1
|
Karunasagara S, Bayarkhangai B, Shim HW, Bae HJ, Lee H, Taghizadeh A, Ji Y, Mandakhbayar N, Kim HS, Hyun J, Kim TJ, Lee JH, Kim HW. Electrically-stimulated cellular and tissue events are coordinated through ion channel-mediated calcium influx and chromatin modifications across the cytosol-nucleus space. Biomaterials 2025; 314:122854. [PMID: 39405824 DOI: 10.1016/j.biomaterials.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/10/2024]
Abstract
Electrical stimulation (ES) through biomaterials and devices has been implicated in activating diverse cell behaviors while facilitating tissue healing process. Despite its significance in modulating biological events, the mechanisms governing ES-activated cellular phenomena remain largely elusive. Here, we demonstrated that millisecond-pulsed temporal ES profoundly impacted a spectrum of cellular events across the membrane-cytosol-nuclear space. These include activated ion channels, intracellular calcium influx, actomyosin contractility, cell migration and proliferation, and secretome release. Such events were coordinated mainly through ES-activated ion channels and calcium oscillation dynamics. Notably, ES increased the chromatin accessibility of genes, particularly those associated with the ES-activated cellular events, underscoring the significance of epigenetic changes in ES-induced behavioral outcomes. We identified histone acetylation (mediated by histone acetyltransferases), among other chromatin modifications, is key in reshaping the chromatin landscape upon ES. These observations were further validated through experiments involving ex vivo skin tissue samples, including activated ion channels and calcium influx, increased cell proliferation and actomyosin contractility, elevated secretome profile, and more accessible chromatin structure following ES. This work provides novel insights into the mechanisms underlying ES-activated cell and tissue events, ultimately guiding design principles for the development of electrical devices and materials effective for tissue repair and wound healing.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Buuvee Bayarkhangai
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye-Won Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hwalim Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University Pusan, 46241, Republic of Korea; Department of Biological Sciences, Pusan National University Pusan, 46241, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Ong HT, Cui H, Gao X, Lee JWN, Guo Y, Li R, Pennacchio FA, Maiuri P, Efremov AK, Holle AW. Confinement-sensitive volume regulation dynamics via high-speed nuclear morphological measurements. Proc Natl Acad Sci U S A 2024; 121:e2408595121. [PMID: 39700138 DOI: 10.1073/pnas.2408595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips. Standard volumetric measurement relies on confocal microscopy, which suffers from high phototoxicity, slow speed, limited throughput, and artifacts in fast-moving cells. To address this, we developed a form of double fluorescence exclusion microscopy, designed to function at the interface of microchannel-based PDMS sidewalls, that can track cellular and nuclear volume dynamics during confined migration. By verifying the vertical symmetry of nuclei in confinement, we obtained computational estimates of nuclear surface area. We then tracked nuclear volume and surface area under physiological confinement at a time resolution exceeding 30 frames per minute. We find that during self-induced entrance into confinement, the cell rapidly expands its surface area until a threshold is reached, followed by a rapid decrease in nuclear volume. We next used osmotic shock as a tool to alter nuclear volume in confinement, and found that the nuclear response to hypo-osmotic shock in confinement does not follow classical scaling laws, suggesting that the limited expansion potential of the nuclear envelope might be a constraining factor in nuclear volume regulation in confining environments in vivo.
Collapse
Affiliation(s)
- Yixuan Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Hongyue Cui
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Xu Gao
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Yuqi Guo
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Fabrizio A Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, Zurich 8006, Switzerland
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Andrew W Holle
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
3
|
Srivastava LK, Ehrlicher AJ. Sensing the squeeze: nuclear mechanotransduction in health and disease. Nucleus 2024; 15:2374854. [PMID: 38951951 PMCID: PMC11221475 DOI: 10.1080/19491034.2024.2374854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
Collapse
Affiliation(s)
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Structural Biology, McGill University, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Sacco JL, Vaneman ZT, Self A, Sumner E, Kibinda S, Sankhe CS, Gomez EW. Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition. J Cell Sci 2024; 137:jcs262190. [PMID: 39450433 DOI: 10.1242/jcs.262190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression, and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) proteins or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.
Collapse
Affiliation(s)
- Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zachary T Vaneman
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ava Self
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elix Sumner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stella Kibinda
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chinmay S Sankhe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Gupta R, Goswami Y, Yuan L, Roy B, Pereiro E, Shivashankar GV. Correlative light and soft X-ray tomography of in situ mesoscale heterochromatin structure in intact cells. Sci Rep 2024; 14:27706. [PMID: 39532928 PMCID: PMC11557596 DOI: 10.1038/s41598-024-77361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Heterochromatin organization is critical to many genome-related programs including transcriptional silencing and DNA repair. While super-resolution imaging, electron microscopy, and multiomics methods have provided indirect insights into the heterochromatin organization, a direct measurement of mesoscale heterochromatin ultrastructure is still missing. We use a combination of correlative light microscopy and cryo-soft X-ray tomography (CLXT) to analyze heterochromatin organization in the intact hydrated state of human mammary fibroblast cells. Our analysis reveals that the heterochromatin ultra-structure has a typical mean domain size of approximately 80 nm and a mean separation of approximately 120 nm between domains. Functional perturbations yield further insights into the molecular density and alterations in the mesoscale organization of the heterochromatin regions. Furthermore, our polymer simulations provide a mechanistic basis for the experimentally observed size and separation distributions of the mesoscale chromatin domains. Collectively, our results provide direct, label-free observation of heterochromatin organization in the intact hydrated state of cells.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yagyik Goswami
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
| | - Luezhen Yuan
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bibhas Roy
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Secunderabad, India
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - G V Shivashankar
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Mora KE, Mlawer SJ, Loiselle AE, Buckley MR. The Micromechanical Environment of the Impinged Achilles Tendon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401015. [PMID: 38966889 DOI: 10.1002/smll.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Although tendon predominantly experiences longitudinal tensile forces, transverse forces due to impingement from bone are implicated in both physiological and pathophysiological processes. However, prior studies have not characterized the micromechanical strain environment in the context of tendon impingement. To address this knowledge gap, mouse hindlimb explants are imaged on a multiphoton microscope, and image stacks of the same population of tendon cells are obtained in the Achilles tendon before and after dorsiflexion-induced impingement by the heel bone. Based on the acquired images, multiaxial strains are measured at the extracellular matrix (ECM), pericellular matrix (PCM), and cell scales. Impingement generated substantial transverse compression at the matrix-scale, which led to longitudinal stretching of cells, increased cell aspect ratio, and enormous volumetric compression of the PCM. These experimental results are corroborated by a finite element model, which further demonstrated that impingement produces high cell surface stresses and strains that greatly exceed those brought about by longitudinal tension. Moreover, in both experiments and simulations, impingement-generated microscale stresses and strains are highly dependent on initial cell-cell gap spacing. Identifying factors that influence the microscale strain environment generated by impingement could contribute to a more mechanistic understanding of impingement-induced tendinopathies.
Collapse
Affiliation(s)
- Keshia E Mora
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel J Mlawer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Alayna E Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
7
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Swoger M, Thanh MTH, Byfield FJ, Dam V, Williamson J, Frank B, Hehnly H, Conway D, Patteson AE. Vimentin molecular linkages with nesprin-3 enhance nuclear deformations by cell geometric constraints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.621001. [PMID: 39554181 PMCID: PMC11565891 DOI: 10.1101/2024.10.29.621001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The nucleus is the organelle of the cell responsible for controlling protein expression, which has a direct effect on cellular biological functions. Here we show that the cytoskeletal protein vimentin plays an important role in increasing cell-generated forces transmitted to the cell nucleus, resulting in increased nuclear deformations in strongly polarized cells. Using micropatterned substrates to geometrically control cell shape in wild-type and vimentin-null cells, we show vimentin increases polarization and deformation of the cell nucleus. Loss of nesprin-3, which physically couples vimentin to the nuclear envelope, phenotypically copies the loss of vimentin, suggesting vimentin transmits forces to the cell nucleus through direct molecular linkages. Use of a fluorescence resonance energy transfer (FRET) sensor that binds to the nuclear envelope through lamin-A/C suggests vimentin increases the tension on the nuclear envelope. Our results indicate that nuclear shape and deformation can be modified by the vimentin cytoskeleton and its specific crosslinks to the cell nucleus.
Collapse
|
9
|
De Corato M, Gomez-Benito MJ. Interplay of chromatin organization and mechanics of the cell nucleus. Biophys J 2024; 123:3386-3396. [PMID: 39126157 PMCID: PMC11480768 DOI: 10.1016/j.bpj.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The nucleus of eukaryotic cells is constantly subjected to different kinds of mechanical stimuli, which can impact the organization of chromatin and, subsequently, the expression of genetic information. Experiments from different groups showed that nuclear deformation can lead to transient or permanent condensation or decondensation of chromatin and the mechanical activation of genes, thus altering the transcription of proteins. Changes in chromatin organization, in turn, change the mechanical properties of the nucleus, possibly leading to an auxetic behavior. Here, we model the mechanics of the nucleus as a chemically active polymer gel in which the chromatin can exist in two states: a self-attractive state representing the heterochromatin and a repulsive state representing euchromatin. The model predicts reversible or irreversible changes in chromatin condensation levels upon external deformations of the nucleus. We find an auxetic response for a broad range of parameters under small and large deformations. These results agree with experimental observations and highlight the key role of chromatin organization in the mechanical response of the nucleus.
Collapse
Affiliation(s)
- Marco De Corato
- Department of Science and Technology of Materials and Fluids, Fluid Dynamics Technology Group (TFD), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
11
|
Mubarok W, Elvitigala KCML, Nakaya H, Hotta T, Sakai S. Cell Cycle Modulation through Physical Confinement in Micrometer-Thick Hydrogel Sheaths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18717-18726. [PMID: 39166379 DOI: 10.1021/acs.langmuir.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Recently, surface engineering of the cell membrane with biomaterials has attracted great attention for various biomedical applications. In this study, we investigated the possibility of modulating cell cycle progression using alginate and gelatin-based hydrogel sheaths with a thickness of ∼1 μm. The hydrogel sheath was formed on cell surfaces through cross-linking catalyzed by horseradish peroxidase immobilized on the cell surface. The hydrogel sheath did not decrease the viability (>95% during 2 days of culture) of the human cervical carcinoma cell line (HeLa) expressing the fluorescent ubiquitination-based cell cycle indicator 2 (HeLa/Fucci2). Coating the HeLa/Fucci2 cells with the hydrogel sheath resulted in a cell cycle arrest in the G2/M phase, which can be caused by the reduced F-actin formation. As a result of this cell cycle arrest, an inhibition of cell growth was observed in the HeLa/Fucci2 cells. Taken together, our results demonstrate that the hydrogel sheath coating on the cell surface is a feasible approach to modulating cell cycle progression.
Collapse
Affiliation(s)
- Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Kelum Chamara Manoj Lakmal Elvitigala
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroto Nakaya
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Hotta
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
12
|
Li H, Playter C, Das P, McCord RP. Chromosome compartmentalization: causes, changes, consequences, and conundrums. Trends Cell Biol 2024; 34:707-727. [PMID: 38395734 PMCID: PMC11339242 DOI: 10.1016/j.tcb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
The spatial segregation of the genome into compartments is a major feature of 3D genome organization. New data on mammalian chromosome organization across different conditions reveal important information about how and why these compartments form and change. A combination of epigenetic state, nuclear body tethering, physical forces, gene expression, and replication timing (RT) can all influence the establishment and alteration of chromosome compartments. We review the causes and implications of genomic regions undergoing a 'compartment switch' that changes their physical associations and spatial location in the nucleus. About 20-30% of genomic regions change compartment during cell differentiation or cancer progression, whereas alterations in response to a stimulus within a cell type are usually much more limited. However, even a change in 1-2% of genomic bins may have biologically relevant implications. Finally, we review the effects of compartment changes on gene regulation, DNA damage repair, replication, and the physical state of the cell.
Collapse
Affiliation(s)
- Heng Li
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Christopher Playter
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Priyojit Das
- University of Tennessee-Oak Ridge National Laboratory (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
13
|
Tomida K, Kim J, Maeda E, Adachi T, Matsumoto T. Spatiotemporal analysis of multi-scale cell structure in spheroid culture reveals hypertrophic chondrocyte differentiation. Cell Tissue Res 2024; 397:263-274. [PMID: 39042176 PMCID: PMC11371864 DOI: 10.1007/s00441-024-03905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
3D cell culture has emerged as a promising approach to replicate the complex behaviors of cells within living organisms. This study aims to analyze spatiotemporal behavior of the morphological characteristics of cell structure at multiscale in 3D scaffold-free spheroids using chondrogenic progenitor ATDC5 cells. Over a 14-day culture period, it exhibited cell hypertrophy in the spheroids regarding cellular and nuclear size as well as changes in morphology. Moreover, biological analysis indicated a signification up-regulation of normal chondrocyte as well as hypertrophic chondrocyte markers, suggesting early hypertrophic chondrocyte differentiation. Cell nuclei underwent changes in volume, sphericity, and distribution in spheroid over time, indicating alterations in chromatin organization. The ratio of chromatin condensation volume to cell nuclear volume decreased as the cell nuclei enlarged, potentially signifying changes in chromatin state during hypertrophic chondrocyte differentiation. Our image analysis techniques in this present study enabled detailed morphological measurement of cell structure at multi-scale, which can be applied to various 3D culture models for in-depth investigation.
Collapse
Affiliation(s)
- Kosei Tomida
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Jeonghyun Kim
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| | - Eijiro Maeda
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Taiji Adachi
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeo Matsumoto
- Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Jing D. Deciphering the dynamics: Exploring the impact of mechanical forces on histone acetylation. FASEB J 2024; 38:e23849. [PMID: 39096133 DOI: 10.1096/fj.202400907rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Living cells navigate a complex landscape of mechanical cues that influence their behavior and fate, originating from both internal and external sources. At the molecular level, the translation of these physical stimuli into cellular responses relies on the intricate coordination of mechanosensors and transducers, ultimately impacting chromatin compaction and gene expression. Notably, epigenetic modifications on histone tails govern the accessibility of gene-regulatory sites, thereby regulating gene expression. Among these modifications, histone acetylation emerges as particularly responsive to the mechanical microenvironment, exerting significant control over cellular activities. However, the precise role of histone acetylation in mechanosensing and transduction remains elusive due to the complexity of the acetylation network. To address this gap, our aim is to systematically explore the key regulators of histone acetylation and their multifaceted roles in response to biomechanical stimuli. In this review, we initially introduce the ubiquitous force experienced by cells and then explore the dynamic alterations in histone acetylation and its associated co-factors, including HDACs, HATs, and acetyl-CoA, in response to these biomechanical cues. Furthermore, we delve into the intricate interactions between histone acetylation and mechanosensors/mechanotransducers, offering a comprehensive analysis. Ultimately, this review aims to provide a holistic understanding of the nuanced interplay between histone acetylation and mechanical forces within an academic framework.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Williams JF, Surovtsev IV, Schreiner SM, Chen Z, Raiymbek G, Nguyen H, Hu Y, Biteen JS, Mochrie SGJ, Ragunathan K, King MC. The condensation of HP1α/Swi6 imparts nuclear stiffness. Cell Rep 2024; 43:114373. [PMID: 38900638 PMCID: PMC11348953 DOI: 10.1016/j.celrep.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains. Here, we leverage the genetically tractable S. pombe model and a separation-of-function allele to elucidate a mechanical function imparted by Swi6 condensation. Using single-molecule imaging, force spectroscopy, and high-resolution live-cell imaging, we show that Swi6 is critical for nuclear resistance to external force. Strikingly, it is the condensed yet dynamic pool of Swi6, rather than the chromatin-bound molecules, that is essential to imparting mechanical stiffness. Our findings suggest that Swi6 condensates embedded in the chromatin meshwork establish the emergent mechanical behavior of the nucleus as a whole, revealing that biomolecular condensation can influence organelle and cell mechanics.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Sarah M Schreiner
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hang Nguyen
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yan Hu
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Julie S Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon G J Mochrie
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | | | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Dhankhar M, Guo Z, Kant A, Basir R, Joshi R, Heo SC, Mauck RL, Lakadamyali M, Shenoy VB. Revealing the Biophysics of Lamina-Associated Domain Formation by Integrating Theoretical Modeling and High-Resolution Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600310. [PMID: 38979207 PMCID: PMC11230226 DOI: 10.1101/2024.06.24.600310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The interactions between chromatin and the nuclear lamina orchestrate cell type-specific gene activity by forming lamina-associated domains (LADs) which preserve cellular characteristics through gene repression. However, unlike the interactions between chromatin segments, the strength of chromatin-lamina interactions and their dependence on cellular environment are not well understood. Here, we develop a theory to predict the size and shape of peripheral heterochromatin domains by considering the energetics of chromatin-chromatin interactions, the affinity between chromatin and the nuclear lamina and the kinetics of methylation and acetylation9in human mesenchymal stem cells (hMSCs). Through the analysis of super-resolution images of peripheral heterochromatin domains using this theoretical framework, we determine the nuclear lamina-wide distribution of chromatin-lamina affinities. We find that the extracted affinity is highly spatially heterogeneous and shows a bimodal distribution, indicating regions along the lamina with strong chromatin binding and those exhibiting vanishing chromatin affinity interspersed with some regions exhibiting a relatively diminished chromatin interactions, in line with the presence of structures such as nuclear pores. Exploring the role of environmental cues on peripheral chromatin, we find that LAD thickness increases when hMSCs are cultured on a softer substrate, in correlation with contractility-dependent translocation of histone deacetylase 3 (HDAC3) from the cytosol to the nucleus. In soft microenvironments, chromatin becomes sequestered at the nuclear lamina, likely due to the interactions of HDAC3 with the chromatin anchoring protein LAP2 β ,increasing chromatin-lamina affinity, as well as elevated levels of the intranuclear histone methylation. Our findings are further corroborated by pharmacological interventions that inhibit contractility, as well as by manipulating methylation levels using epigenetic drugs. Notably, in the context of tendinosis, a chronic condition characterized by collagen degeneration, we observed a similar increase in the thickness of peripheral chromatin akin to that of cells cultured on soft substrates consistent with theoretical predictions. Our findings underscore the pivotal role of the microenvironment in shaping genome organization and highlight its relevance in pathological conditions.
Collapse
|
17
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Ma T, Liu X, Su H, Shi Q, He Y, Wu F, Gao C, Li K, Liang Z, Zhang D, Zhang X, Hu K, Li S, Wang L, Wang M, Yue S, Hong W, Chen X, Zhang J, Zheng L, Deng X, Wang P, Fan Y. Coupling of Perinuclear Actin Cap and Nuclear Mechanics in Regulating Flow-Induced Yap Spatiotemporal Nucleocytoplasmic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305867. [PMID: 38161226 PMCID: PMC10953556 DOI: 10.1002/advs.202305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.
Collapse
Affiliation(s)
- Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haoran Su
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Fan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chenxing Gao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Kexin Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhuqing Liang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Dongrui Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Ke Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Shangyu Li
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Min Wang
- Department of Gynecology and ObstetricsStrategic Support Force Medical CenterBeijing100101China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Weili Hong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
- School of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
19
|
Changkhaokham B, Suamphan S, Jitpukdeebodintra S, Leethanakul C. Effects of continuous and released compressive force on osteoclastogenesis invitro. J Oral Biol Craniofac Res 2024; 14:164-168. [PMID: 38380224 PMCID: PMC10876609 DOI: 10.1016/j.jobcr.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/30/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Objective Compressive force has been found to be catabolic to alveolar bone during orthodontic tooth movement. This study quantified the fusion of mononuclear RAW 264.7 cells (a murine osteoclastic-like cell line) into multinucleated osteoclasts under a hydrostatic pressure-generated mechanical compression-the new model of various magnitudes and durations. Methods RAW 264.7 cells were subjected to 0.3, 0.6 or 0.9 g/cm2 of compressive force by an acrylic cylinder custom-made by laser cutting or no compressive force for 4 days during osteoclastogenic induction. TRAP-positive multinucleated cells were quantified. For the release from force experiment, osteoclastogenesis was induced by 0.6 g/cm2 mechanical stimuli for 0, 1, 2, 3 or 4 days. Cell viability, TRAP-positive multinucleated cells, DCSTAMP and Cathepsin K (CTSK) gene expression were evaluated 4 days after release from force. Results Compressive force at 0.6 and 0.9 g/cm2 significantly increase the number of TRAP-positive multinucleated cells (P < 0.05). Release from continuous mechanical compression after 4 days significantly elevated the number of TRAP-positive multinucleated cells and DCSTAMP and CTSK mRNA expression, with no adverse effects on cell viability (P < 0.05). Conclusions Continuous stimulation with compressive force induced osteoclastogenesis in RAW 264.7 cells by enhancing DCSTAMP and CTSK expression, which provides new understanding of bone remodeling during orthodontic treatment.
Collapse
Affiliation(s)
| | - Sumit Suamphan
- School of Dentistry, Maefahluang University, Chiangrai, 57100, Thailand
| | - Suwanna Jitpukdeebodintra
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Chidchanok Leethanakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
20
|
Xiang Y, Zhang M, Hu Y, Wang L, Xiao X, Yin F, Cao X, Sui M, Yao Y. Epigenetic modifications of 45S rDNA associates with the disruption of nucleolar organisation during Cd stress response in Pakchoi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115859. [PMID: 38157795 DOI: 10.1016/j.ecoenv.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The role of the nucleolus in Pakchoi response to Cd stress remains largely unknown. In this work, we focus on exploring the underling mechanism between nucleolus disruption and epigenetic modification in Cd stressed-Pakchoi. Our results indicated that the proportion of nucleolus disruption, decondensation of 45 S rDNA chromatin, and a simultaneous increase in 5' external transcribed spacer region (ETS) transcription were observed with increasing Cd concentration, accompanied by genome-wide alterations in the levels of histone acetylation and methylation. Further results showed that Cd treatment exhibited a significant increase in H3K9ac, H4K5ac, and H3K9me2 levels occurred in promoter regions of the 45 S rDNA. Additionally, DNA methylation assays in the 45 S rDNA promoter region revealed that individual site-specific hypomethylation may be engaged in the activation of 45 S rDNA transcription. Our study provides some molecular mechanisms for the linkage between Cd stress, rDNA epigenetic modifications, and nucleolus disintegration in plants.
Collapse
Affiliation(s)
- Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming Zhang
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Yuanfeng Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
21
|
Shivashankar GV. Mechanical forces and the 3D genome. Curr Opin Struct Biol 2023; 83:102728. [PMID: 37948897 DOI: 10.1016/j.sbi.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Traditionally, the field of genomics has been studied from a biochemical perspective. Besides chemical influences, cells are subject to a variety of mechanical signals from their surrounding tissue microenvironment. These mechanical signals can not only cause changes to a cell's physical structure but can also lead to alterations in their genomes and gene expression programs. Understanding the mechanical control of genome organization and expression may provide a new perspective on gene regulation.
Collapse
|
22
|
Beedle AE, Jaganathan A, Albajar-Sigalés A, Yavitt FM, Bera K, Andreu I, Granero-Moya I, Zalvidea D, Kechagia Z, Wiche G, Trepat X, Ivaska J, Anseth KS, Shenoy VB, Roca-Cusachs P. Fibrillar adhesion dynamics govern the timescales of nuclear mechano-response via the vimentin cytoskeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566191. [PMID: 37986921 PMCID: PMC10659263 DOI: 10.1101/2023.11.08.566191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cell nucleus is continuously exposed to external signals, of both chemical and mechanical nature. To ensure proper cellular response, cells need to regulate not only the transmission of these signals, but also their timing and duration. Such timescale regulation is well described for fluctuating chemical signals, but if and how it applies to mechanical signals reaching the nucleus is still unknown. Here we demonstrate that the formation of fibrillar adhesions locks the nucleus in a mechanically deformed conformation, setting the mechanical response timescale to that of fibrillar adhesion remodelling (~1 hour). This process encompasses both mechanical deformation and associated mechanotransduction (such as via YAP), in response to both increased and decreased mechanical stimulation. The underlying mechanism is the anchoring of the vimentin cytoskeleton to fibrillar adhesions and the extracellular matrix through plectin 1f, which maintains nuclear deformation. Our results reveal a mechanism to regulate the timescale of mechanical adaptation, effectively setting a low pass filter to mechanotransduction.
Collapse
Affiliation(s)
- Amy E.M. Beedle
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Physics, King’s College London, London WC2R 2LS, UK
| | - Anuja Jaganathan
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Aina Albajar-Sigalés
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Dobryna Zalvidea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Vivek B. Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Mishra R, Hannebelle M, Patil VP, Dubois A, Garcia-Mouton C, Kirsch GM, Jan M, Sharma K, Guex N, Sordet-Dessimoz J, Perez-Gil J, Prakash M, Knott GW, Dhar N, McKinney JD, Thacker VV. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023; 186:5135-5150.e28. [PMID: 37865090 PMCID: PMC10642369 DOI: 10.1016/j.cell.2023.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) cultured axenically without detergent forms biofilm-like cords, a clinical identifier of virulence. In lung-on-chip (LoC) and mouse models, cords in alveolar cells contribute to suppression of innate immune signaling via nuclear compression. Thereafter, extracellular cords cause contact-dependent phagocyte death but grow intercellularly between epithelial cells. The absence of these mechanopathological mechanisms explains the greater proportion of alveolar lesions with increased immune infiltration and dissemination defects in cording-deficient Mtb infections. Compression of Mtb lipid monolayers induces a phase transition that enables mechanical energy storage. Agent-based simulations demonstrate that the increased energy storage capacity is sufficient for the formation of cords that maintain structural integrity despite mechanical perturbation. Bacteria in cords remain translationally active despite antibiotic exposure and regrow rapidly upon cessation of treatment. This study provides a conceptual framework for the biophysics and function in tuberculosis infection and therapy of cord architectures independent of mechanisms ascribed to single bacteria.
Collapse
Affiliation(s)
- Richa Mishra
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Hannebelle
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anaëlle Dubois
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Gabriela M Kirsch
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maxime Jan
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Kunal Sharma
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Centre, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Centre, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jesus Perez-Gil
- Department of Biochemistry, University Complutense Madrid, 28040 Madrid, Spain
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Graham W Knott
- BioElectron Microscopy Facility, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - John D McKinney
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
24
|
Wang X, Agrawal V, Dunton CL, Liu Y, Virk RKA, Patel PA, Carter L, Pujadas EM, Li Y, Jain S, Wang H, Ni N, Tsai HM, Rivera-Bolanos N, Frederick J, Roth E, Bleher R, Duan C, Ntziachristos P, He TC, Reid RR, Jiang B, Subramanian H, Backman V, Ameer GA. Chromatin reprogramming and bone regeneration in vitro and in vivo via the microtopography-induced constriction of cell nuclei. Nat Biomed Eng 2023; 7:1514-1529. [PMID: 37308586 PMCID: PMC10804399 DOI: 10.1038/s41551-023-01053-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Cody L Dunton
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Ranya K A Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Priyam A Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucas Carter
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Emily M Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Yue Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hsiu-Ming Tsai
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Nancy Rivera-Bolanos
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Eric Roth
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, USA
| | - Reiner Bleher
- Department of Materials Sciences and Engineering, Northwestern University, Evanston, IL, USA
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Panagiotis Ntziachristos
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tong Chuan He
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Bin Jiang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hariharan Subramanian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Chemistry of Life Process Institute, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Molugu K, Khajanchi N, Lazzarotto CR, Tsai SQ, Saha K. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. CRISPR J 2023; 6:473-485. [PMID: 37676985 PMCID: PMC10611976 DOI: 10.1089/crispr.2023.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Namita Khajanchi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
27
|
Li Y, Zhong Z, Xu C, Wu X, Li J, Tao W, Wang J, Du Y, Zhang S. 3D micropattern force triggers YAP nuclear entry by transport across nuclear pores and modulates stem cells paracrine. Natl Sci Rev 2023; 10:nwad165. [PMID: 37457331 PMCID: PMC10347367 DOI: 10.1093/nsr/nwad165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Biophysical cues of the cellular microenvironment tremendously influence cell behavior by mechanotransduction. However, it is still unclear how cells sense and transduce the mechanical signals from 3D geometry to regulate cell function. Here, the mechanotransduction of human mesenchymal stem cells (MSCs) triggered by 3D micropatterns and its effect on the paracrine of MSCs are systematically investigated. Our findings show that 3D micropattern force could influence the spatial reorganization of the cytoskeleton, leading to different local forces which mediate nucleus alteration such as orientation, morphology, expression of Lamin A/C and chromatin condensation. Specifically, in the triangular prism and cuboid micropatterns, the ordered F-actin fibers are distributed over and fully transmit compressive forces to the nucleus, which results in nuclear flattening and stretching of nuclear pores, thus enhancing the nuclear import of YES-associated protein (YAP). Furthermore, the activation of YAP significantly enhances the paracrine of MSCs and upregulates the secretion of angiogenic growth factors. In contrast, the fewer compressive forces on the nucleus in cylinder and cube micropatterns cause less YAP entering the nucleus. The skin repair experiment provides the first in vivo evidence that enhanced MSCs paracrine by 3D geometry significantly promotes tissue regeneration. The current study contributes to understanding the in-depth mechanisms of mechanical signals affecting cell function and provides inspiration for innovative design of biomaterials.
Collapse
Affiliation(s)
| | | | - Cunjing Xu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xiaodan Wu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Weiyong Tao
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan430074, China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | | | | |
Collapse
|
28
|
Sun J, Chen J, Amar K, Wu Y, Jiang M, Wang N. LAP2β transmits force to upregulate genes via chromatin domain stretching but not compression. Acta Biomater 2023; 163:326-338. [PMID: 34700042 PMCID: PMC9033892 DOI: 10.1016/j.actbio.2021.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
There is increasing evidence that force impacts almost every aspect of cells and tissues in physiology and disease including gene regulation. However, the molecular pathway of force transmission from the nuclear lamina to the chromatin remain largely elusive. Here we employ two different approaches of a local stress on cell apical surface via an RGD (Arg-Gly-Asp)-coated magnetic bead and whole cell deformation at cell basal surface via uniaxial or biaxial deformation of a fibronectin-coated flexible polydimethylsiloxane substrate. We find that nuclear protein LAP2β mediates force transmission from the nuclear lamina to the chromatin. Knocking down LAP2β increases spontaneous movements of the chromatin by reducing tethering of the chromatin and substantially inhibits the magnetic bead-stress or the substrate-deformation induced chromatin domain stretching and the ensuing dihydrofolate reductase (DHFR) gene upregulation. Analysis of DHFR gene-containing chromatin domain alignments along or perpendicular to the direction of the stretching/compressing reveals that the chromatin domain must be stretched and not compressed in order for the gene to be rapidly upregulated. Together these results suggest that external-load induced rapid transcription upregulation originates from chromatin domain stretching but not compressing and depends on the molecular force transmission pathway of LAP2β. STATEMENT OF SIGNIFICANCE: How force regulates gene expression has been elusive. Here we show that the orientation of the chromatin domain relative to the stress direction is crucial in determining if the chromatin domain will be stretched or compressed in response to a cell surface loading. We also show that nuclear protein Lap2b is a critical molecule that mediates force transmission from the nuclear laminar to the chromatin to regulate gene transcription. This study reveals the molecular force transmission pathway for force-induced gene regulation.
Collapse
Affiliation(s)
- Jian Sun
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Kshitij Amar
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
| |
Collapse
|
29
|
Atcha H, Choi YS, Chaudhuri O, Engler AJ. Getting physical: Material mechanics is an intrinsic cell cue. Cell Stem Cell 2023; 30:750-765. [PMID: 37267912 PMCID: PMC10247187 DOI: 10.1016/j.stem.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
31
|
Alisafaei F, Moheimani H, Elson EL, Genin GM. A nuclear basis for mechanointelligence in cells. Proc Natl Acad Sci U S A 2023; 120:e2303569120. [PMID: 37126697 PMCID: PMC10175757 DOI: 10.1073/pnas.2303569120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Farid Alisafaei
- NSF Science and Technology Center for Engineering MechanoBiology and Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ07102
| | - Hamidreza Moheimani
- NSF Science and Technology Center for Engineering MechanoBiology, and Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Elliot L. Elson
- NSF Science and Technology Center for Engineering MechanoBiology, and Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering MechanoBiology, and Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
32
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
33
|
Frittoli E, Palamidessi A, Iannelli F, Zanardi F, Villa S, Barzaghi L, Abdo H, Cancila V, Beznoussenko GV, Della Chiara G, Pagani M, Malinverno C, Bhattacharya D, Pisati F, Yu W, Galimberti V, Bonizzi G, Martini E, Mironov AA, Gioia U, Ascione F, Li Q, Havas K, Magni S, Lavagnino Z, Pennacchio FA, Maiuri P, Caponi S, Mattarelli M, Martino S, d'Adda di Fagagna F, Rossi C, Lucioni M, Tancredi R, Pedrazzoli P, Vecchione A, Petrini C, Ferrari F, Lanzuolo C, Bertalot G, Nader G, Foiani M, Piel M, Cerbino R, Giavazzi F, Tripodo C, Scita G. Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer. NATURE MATERIALS 2023; 22:644-655. [PMID: 36581770 PMCID: PMC10156599 DOI: 10.1038/s41563-022-01431-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/02/2022] [Indexed: 05/05/2023]
Abstract
The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.
Collapse
Affiliation(s)
| | | | - Fabio Iannelli
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Stefano Villa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
- Max Plank Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | - Hind Abdo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | | | | | - Massimiliano Pagani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
| | | | | | - Federica Pisati
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A*STAR, Singapore, & Bioinformatics Institute, A*STAR, Singapore, Singapore
| | | | | | | | | | - Ubaldo Gioia
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Kristina Havas
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Serena Magni
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Zeno Lavagnino
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Paolo Maiuri
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | | | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, Perugia, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Chiara Rossi
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marco Lucioni
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Richard Tancredi
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- S.C. Oncologia Medica, ASST Melegnano e della Martesana, Ospedale Uboldo, Cernusco sul Naviglio, Milan, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Roma, La Sapienza, Rome, Italy
| | | | - Francesco Ferrari
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Chiara Lanzuolo
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
- National Institute of Molecular Genetics Romeo and Enrica Invernizzi, INGM, Milan, Italy
| | - Giovanni Bertalot
- Department of Pathology, S. Chiara Hospital, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
- CISMed University of Trento, University of Trento, Trento, Italy
| | - Guilherme Nader
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR-144, Paris, France
- Cell Pathology Children's Hospital of Philadelphia, Research Institute Department of Pathology and Laboratory Medicine University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR-144, Paris, France
| | - Roberto Cerbino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Italy.
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy.
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
34
|
Scott AK, Rafuse M, Neu CP. Mechanically induced alterations in chromatin architecture guide the balance between cell plasticity and mechanical memory. Front Cell Dev Biol 2023; 11:1084759. [PMID: 37143893 PMCID: PMC10151697 DOI: 10.3389/fcell.2023.1084759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
Phenotypic plasticity, or adaptability, of a cell determines its ability to survive and function within changing cellular environments. Changes in the mechanical environment, ranging from stiffness of the extracellular matrix (ECM) to physical stress such as tension, compression, and shear, are critical environmental cues that influence phenotypic plasticity and stability. Furthermore, an exposure to a prior mechanical signal has been demonstrated to play a fundamental role in modulating phenotypic changes that persist even after the mechanical stimulus is removed, creating stable mechanical memories. In this mini review, our objective is to highlight how the mechanical environment alters both phenotypic plasticity and stable memories through changes in chromatin architecture, mainly focusing on examples in cardiac tissue. We first explore how cell phenotypic plasticity is modulated in response to changes in the mechanical environment, and then connect the changes in phenotypic plasticity to changes in chromatin architecture that reflect short-term and long-term memories. Finally, we discuss how elucidating the mechanisms behind mechanically induced chromatin architecture that lead to cell adaptations and retention of stable mechanical memories could uncover treatment methods to prevent mal-adaptive permanent disease states.
Collapse
Affiliation(s)
- Adrienne K. Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Michael Rafuse
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
35
|
Toscano-Marquez F, Romero Y, Espina-Ordoñez M, Cisneros J. Absence of HDAC3 by Matrix Stiffness Promotes Chromatin Remodeling and Fibroblast Activation in Idiopathic Pulmonary Fibrosis. Cells 2023; 12:cells12071020. [PMID: 37048093 PMCID: PMC10093275 DOI: 10.3390/cells12071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease characterized by progressive and irreversible lung scarring associated with persistent activation of fibroblasts. Epigenetics could integrate diverse microenvironmental signals, such as stiffness, to direct persistent fibroblast activation. Histone modifications by deacetylases (HDAC) may play an essential role in the gene expression changes involved in the pathological remodeling of the lung. Particularly, HDAC3 is crucial for maintaining chromatin and regulating gene expression, but little is known about its role in IPF. In the study, control and IPF-derived fibroblasts were used to determine the influence of HDAC3 on chromatin remodeling and gene expression associated with IPF signature. Additionally, the cells were grown on hydrogels to mimic the stiffness of a fibrotic lung. Our results showed a decreased HDAC3 in the nucleus of IPF fibroblasts, which correlates with changes in nucleus size and heterochromatin loss. The inhibition of HDAC3 with a pharmacological inhibitor causes hyperacetylation of H3K9 and provokes an increased expression of Col1A1, ACTA2, and p21. Comparable results were found in hydrogels, where matrix stiffness promotes the loss of nuclear HDAC3 and increases the profibrotic signature. Finally, latrunculin b was used to confirm that changes by stiffness depend on the mechanotransduction signals. Together, these results suggest that HDAC3 could be a link between epigenetic mechanisms and the fibrotic microenvironment.
Collapse
Affiliation(s)
- Fernanda Toscano-Marquez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Marco Espina-Ordoñez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Cisneros
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
36
|
Shahu L, Chowdhury SR, Lu HP. Single-Molecule Human Nucleosome Spontaneously Ruptures under the Stress of Compressive Force: A New Perspective on Gene Stability and Epigenetic Pathways. J Phys Chem B 2023; 127:37-44. [PMID: 36537668 DOI: 10.1021/acs.jpcb.2c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Force manipulation on the biological entities from living cells to protein molecules has revealed many mechanical details of cell biology from resolving folding and unfolding pathways to finding molecular interaction forces. A nucleosome is the basic repeating unit of chromatin where the histone octamer is wrapped by DNA, important for gene stability and regulation. How the inner side of the DNA gets accessed by other DNA binding molecules has been a puzzle that has been intensively studied and debated, important to epigenetics, gene stability, and regulations. Here we report our observation of spontaneous ruptures of human nucleosomes under pico-Newton (pN) compressive force. The amplitude of the compressive force, a squeezing rather than pulling force, involved in our experiment is tens of pN, which can be thermally available by biological force fluctuation at room temperature and under physiological conditions. This kind of structural rupture can loosen up the DNA around the histone, which in turn makes the DNA accessible to transcription and epigenetic modifications.
Collapse
Affiliation(s)
- Lalita Shahu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - S Roy Chowdhury
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
37
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
38
|
Markov P, Zhu H, Boote C, Blain EJ. Delayed reorganisation of F-actin cytoskeleton and reversible chromatin condensation in scleral fibroblasts under simulated pathological strain. Biochem Biophys Rep 2022; 32:101338. [PMID: 36123992 PMCID: PMC9482111 DOI: 10.1016/j.bbrep.2022.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mechanical loading regulates the functional capabilities of the ocular system, particularly in the sclera (‘white of the eye’) – the principal load-bearing tissue of the ocular globe. Resident fibroblasts of the scleral eye wall are continuously subjected to fluctuating mechanical strains arising from eye movements, cerebrospinal fluid pressure and, most influentially, intra-ocular pressure (IOP). Whilst fibroblasts are hypothesised to actively participate in scleral biomechanics, to date limited information has been reported on how the macroscopic stresses and strains are transmitted via their cytoskeletal networks. In this study, the effect of applying either a ‘physiological load’ (simulating healthy IOP) or a ‘pathological load’ (simulating an elevated glaucomatous IOP) to bovine scleral fibroblasts, as a model of human glaucoma, was conducted to characterise cytoskeletal organisation, chromatin condensation and cell dimensions using immunofluorescence confocal microscopy. Quantification of cell parameters and cytoskeletal element anisotropy were subsequently performed using FibrilTool, and chromatin condensation parameter assessment through a bespoke MATLAB script. The novel findings suggest that physiological load-induced F-actin rearrangement is transient, whereas pathological load, recapitulating in vivo glaucomatous IOP levels, had a reversible and inhibitory influence on remodelling of the cytoskeletal architecture and, further, induction of chromatin condensation. Ultimately, this could compromise cell behaviour. These findings could provide valuable insight into the mechanism(s) used by scleral fibroblasts to mechanically adapt to support biomechanical tissue integrity, and how it could be potentially modified for therapeutic avenues targeting mechanically mediated ocular pathologies such as glaucoma. Physiological strain induced a transient F-actin rearrangement in scleral fibroblasts. In contrast, pathological strain reversibly delayed F-actin rearrangement. Vimentin and β-tubulin networks were largely unaffected by strain regimens. Pathological strain reversibly increased chromatin condensation parameter. Pathological strain may induce ‘inhibition delay’ to confer cytoprotection.
Collapse
|
39
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
40
|
Zhang Y, Dong Q, An Q, Zhang C, Mohagheghian E, Niu B, Qi F, Wei F, Chen S, Chen X, Wang A, Cao X, Wang N, Chen J. Synthetic Retinoid Kills Drug-Resistant Cancer Stem Cells via Inducing RARγ-Translocation-Mediated Tension Reduction and Chromatin Decondensation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203173. [PMID: 36031407 PMCID: PMC9631059 DOI: 10.1002/advs.202203173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/16/2022] [Indexed: 05/11/2023]
Abstract
A recently developed synthetic retinoid abrogates proliferation and induces apoptosis of drug-resistant malignant-cancer-stem-cell-like cells. However, the underlying mechanisms of how the synthetic retinoid induces cancer-stem-cell-like cell tumor-repopulating cell (TRC) apoptosis are elusive. Here, it is shown that although the retinoid and conventional anticancer drugs cisplatin, all-trans retinoic acid, and tazarotene all inhibit cytoskeletal tension and decondense chromatin prior to inducing TRC apoptosis, half-maximal inhibitory concentration of the retinoid is 20-fold lower than those anticancer drugs. The synthetic retinoid induces retinoic acid receptor gamma (RARγ) translocation from the nucleus to the cytoplasm, leading to reduced RARγ binding to Cdc42 promoter and Cdc42 downregulation, which decreases filamentous-actin (F-actin) and inhibits cytoskeletal tension. Elevating F-actin or upregulating histone 3 lysine 9 trimethylation decreases retinoid-induced DNA damage and apoptosis of TRCs. The combinatorial treatment with a chromatin decondensation molecule and the retinoid inhibits tumor metastasis in mice more effectively than the synthetic retinoid alone. These findings suggest a strategy of lowering cell tension and decondensing chromatin to enhance DNA damage to abrogate metastasis of cancer-stem-cell-like cells with high efficacy.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Quanlin An
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Chumei Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Erfan Mohagheghian
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Bing Niu
- School of Life SciencesShanghai University99 Shangda RoadShanghai200444China
| | - Feng Qi
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xinman Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Anqi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Ning Wang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of EducationLaboratory for Cellular Biomechanics and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074China
| |
Collapse
|
41
|
Efremov AK, Hovan L, Yan J. Nucleus size and its effect on nucleosome stability in living cells. Biophys J 2022; 121:4189-4204. [PMID: 36146936 PMCID: PMC9675033 DOI: 10.1016/j.bpj.2022.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
DNA architectural proteins play a major role in organization of chromosomal DNA in living cells by packaging it into chromatin, whose spatial conformation is determined by an intricate interplay between the DNA-binding properties of architectural proteins and physical constraints applied to the DNA by a tight nuclear space. Yet, the exact effects of the nucleus size on DNA-protein interactions and chromatin structure currently remain obscure. Furthermore, there is even no clear understanding of molecular mechanisms responsible for the nucleus size regulation in living cells. To find answers to these questions, we developed a general theoretical framework based on a combination of polymer field theory and transfer-matrix calculations, which showed that the nucleus size is mainly determined by the difference between the surface tensions of the nuclear envelope and the endoplasmic reticulum membrane as well as the osmotic pressure exerted by cytosolic macromolecules on the nucleus. In addition, the model demonstrated that the cell nucleus functions as a piezoelectric element, changing its electrostatic potential in a size-dependent manner. This effect has been found to have a profound impact on stability of nucleosomes, revealing a previously unknown link between the nucleus size and chromatin structure. Overall, our study provides new insights into the molecular mechanisms responsible for regulation of the nucleus size, as well as the potential role of nuclear organization in shaping the cell response to environmental cues.
Collapse
Affiliation(s)
- Artem K Efremov
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Ladislav Hovan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Song Y, Soto J, Chen B, Hoffman T, Zhao W, Zhu N, Peng Q, Liu L, Ly C, Wong PK, Wang Y, Rowat AC, Kurdistani SK, Li S. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. NATURE MATERIALS 2022; 21:1191-1199. [PMID: 35927431 PMCID: PMC9529815 DOI: 10.1038/s41563-022-01312-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Weikang Zhao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Qin Peng
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Longwei Liu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Chau Ly
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
44
|
Danielsson BE, Tieu KV, Spagnol ST, Vu KK, Cabe JI, Raisch TB, Dahl KN, Conway DE. Chromatin condensation regulates endothelial cell adaptation to shear stress. Mol Biol Cell 2022; 33:ar101. [PMID: 35895088 DOI: 10.1091/mbc.e22-02-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular endothelial cells (ECs) have been shown to be mechanoresponsive to the forces of blood flow, including fluid shear stress (FSS), the frictional force of blood on the vessel wall. Recent reports have shown that FSS induces epigenetic changes in chromatin. Epigenetic changes, such as methylation and acetylation of histones, not only affect gene expression but also affect chromatin condensation, which can alter nuclear stiffness. Thus, we hypothesized that changes in chromatin condensation may be an important component for how ECs adapt to FSS. Using both in vitro and in vivo models of EC adaptation to FSS, we observed an increase in histone acetylation and a decrease in histone methylation in ECs adapted to flow as compared with static. Using small molecule drugs, as well as vascular endothelial growth factor, to change chromatin condensation, we show that decreasing chromatin condensation enables cells to more quickly align to FSS, whereas increasing chromatin condensation inhibited alignment. Additionally, we show data that changes in chromatin condensation can also prevent or increase DNA damage, as measured by phosphorylation of γH2AX. Taken together, these results indicate that chromatin condensation, and potentially by extension nuclear stiffness, is an important aspect of EC adaptation to FSS.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Katie V Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kira K Vu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Tristan B Raisch
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.,Forensics Department, Thornton Tomasetti, New York City, NY 10271
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284.,Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210.,Center for Cancer Engineering, and Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
45
|
Jana A, Tran A, Gill A, Kiepas A, Kapania RK, Konstantopoulos K, Nain AS. Sculpting Rupture-Free Nuclear Shapes in Fibrous Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203011. [PMID: 35863910 PMCID: PMC9443471 DOI: 10.1002/advs.202203011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 05/07/2023]
Abstract
Cytoskeleton-mediated force transmission regulates nucleus morphology. How nuclei shaping occurs in fibrous in vivo environments remains poorly understood. Here suspended nanofiber networks of precisely tunable (nm-µm) diameters are used to quantify nucleus plasticity in fibrous environments mimicking the natural extracellular matrix. Contrary to the apical cap over the nucleus in cells on 2-dimensional surfaces, the cytoskeleton of cells on fibers displays a uniform actin network caging the nucleus. The role of contractility-driven caging in sculpting nuclear shapes is investigated as cells spread on aligned single fibers, doublets, and multiple fibers of varying diameters. Cell contractility increases with fiber diameter due to increased focal adhesion clustering and density of actin stress fibers, which correlates with increased mechanosensitive transcription factor Yes-associated protein (YAP) translocation to the nucleus. Unexpectedly, large- and small-diameter fiber combinations lead to teardrop-shaped nuclei due to stress fiber anisotropy across the cell. As cells spread on fibers, diameter-dependent nuclear envelope invaginations that run the nucleus's length are formed at fiber contact sites. The sharpest invaginations enriched with heterochromatin clustering and sites of DNA repair are insufficient to trigger nucleus rupture. Overall, the authors quantitate the previously unknown sculpting and adaptability of nuclei to fibrous environments with pathophysiological implications.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Avery Tran
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Amritpal Gill
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Alexander Kiepas
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Rakesh K. Kapania
- Kevin T. Crofton Department of Aerospace EngineeringVirginia TechBlacksburgVA24061USA
| | | | - Amrinder S. Nain
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| |
Collapse
|
46
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
47
|
Hu D, Dong Z, Li B, Lu F, Li Y. Mechanical Force Directs Proliferation and Differentiation of Stem Cells. TISSUE ENGINEERING PART B: REVIEWS 2022; 29:141-150. [PMID: 35979892 DOI: 10.1089/ten.teb.2022.0052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cells have attracted much attention in the field of regeneration due to their unique ability to promote regeneration. Among the many approaches used to regulate directed proliferation and differentiation of stem cells, application of mechanical forces is safe, simple, and easy to implement, all of which are advantageous to practical applications. In this review, the mechanisms of mechanical regulation of stem cell proliferation and differentiation are summarized with emphasis on force transduction pathways from the extracellular matrix to the nucleus. Prospects for future clinical applications are also discussed. In conclusion, through specific signaling pathways, mechanical signals ultimately affect gene expression and thus guide cell fate. Mechanical factors can regulate proliferation and differentiation of stem cells through signaling pathways, a greater understanding of which will contribute to future research and applications of cell regeneration therapy. Impact statement Mechanical mechanics is vital for the regulation of cell fate; especially in the field of regenerative medicine, mechanical control has characteristics that are simple and comparable. Mechanically regulated pathways exist widely in cells and are distributed at various structural levels of cells. In this review, we categorized the mechanical regulatory pathways through the clue of the mechanical transmission. We tried to include some newly researched pathways, such as Piezo-related pathways, to show the recent vigorous development in this field.
Collapse
Affiliation(s)
- Delin Hu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ziqing Dong
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Bin Li
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Feng Lu
- Southern Medical University Nanfang Hospital, Department of Plastic and Cosmetic Surgery, Guangzhou, Guangdong, China,
| | - Ye Li
- Southern Medical University Nanfang Hospital, Plastic and Cosmetic Surgery, guangzhou, Guangzhou, China, 510515,
| |
Collapse
|
48
|
Khalil K, Eon A, Janody F. Cell Architecture-Dependent Constraints: Critical Safeguards to Carcinogenesis. Int J Mol Sci 2022; 23:8622. [PMID: 35955754 PMCID: PMC9369145 DOI: 10.3390/ijms23158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal cells display great diversity in their shape. These morphological characteristics result from crosstalk between the plasma membrane and the force-generating capacities of the cytoskeleton macromolecules. Changes in cell shape are not merely byproducts of cell fate determinants, they also actively drive cell fate decisions, including proliferation and differentiation. Global and local changes in cell shape alter the transcriptional program by a multitude of mechanisms, including the regulation of physical links between the plasma membrane and the nuclear envelope and the mechanical modulation of cation channels and signalling molecules. It is therefore not surprising that anomalies in cell shape contribute to several diseases, including cancer. In this review, we discuss the possibility that the constraints imposed by cell shape determine the behaviour of normal and pro-tumour cells by organizing the whole interconnected regulatory network. In turn, cell behaviour might stabilize cells into discrete shapes. However, to progress towards a fully transformed phenotype and to acquire plasticity properties, pro-tumour cells might need to escape these cell shape restrictions. Thus, robust controls of the cell shape machinery may represent a critical safeguard against carcinogenesis.
Collapse
Affiliation(s)
- Komal Khalil
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Master Programme in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Alice Eon
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Magistère Européen de Génétique, Université Paris Cité, 5 Rue Thomas Mann, 75013 Paris, France
| | - Florence Janody
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; (K.K.); (A.E.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
49
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
50
|
Cimmino C, Netti PA, Ventre M. A switchable light-responsive azopolymer conjugating protein micropatterns with topography for mechanobiological studies. Front Bioeng Biotechnol 2022; 10:933410. [PMID: 35935479 PMCID: PMC9355574 DOI: 10.3389/fbioe.2022.933410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However, conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Current methods to fabricate dynamic platforms usually rely on complex chemical strategies or require specialized apparatuses. Also, with these methods, the integration of dynamic signals acting on different length scales is not straightforward, whereas, in some applications, it might be beneficial to act on both a microscale level, that is, cell shape, and a nanoscale level, that is, cell adhesions. Here, we exploited a confocal laser-based technique on a light-responsive azopolymer displaying micropatterns of adhesive islands. The laser light promotes a directed mass migration and the formation of submicrometric topographic relieves. Also, by changing the surface chemistry, the surfacing topography affects cell spreading and shape. This method enabled us to monitor in a non-invasive manner the dynamic changes in focal adhesions, cytoskeleton structures, and nucleus conformation that followed the changes in the adhesive characteristic of the substrate. Focal adhesions reconfigured after the surfacing of the topography, and the actin filaments reoriented to coalign with the newly formed adhesive island. Changes in cell morphology also affected nucleus shape, chromatin conformation, and cell mechanics with different timescales. The reported strategy can be used to investigate mechanotransduction-related events dynamically by controlling cell adhesion at cell shape and focal adhesion levels. The integrated technique enables achieving a submicrometric resolution in a facile and cost-effective manner.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- *Correspondence: Maurizio Ventre,
| |
Collapse
|