PP1) to chromatin counteracting S phase kinases. We have previously described that Rif1 depletion accelerates early Xenopus laevis embryonic cell cycles. Here, we find that in the absence of Rif1, patterns of replication foci change along with the acceleration of replication cluster activation. However, initiations increase only moderately inside active clusters. Our numerical simulations suggest that the absence of Rif1 compresses the temporal program towards more homogeneity and increases the availability of limiting initiation factors. We experimentally demonstrate that Rif1 depletion increases the chromatin-binding of the S phase kinase Cdc7/Drf1, the firing factors Treslin, MTBP, Cdc45, RecQL4, and the phosphorylation of both Treslin and MTBP. We show that Rif1 globally, but not locally, restrains the replication program in early embryos, possibly by inhibiting or excluding replication factors from chromatin.
Collapse
Affiliation(s)
- Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Diletta Ciardo
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hemalatha Narrissamprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, CERTO-Retina France, 91400, Saclay, France
| | - Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Grieb BC, Eischen CM. MTBP and MYC: A Dynamic Duo in Proliferation, Cancer, and Aging. BIOLOGY 2022; 11:881. [PMID: 35741402 PMCID: PMC9219613 DOI: 10.3390/biology11060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022]
Abstract
The oncogenic transcription factor c-MYC (MYC) is highly conserved across species and is frequently overexpressed or dysregulated in human cancers. MYC regulates a wide range of critical cellular and oncogenic activities including proliferation, metabolism, metastasis, apoptosis, and differentiation by transcriptionally activating or repressing the expression of a large number of genes. This activity of MYC is not carried out in isolation, instead relying on its association with a myriad of protein cofactors. We determined that MDM Two Binding Protein (MTBP) indirectly binds MYC and is a novel MYC transcriptional cofactor. MTBP promotes MYC-mediated transcriptional activity, proliferation, and cellular transformation by binding in a protein complex with MYC at MYC-bound promoters. This discovery provided critical context for data linking MTBP to aging as well as a rapidly expanding body of evidence demonstrating MTBP is overexpressed in many human malignancies, is often linked to poor patient outcomes, and is necessary for cancer cell survival. As such, MTBP represents a novel and potentially broad reaching oncologic drug target, particularly when MYC is dysregulated. Here we have reviewed the discovery of MTBP and the initial controversy with its function as well as its associations with proliferation, MYC, DNA replication, aging, and human cancer.
Collapse
Affiliation(s)
- Brian C. Grieb
- Vanderbilt-Ingram Cancer Center, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christine M. Eischen
- Department of Cancer Biology and the Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Zaffar E, Ferreira P, Sanchez-Pulido L, Boos D. The Role of MTBP as a Replication Origin Firing Factor. BIOLOGY 2022; 11:biology11060827. [PMID: 35741348 PMCID: PMC9219753 DOI: 10.3390/biology11060827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
Abstract
The initiation step of replication at replication origins determines when and where in the genome replication machines, replisomes, are generated. Tight control of replication initiation helps facilitate the two main tasks of genome replication, to duplicate the genome accurately and exactly once each cell division cycle. The regulation of replication initiation must ensure that initiation occurs during the S phase specifically, that no origin fires more than once per cell cycle, that enough origins fire to avoid non-replicated gaps, and that the right origins fire at the right time but only in favorable circumstances. Despite its importance for genetic homeostasis only the main molecular processes of eukaryotic replication initiation and its cellular regulation are understood. The MTBP protein (Mdm2-binding protein) is so far the last core replication initiation factor identified in metazoan cells. MTBP is the orthologue of yeast Sld7. It is essential for origin firing, the maturation of pre-replicative complexes (pre-RCs) into replisomes, and is emerging as a regulation focus targeted by kinases and by regulated degradation. We present recent insight into the structure and cellular function of the MTBP protein in light of recent structural and biochemical studies revealing critical molecular details of the eukaryotic origin firing reaction. How the roles of MTBP in replication and other cellular processes are mutually connected and are related to MTBP's contribution to tumorigenesis remains largely unclear.
Collapse
Affiliation(s)
- Eman Zaffar
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGC, University of Edinburgh, Edinburgh EH9 3JR, UK;
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany; (E.Z.); (P.F.)
- Correspondence: ; Tel.: +49-201-183-4132
| |
Collapse
|
16
|
Ferreira P, Sanchez-Pulido L, Marko A, Ponting CP, Boos D. Refining the domain architecture model of the replication origin firing factor Treslin/TICRR. Life Sci Alliance 2022; 5:5/5/e202101088. [PMID: 35091422 PMCID: PMC8807876 DOI: 10.26508/lsa.202101088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Faithful genome duplication requires appropriately controlled replication origin firing. The metazoan origin firing regulation hub Treslin/TICRR and its yeast orthologue Sld3 share the Sld3-Treslin domain and the adjacent TopBP1/Dpb11 interaction domain. We report a revised domain architecture model of Treslin/TICRR. Protein sequence analyses uncovered a conserved Ku70-homologous β-barrel fold in the Treslin/TICRR middle domain (M domain) and in Sld3. Thus, the Sld3-homologous Treslin/TICRR core comprises its three central domains, M domain, Sld3-Treslin domain, and TopBP1/Dpb11 interaction domain, flanked by non-conserved terminal domains, the CIT (conserved in Treslins) and the C terminus. The CIT includes a von Willebrand factor type A domain. Unexpectedly, MTBP, Treslin/TICRR, and Ku70/80 share the same N-terminal domain architecture, von Willebrand factor type A and Ku70-like β-barrels, suggesting a common ancestry. Binding experiments using mutants and the Sld3-Sld7 dimer structure suggest that the Treslin/Sld3 and MTBP/Sld7 β-barrels engage in homotypic interactions, reminiscent of Ku70-Ku80 dimerization. Cells expressing Treslin/TICRR domain mutants indicate that all Sld3-core domains and the non-conserved terminal domains fulfil important functions during origin firing in human cells. Thus, metazoa-specific and widely conserved molecular processes cooperate during metazoan origin firing.
Collapse
Affiliation(s)
- Pedro Ferreira
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Anika Marko
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Dominik Boos
- Molecular Genetics II, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Wittig KA, Sansam CG, Noble TD, Goins D, Sansam CL. The CRL4DTL E3 ligase induces degradation of the DNA replication initiation factor TICRR/TRESLIN specifically during S phase. Nucleic Acids Res 2021; 49:10507-10523. [PMID: 34534348 PMCID: PMC8501952 DOI: 10.1093/nar/gkab805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
A DNA replication program, which ensures that the genome is accurately and wholly replicated, is established during G1, before the onset of S phase. In G1, replication origins are licensed, and upon S phase entry, a subset of these will form active replisomes. Tight regulation of the number of active replisomes is crucial to prevent replication stress-induced DNA damage. TICRR/TRESLIN is essential for DNA replication initiation, and the level of TICRR and its phosphorylation determine the number of origins that initiate during S phase. However, the mechanisms regulating TICRR protein levels are unknown. Therefore, we set out to define the TICRR/TRESLIN protein dynamics throughout the cell cycle. Here, we show that TICRR levels are high during G1 and dramatically decrease as cells enter S phase and begin DNA replication. We show that degradation of TICRR occurs specifically during S phase and depends on ubiquitin ligases and proteasomal degradation. Using two targeted siRNA screens, we identify CRL4DTL as a cullin complex necessary for TICRR degradation. We propose that this mechanism moderates the level of TICRR protein available for replication initiation, ensuring the proper number of active origins as cells progress through S phase.
Collapse
Affiliation(s)
- Kimberlie A Wittig
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Courtney G Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Tyler D Noble
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Duane Goins
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Christopher L Sansam
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Volpi I, Gillespie PJ, Chadha GS, Blow JJ. The role of DDK and Treslin-MTBP in coordinating replication licensing and pre-initiation complex formation. Open Biol 2021; 11:210121. [PMID: 34699733 PMCID: PMC8548084 DOI: 10.1098/rsob.210121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Treslin/Ticrr is required for the initiation of DNA replication and binds to MTBP (Mdm2 Binding Protein). Here, we show that in Xenopus egg extract, MTBP forms an elongated tetramer with Treslin containing two molecules of each protein. Immunodepletion and add-back experiments show that Treslin-MTBP is rate limiting for replication initiation. It is recruited onto chromatin before S phase starts and recruitment continues during S phase. We show that DDK activity both increases and strengthens the interaction of Treslin-MTBP with licensed chromatin. We also show that DDK activity cooperates with CDK activity to drive the interaction of Treslin-MTBP with TopBP1 which is a regulated crucial step in pre-initiation complex formation. These results suggest how DDK works together with CDKs to regulate Treslin-MTBP and plays a crucial in selecting which origins will undergo initiation.
Collapse
Affiliation(s)
- Ilaria Volpi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Ciardo D, Haccard O, Narassimprakash H, Cornu D, Guerrera IC, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) regulates DNA replication origin firing and interacts with Rif1 in Xenopus. Nucleic Acids Res 2021; 49:9851-9869. [PMID: 34469577 PMCID: PMC8464078 DOI: 10.1093/nar/gkab756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ida Chiara Guerrera
- Proteomics platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
20
|
Brossas C, Duriez B, Valton AL, Prioleau MN. Promoters are key organizers of the duplication of vertebrate genomes. Bioessays 2021; 43:e2100141. [PMID: 34319621 DOI: 10.1002/bies.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022]
Abstract
In vertebrates, single cell analyses of replication timing patterns brought to light a very well controlled program suggesting a tight regulation on initiation sites. Mapping of replication origins with different methods has revealed discrete preferential sites, enriched in promoters and potential G-quadruplex motifs, which can aggregate into initiation zones spanning several tens of kilobases (kb). Another characteristic of replication origins is a nucleosome-free region (NFR). A modified yeast strain containing a humanized origin recognition complex (ORC) fires new origins at NFRs revealing their regulatory role. In cooperation with NFRs, the histone variant H2A.Z facilitates ORC loading through di-methylation of lysine 20 of histone H4. Recent studies using genome editing methods show that efficient initiation sites associated with transcriptional activity can synergize over several tens of kb by establishing physical contacts and lead to the formation of early domains of DNA replication demonstrating a co-regulation between replication initiation and transcription.
Collapse
Affiliation(s)
- Caroline Brossas
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Bénédicte Duriez
- IMRB, INSERM U955, Equipe GEIC2O, Faculté de Santé, Créteil, France
| | - Anne-Laure Valton
- Department of Biochemistry and Molecular Pharmacology, Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
21
|
Kumagai A, Dunphy WG. Binding of the Treslin-MTBP Complex to Specific Regions of the Human Genome Promotes the Initiation of DNA Replication. Cell Rep 2021; 32:108178. [PMID: 32966791 PMCID: PMC7523632 DOI: 10.1016/j.celrep.2020.108178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
The processes that control where higher eukaryotic cells initiate DNA replication throughout the genome are not understood clearly. In metazoans, the Treslin-MTBP complex mediates critical final steps in formation of the activated replicative helicase prior to initiation of replication. Here, we map the genome-wide distribution of the MTBP subunit of this complex in human cells. Our results indicate that MTBP binds to at least 30,000 sites in the genome. A majority of these sites reside in regions of open chromatin that contain transcriptional-regulatory elements (e.g., promoters, enhancers, and super-enhancers), which are known to be preferred areas for initiation of replication. Furthermore, many binding sites encompass two genomic features: a nucleosome-free DNA sequence (e.g., G-quadruplex DNA or AP-1 motif) and a nucleosome bearing histone marks characteristic of open chromatin, such as H3K4me2. Taken together, these findings indicate that Treslin-MTBP associates coordinately with multiple genomic signals to promote initiation of replication. Kumagai and Dunphy show that Treslin-MTBP, activator of the replicative helicase, binds to at least 30,000 sites in the human genome. Many sites contain a nucleosome with active chromatin marks and nucleosome-free DNA (G-quadruplex or AP-1 site). Thus, Treslin-MTBP associates with multiple genomic elements to promote initiation of DNA replication.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
MTBP phosphorylation controls DNA replication origin firing. Sci Rep 2021; 11:4242. [PMID: 33608586 PMCID: PMC7895959 DOI: 10.1038/s41598-021-83287-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Faithful genome duplication requires regulation of origin firing to determine loci, timing and efficiency of replisome generation. Established kinase targets for eukaryotic origin firing regulation are the Mcm2-7 helicase, Sld3/Treslin/TICRR and Sld2/RecQL4. We report that metazoan Sld7, MTBP (Mdm2 binding protein), is targeted by at least three kinase pathways. MTBP was phosphorylated at CDK consensus sites by cell cycle cyclin-dependent kinases (CDK) and Cdk8/19-cyclin C. Phospho-mimetic MTBP CDK site mutants, but not non-phosphorylatable mutants, promoted origin firing in human cells. MTBP was also phosphorylated at DNA damage checkpoint kinase consensus sites. Phospho-mimetic mutations at these sites inhibited MTBP’s origin firing capability. Whilst expressing a non-phospho MTBP mutant was insufficient to relieve the suppression of origin firing upon DNA damage, the mutant induced a genome-wide increase of origin firing in unperturbed cells. Our work establishes MTBP as a regulation platform of metazoan origin firing.
Collapse
|
23
|
Schmit M, Bielinsky AK. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 2021; 22:E911. [PMID: 33477564 PMCID: PMC7831139 DOI: 10.3390/ijms22020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Deoxyribonucleic acid (DNA) replication can be divided into three major steps: initiation, elongation and termination. Each time a human cell divides, these steps must be reiteratively carried out. Disruption of DNA replication can lead to genomic instability, with the accumulation of point mutations or larger chromosomal anomalies such as rearrangements. While cancer is the most common class of disease associated with genomic instability, several congenital diseases with dysfunctional DNA replication give rise to similar DNA alterations. In this review, we discuss all congenital diseases that arise from pathogenic variants in essential replication genes across the spectrum of aberrant replisome assembly, origin activation and DNA synthesis. For each of these conditions, we describe their clinical phenotypes as well as molecular studies aimed at determining the functional mechanisms of disease, including the assessment of genomic stability. By comparing and contrasting these diseases, we hope to illuminate how the disruption of DNA replication at distinct steps affects human health in a surprisingly cell-type-specific manner.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
24
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Bryan TM. Mechanisms of DNA Replication and Repair: Insights from the Study of G-Quadruplexes. Molecules 2019; 24:E3439. [PMID: 31546714 PMCID: PMC6804030 DOI: 10.3390/molecules24193439] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes are four-stranded guanine-rich structures that have been demonstrated to occur across the genome in humans and other organisms. They provide regulatory functions during transcription, translation and immunoglobulin gene rearrangement, but there is also a large amount of evidence that they can present a potent barrier to the DNA replication machinery. This mini-review will summarize recent advances in understanding the many strategies nature has evolved to overcome G-quadruplex-mediated replication blockage, including removal of the structure by helicases or nucleases, or circumventing the deleterious effects on the genome through homologous recombination, alternative end-joining or synthesis re-priming. Paradoxically, G-quadruplexes have also recently been demonstrated to provide a positive role in stimulating the initiation of DNA replication. These recent studies have not only illuminated the many roles and consequences of G-quadruplexes, but have also provided fundamental insights into the general mechanisms of DNA replication and its links with genetic and epigenetic stability.
Collapse
Affiliation(s)
- Tracy M Bryan
- Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
26
|
Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, Guédin A, Mergny JL, Damaschke J, Schepers A, Cayrou C, Teulade-Fichou MP, Ballester B, Méchali M. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun 2019; 10:3274. [PMID: 31332171 PMCID: PMC6646384 DOI: 10.1038/s41467-019-11104-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation.
Collapse
Affiliation(s)
- Paulina Prorok
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | | | - Antoine Aze
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Philippe Coulombe
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Laurent Lacroix
- Balasubramanian group, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac, 33607, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), Pessac, 33607, France.,Institut Curie, CNRS UMR9187, Inserm U1196, Universite Paris Saclay, Orsay, France
| | - Julia Damaschke
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Marchioninistraße 25, 81377, Munich, Germany
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Marchioninistraße 25, 81377, Munich, Germany.,Monoclonal Antibody Core Facility & Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstrasse, 85764, Neuherberg, Germany
| | - Christelle Cayrou
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.,Centre de Recherche en Cancérologie de Marseille 27 Boulevard Lei Roure, 13273, Marseille, France
| | | | | | - Marcel Méchali
- Institute of Human Genetics, CNRS-University of Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
27
|
Abstract
DNA replication starts with the opening of DNA at sites called DNA replication origins. From the single sequence-specific DNA replication origin of the small Escherichia coli genome, up to thousands of origins that are necessary to replicate the large human genome, strict sequence specificity has been lost. Nevertheless, genome-wide analyses performed in the recent years, using different mapping methods, demonstrated that there are precise locations along the metazoan genome from which replication initiates. These sites contain relaxed sequence consensus and epigenetic features. There is flexibility in the choice of origins to be used during a given cell cycle, probably imposed by evolution and developmental constraints. Here, we will briefly describe their main features.
Collapse
|
28
|
Coulombe P, Nassar J, Peiffer I, Stanojcic S, Sterkers Y, Delamarre A, Bocquet S, Méchali M. The ORC ubiquitin ligase OBI1 promotes DNA replication origin firing. Nat Commun 2019; 10:2426. [PMID: 31160578 PMCID: PMC6547688 DOI: 10.1038/s41467-019-10321-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication initiation is a two-step process. During the G1-phase of the cell cycle, the ORC complex, CDC6, CDT1, and MCM2-7 assemble at replication origins, forming pre-replicative complexes (pre-RCs). In S-phase, kinase activities allow fork establishment through (CDC45/MCM2-7/GINS) CMG-complex formation. However, only a subset of all potential origins becomes activated, through a poorly understood selection mechanism. Here we analyse the pre-RC proteomic interactome in human cells and find C13ORF7/RNF219 (hereafter called OBI1, for ORC-ubiquitin-ligase-1) associated with the ORC complex. OBI1 silencing result in defective origin firing, as shown by reduced CMG formation, without affecting pre-RC establishment. OBI1 catalyses the multi-mono-ubiquitylation of a subset of chromatin-bound ORC3 and ORC5 during S-phase. Importantly, expression of non-ubiquitylable ORC3/5 mutants impairs origin firing, demonstrating their relevance as OBI1 substrates for origin firing. Our results identify a ubiquitin signalling pathway involved in origin activation and provide a candidate protein for selecting the origins to be fired.
Collapse
Affiliation(s)
- Philippe Coulombe
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Joelle Nassar
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Slavica Stanojcic
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France
| | - Yvon Sterkers
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, 34090, Montpellier, France
| | - Axel Delamarre
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Stéphane Bocquet
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Marcel Méchali
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
29
|
Köhler K, Sanchez-Pulido L, Höfer V, Marko A, Ponting CP, Snijders AP, Feederle R, Schepers A, Boos D. The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7. PLoS Biol 2019; 17:e2006767. [PMID: 30695077 PMCID: PMC6377148 DOI: 10.1371/journal.pbio.2006767] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/15/2019] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)-interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.
Collapse
Affiliation(s)
- Kerstin Köhler
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Verena Höfer
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Anika Marko
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility and Research Group, Helmholtz Zentrum, Munich GmbH; Institute for Diabetes and Obesity, Neuherberg, Germany.,Department of Gene Vectors, Helmholtz Zentrum München GmbH, Munich, Germany
| | - Dominik Boos
- Vertebrate DNA Replication Lab, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Abstract
Recently published structural and functional analyses of the CMG complex have provided insight into the mechanism of its DNA helicase function and into the distinct roles of its central six component proteins MCM2-MCM7 (MCM2-7). To activate CMG helicase, the two protein kinases CDK and DDK, as well as MCM10, are required. In addition to the initiation of DNA replication, MCM function must be regulated at the DNA replication steps of elongation and termination. Polyubiquitylation of MCM7 is involved in terminating MCM function. Reinitiation of DNA replication in a single cell cycle, which is prevented mainly by CDK, is understood at the molecular level. MCM2-7 gene expression is regulated during cellular aging and the cell cycle, and the expression depends on oxygen concentration. These regulatory processes have been described recently. Genomic structural alteration, which is an essential element in cancer progression, is mainly generated by disruptions of DNA replication fork structures. A point mutation in MCM4 that disturbs MCM2-7 function results in genomic instability, leading to the generation of cancer cells. In this review, I focus on the following points: 1) function of the MCM2-7 complex, 2) activation of MCM2-7 helicase, 3) regulation of MCM2-7 function, 4) MCM2-7 expression, and 5) the role of MCM mutation in cancer progression.
Collapse
|
31
|
Aze A, Maiorano D. Recent advances in understanding DNA replication: cell type-specific adaptation of the DNA replication program. F1000Res 2018; 7. [PMID: 30228862 PMCID: PMC6117848 DOI: 10.12688/f1000research.15408.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
DNA replication is an essential process occurring prior to cell division. Cell division coupled to proliferation ensures the growth and renewal of a large variety of specialized cell types generated during embryonic development. Changes in the DNA replication program occur during development. Embryonic undifferentiated cells show a high replication rate and fast proliferation, whereas more differentiated cells are characterized by reduced DNA synthesis and a low proliferation rate. Hence, the DNA replication program must adapt to the specific features of cells committed to different fates. Recent findings on DNA synthesis regulation in different cell types open new perspectives for developing efficient and more adapted therapies to treat various diseases such as genetic diseases and cancer. This review will put the emphasis on recent progress made in this field.
Collapse
Affiliation(s)
- Antoine Aze
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| | - Domenico Maiorano
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| |
Collapse
|
32
|
Poudel S, Yao J, Kemp MG, Leffak M. Interaction between DUE-B and Treslin is required to load Cdc45 on chromatin in human cells. J Biol Chem 2018; 293:14497-14506. [PMID: 30037903 DOI: 10.1074/jbc.ra118.004519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/06/2022] Open
Abstract
A key step in the initiation of eukaryotic DNA replication is the binding of the activator protein Cdc45 to promote MCM helicase unwinding of the origin template. We show here that the c-myc origin DNA unwinding element-binding protein, DUE-B, interacts in HeLa cells with the replication initiation protein Treslin to allow Cdc45 loading onto chromatin. The chromatin loading of DUE-B and Treslin are mutually dependent, and the DUE-B-Treslin interaction is cell cycle-regulated to peak as cells exit G1 phase prior to the initiation of replication. The conserved C-terminal domain of DUE-B is required for its binding to TopBP1, Treslin, Cdc45, and the MCM2-7 complex, as well as for the efficient loading of Treslin, Cdc45, and TopBP1 on chromatin. These results suggest that DUE-B acts to identify origins by MCM binding and serves as a node for replication protein recruitment and Cdc45 transfer to the prereplication complex.
Collapse
Affiliation(s)
- Sumeet Poudel
- From the Departments of Biochemistry and Molecular Biology and
| | - Jianhong Yao
- From the Departments of Biochemistry and Molecular Biology and
| | - Michael G Kemp
- Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Michael Leffak
- From the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|