1
|
Rinaldin M, Kickuth A, Dalton B, Xu Y, Di Talia S, Brugués J. Robust cytoplasmic partitioning by solving an intrinsic cytoskeletal instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584684. [PMID: 38559072 PMCID: PMC10980089 DOI: 10.1101/2024.03.12.584684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Early development across vertebrates and insects critically relies on robustly reorganizing the cytoplasm of fertilized eggs into individualized cells. This intricate process is orchestrated by large microtubule structures that traverse the embryo, partitioning the cytoplasm into physically distinct and stable compartments. Despite the robustness of embryonic development, here we uncover an intrinsic instability in cytoplasmic partitioning driven by the microtubule cytoskeleton. We reveal that embryos circumvent this instability through two distinct mechanisms: either by matching the cell cycle duration to the time needed for the instability to unfold or by limiting microtubule nucleation. These regulatory mechanisms give rise to two possible strategies to fill the cytoplasm, which we experimentally demonstrate in zebrafish and Drosophila embryos, respectively. In zebrafish embryos, unstable microtubule waves fill the geometry of the entire embryo from the first division. Conversely, in Drosophila embryos, stable microtubule asters resulting from reduced microtubule nucleation gradually fill the cytoplasm throughout multiple divisions. Our results indicate that the temporal control of microtubule dynamics could have driven the evolutionary emergence of species-specific mechanisms for effective cytoplasmic organization. Furthermore, our study unveils a fundamental synergy between physical instabilities and biological clocks, uncovering universal strategies for rapid, robust, and efficient spatial ordering in biological systems.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307 Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
- Center for Systems Biology Dresden, 01307 Germany
| | - Alison Kickuth
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307 Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
- Center for Systems Biology Dresden, 01307 Germany
| | - Benjamin Dalton
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Jan Brugués
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01307 Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
- Center for Systems Biology Dresden, 01307 Germany
| |
Collapse
|
2
|
Niedzialkowska E, Truong TM, Eldredge LA, Ali A, Redemann S, Stukenberg PT. Chromosomal passenger complex condensates generate parallel microtubule bundles in vitro. J Biol Chem 2024; 300:105669. [PMID: 38272221 PMCID: PMC10876603 DOI: 10.1016/j.jbc.2024.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tan M Truong
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Luke A Eldredge
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Aamir Ali
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
4
|
de Keijzer J, van Spoordonk R, van der Meer-Verweij JE, Janson M, Ketelaar T. Kinesin-4 optimizes microtubule orientations for responsive tip growth guidance in moss. J Cell Biol 2023; 222:e202202018. [PMID: 37389658 PMCID: PMC10316633 DOI: 10.1083/jcb.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Tip-growing cells of, amongst others, plants and fungi secrete wall materials in a highly polarized fashion for fast and efficient colonization of the environment. A polarized microtubule cytoskeleton, in which most microtubule ends are directed toward the growing apex, has been implicated in directing growth. Its organizing principles, in particular regarding maintenance of network unipolarity, have remained elusive. We show that a kinesin-4 protein, hitherto best known for a role in cytokinesis, suppresses encounters between antiparallel microtubules. Without this activity, microtubules hyper-aligned along the growth axis and increasingly grew away from the apex. Cells themselves displayed an overly straight growth path and a delayed gravitropic response. This result revealed conflicting systemic needs for a stable growth direction and an ability to change course in response to extracellular cues. Thus, the use of selective inhibition of microtubule growth at antiparallel overlaps constitutes a new organizing principle within a unipolar microtubule array.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | | | | | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
5
|
Nair S, Welch EL, Moravec CE, Trevena RL, Hansen CL, Pelegri F. The midbody component Prc1-like is required for microtubule reorganization during cytokinesis and dorsal determinant segregation in the early zebrafish embryo. Development 2023; 150:dev200564. [PMID: 36789950 PMCID: PMC10112900 DOI: 10.1242/dev.200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1 family of microtubule-associated proteins. Embryos from tmi homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that Prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal Prc1l function is also essential for the reorganization of vegetal pole microtubules required for the segregation of dorsal determinants. Whereas Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1l in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.
Collapse
Affiliation(s)
- Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Elaine L. Welch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara E. Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan L. Trevena
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christina L. Hansen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Deshpande O, de-Carvalho J, Vieira DV, Telley IA. Astral microtubule cross-linking safeguards uniform nuclear distribution in the Drosophila syncytium. J Cell Biol 2022; 221:212810. [PMID: 34766978 PMCID: PMC8594625 DOI: 10.1083/jcb.202007209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.
Collapse
Affiliation(s)
- Ojas Deshpande
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Diana V Vieira
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| |
Collapse
|
7
|
Abstract
The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early Drosophila embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Harvard Medical School, Boston, Massachusetts 02115, USA; ,
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Christine M Field
- Harvard Medical School, Boston, Massachusetts 02115, USA; ,
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
8
|
Uribe ML, Dahlhoff M, Batra RN, Nataraj NB, Haga Y, Drago-Garcia D, Marrocco I, Sekar A, Ghosh S, Vaknin I, Lebon S, Kramarski L, Tsutsumi Y, Choi I, Rueda OM, Caldas C, Yarden Y. TSHZ2 is an EGF-regulated tumor suppressor that binds to the cytokinesis regulator PRC1 and inhibits metastasis. Sci Signal 2021; 14:eabe6156. [PMID: 34158398 PMCID: PMC7614343 DOI: 10.1126/scisignal.abe6156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unlike early transcriptional responses to mitogens, later events are less well-characterized. Here, we identified delayed down-regulated genes (DDGs) in mammary cells after prolonged treatment with epidermal growth factor (EGF). The expression of these DDGs was low in mammary tumors and correlated with prognosis. The proteins encoded by several DDGs directly bind to and inactivate oncoproteins and might therefore act as tumor suppressors. The transcription factor teashirt zinc finger homeobox 2 (TSHZ2) is encoded by a DDG, and we found that overexpression of TSHZ2 inhibited tumor growth and metastasis and accelerated mammary gland development in mice. Although the gene TSHZ2 localizes to a locus (20q13.2) that is frequently amplified in breast cancer, we found that hypermethylation of its promoter correlated with down-regulation of TSHZ2 expression in patients. Yeast two-hybrid screens and protein-fragment complementation assays in mammalian cells indicated that TSHZ2 nucleated a multiprotein complex containing PRC1/Ase1, cyclin B1, and additional proteins that regulate cytokinesis. TSHZ2 increased the inhibitory phosphorylation of PRC1, a key driver of mitosis, mediated by cyclin-dependent kinases. Furthermore, similar to the tumor suppressive transcription factor p53, TSHZ2 inhibited transcription from the PRC1 promoter. By recognizing DDGs as a distinct group in the transcriptional response to EGF, our findings uncover a group of tumor suppressors and reveal a role for TSHZ2 in cell cycle regulation.
Collapse
Affiliation(s)
- Mary L Uribe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rajbir N Batra
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nishanth B Nataraj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itay Vaknin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sacha Lebon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lior Kramarski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 306-809, South Korea
| | - Oscar M Rueda
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- MRC Biostatistics Unit, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0RE, UK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
9
|
Gui T, Yao C, Jia B, Shen K. Identification and analysis of genes associated with epithelial ovarian cancer by integrated bioinformatics methods. PLoS One 2021; 16:e0253136. [PMID: 34143800 PMCID: PMC8213194 DOI: 10.1371/journal.pone.0253136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background Though considerable efforts have been made to improve the treatment of epithelial ovarian cancer (EOC), the prognosis of patients has remained poor. Identifying differentially expressed genes (DEGs) involved in EOC progression and exploiting them as novel biomarkers or therapeutic targets is of great value. Methods Overlapping DEGs were screened out from three independent gene expression omnibus (GEO) datasets and were subjected to Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The protein-protein interactions (PPI) network of DEGs was constructed based on the STRING database. The expression of hub genes was validated in GEPIA and GEO. The relationship of hub genes expression with tumor stage and overall survival and progression-free survival of EOC patients was investigated using the cancer genome atlas data. Results A total of 306 DEGs were identified, including 265 up-regulated and 41 down-regulated. Through PPI network analysis, the top 20 genes were screened out, among which 4 hub genes, which were not researched in depth so far, were selected after literature retrieval, including CDC45, CDCA5, KIF4A, ESPL1. The four genes were up-regulated in EOC tissues compared with normal tissues, but their expression decreased gradually with the continuous progression of EOC. Survival curves illustrated that patients with a lower level of CDCA5 and ESPL1 had better overall survival and progression-free survival statistically. Conclusion Two hub genes, CDCA5 and ESPL1, identified as probably playing tumor-promotive roles, have great potential to be utilized as novel therapeutic targets for EOC treatment.
Collapse
Affiliation(s)
- Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenhe Yao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Zhou CJ, Wang DH, Kong XW, Han Z, Hao X, Wang XY, Wen X, Liang CG. Protein regulator of cytokinesis 1 regulates chromosome dynamics and cytoplasmic division during mouse oocyte meiotic maturation and early embryonic development. FEBS J 2021; 287:5130-5147. [PMID: 32562308 DOI: 10.1111/febs.15458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, Sichuan Province, China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
11
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
12
|
Steblyanko Y, Rajendraprasad G, Osswald M, Eibes S, Jacome A, Geley S, Pereira AJ, Maiato H, Barisic M. Microtubule poleward flux in human cells is driven by the coordinated action of four kinesins. EMBO J 2020; 39:e105432. [PMID: 33073400 PMCID: PMC7705458 DOI: 10.15252/embj.2020105432] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.
Collapse
Affiliation(s)
| | | | - Mariana Osswald
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Susana Eibes
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
| | - Ariana Jacome
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Stephan Geley
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - António J Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Helder Maiato
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Experimental Biology UnitDepartment of BiomedicineFaculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Marin Barisic
- Danish Cancer Society Research Center (DCRC)CopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
13
|
Li XH, Ju JQ, Pan ZN, Wang HH, Wan X, Pan MH, Xu Y, Sun MH, Sun SC. PRC1 is a critical regulator for anaphase spindle midzone assembly and cytokinesis in mouse oocyte meiosis. FEBS J 2020; 288:3055-3067. [PMID: 33206458 DOI: 10.1111/febs.15634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
14
|
Cheng X, Ferrell JE. Spontaneous emergence of cell-like organization in Xenopus egg extracts. Science 2020; 366:631-637. [PMID: 31672897 DOI: 10.1126/science.aav7793] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Every daughter cell inherits two things from its mother: genetic information and a spatially organized complement of macromolecular complexes and organelles. The extent to which de novo self-organization, as opposed to inheritance of an already organized state, can suffice to yield functional cells is uncertain. We used Xenopus laevis egg extracts to show that homogenized interphase egg cytoplasm self-organizes over the course of ~30 minutes into compartments 300 to 400 micrometers in length that resemble cells. Formation of these cell-like compartments required adenosine triphosphate and microtubule polymerization but did not require added demembranated sperm nuclei with their accompanying centrosomes or actin polymerization. In cycling extracts with added sperm, the compartments underwent multiple cycles of division and reorganization, with mother compartments giving rise to two daughters at the end of each mitotic cycle. These results indicate that the cytoplasm can generate much of the spatial organization and cell cycle function of the early embryo.
Collapse
Affiliation(s)
- Xianrui Cheng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| |
Collapse
|
15
|
Affiliation(s)
- Timothy J. Mitchison
- Harvard Medical School, Boston, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Christine M. Field
- Harvard Medical School, Boston, MA, USA
- Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
16
|
She ZY, Wei YL, Lin Y, Li YL, Lu MH. Mechanisms of the Ase1/PRC1/MAP65 family in central spindle assembly. Biol Rev Camb Philos Soc 2019; 94:2033-2048. [PMID: 31343816 DOI: 10.1111/brv.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ya-Lan Wei
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yang Lin
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yue-Ling Li
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Ming-Hui Lu
- Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
17
|
Field CM, Pelletier JF, Mitchison TJ. Disassembly of Actin and Keratin Networks by Aurora B Kinase at the Midplane of Cleaving Xenopus laevis Eggs. Curr Biol 2019; 29:1999-2008.e4. [PMID: 31178324 DOI: 10.1016/j.cub.2019.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/28/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
The large length scale of Xenopus laevis eggs facilitates observation of bulk cytoplasm dynamics far from the cortex during cytokinesis. The first furrow ingresses through the egg midplane, which is demarcated by chromosomal passenger complex (CPC) localized on microtubule bundles at the boundary between asters. Using an extract system, we found that local kinase activity of the Aurora B kinase (AURKB) subunit of the CPC caused disassembly of F-actin and keratin between asters and local softening of the cytoplasm as assayed by flow patterns. Beads coated with active CPC mimicked aster boundaries and caused AURKB-dependent disassembly of F-actin and keratin that propagated ∼40 μm without microtubules and much farther with microtubules present. Consistent with extract observations, we observed disassembly of the keratin network between asters in zygotes fixed before and during 1st cytokinesis. We propose that active CPC at aster boundaries locally reduces cytoplasmic stiffness by disassembling actin and keratin networks. Possible functions of this local disassembly include helping sister centrosomes move apart after mitosis, preparing a soft path for furrow ingression, and releasing G-actin from internal networks to build cortical networks that support furrow ingression.
Collapse
Affiliation(s)
- Christine M Field
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - James F Pelletier
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02153, USA; Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| |
Collapse
|
18
|
Odell J, Sikirzhytski V, Tikhonenko I, Cobani S, Khodjakov A, Koonce M. Force balances between interphase centrosomes as revealed by laser ablation. Mol Biol Cell 2019; 30:1705-1715. [PMID: 31067156 PMCID: PMC6727758 DOI: 10.1091/mbc.e19-01-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have highlighted the self-centering activities of individual microtubule (MT) arrays in animal cells, but relatively few works address the behavior of multiple arrays that coexist in a common cytoplasm. In multinucleated Dictyostelium discoideum cells, each centrosome organizes a radial MT network, and these networks remain separate from one another. This feature offers an opportunity to reveal the mechanism(s) responsible for the positioning of multiple centrosomes. Using a laser microbeam to eliminate one of the two centrosomes in binucleate cells, we show that the unaltered array is rapidly repositioned at the cell center. This result demonstrates that each MT array is constantly subject to centering forces and infers a mechanism to balance the positions of multiple arrays. Our results address the limited actions of three kinesins and a cross-linking MAP that are known to have effects in maintaining MT organization and suggest a simple means used to keep the arrays separated.
Collapse
Affiliation(s)
- Jacob Odell
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Vitali Sikirzhytski
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Irina Tikhonenko
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Sonila Cobani
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Alexey Khodjakov
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| | - Michael Koonce
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509
| |
Collapse
|
19
|
Swider ZT, Ng RK, Varadarajan R, Fagerstrom CJ, Rusan NM. Fascetto interacting protein ensures proper cytokinesis and ploidy. Mol Biol Cell 2019; 30:992-1007. [PMID: 30726162 PMCID: PMC6589905 DOI: 10.1091/mbc.e18-09-0573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.
Collapse
Affiliation(s)
- Zachary T Swider
- Graduate Program in Cell and Molecular Biology, University of Wisconsin, Madison, WI 53606
| | - Rachel K Ng
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 2018; 678:90-99. [DOI: 10.1016/j.gene.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
21
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
22
|
Koonce MP, Tikhonenko I. Centrosome Positioning in Dictyostelium: Moving beyond Microtubule Tip Dynamics. Cells 2018; 7:E29. [PMID: 29649097 PMCID: PMC5946106 DOI: 10.3390/cells7040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
The variability in centrosome size, shape, and activity among different organisms provides an opportunity to understand both conserved and specialized actions of this intriguing organelle. Centrosomes in the model organism Dictyostelium sp. share some features with fungal systems and some with vertebrate cell lines and thus provide a particularly useful context to study their dynamics. We discuss two aspects, centrosome positioning in cells and their interactions with nuclei during division as a means to highlight evolutionary modifications to machinery that provide the most basic of cellular services.
Collapse
Affiliation(s)
- Michael P Koonce
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA.
| | - Irina Tikhonenko
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA.
| |
Collapse
|