1
|
Magnan B, Chen XH, Rashid S, Minard A, Chau W, Uyesugi T, Edwards RA, Panigrahi R, Glover JNM, LaPointe P, Spyracopoulos L. Asymmetric Dynamics Drive Catalytic Activation of the Hsp90 Chaperone. J Phys Chem B 2024; 128:8388-8399. [PMID: 39186634 DOI: 10.1021/acs.jpcb.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state. Intriguingly, the overall ATPase activity of dimeric Hsp90 can be asymmetrically enhanced through a single subunit when Hsp90 is bound to a cochaperone or when Hsp90 is composed of one active and one catalytically defunct subunit as a heterodimer. To explore the mechanism of asymmetric Hsp90 activation, we designed a subunit bearing N-terminal ATPase mutations that demonstrate increased intra- and interdomain dynamics. Using intact Hsp90 and various N-terminal and middle domain constructs, we blended 19F NMR spectroscopy, molecular dynamics (MD) simulations, and ATPase assays to show that within the context of heterodimeric Hsp90, the conformationally dynamic subunit stimulates the ATPase activity of the normal subunit. The contrasting dynamic properties of the subunits within heterodimeric Hsp90 provide a mechanistic framework to understand the molecular basis for asymmetric Hsp90 activation and its importance for the biological function of Hsp90.
Collapse
Affiliation(s)
- Breanna Magnan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Xu Hong Chen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Alissa Minard
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - William Chau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Toshi Uyesugi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
2
|
Fernandez-Ciruelos B, Albanese M, Adhav A, Solomin V, Ritchie-Martinez A, Taverne F, Velikova N, Jirgensons A, Marina A, Finn PW, Wells JM. Repurposing Hsp90 inhibitors as antimicrobials targeting two-component systems identifies compounds leading to loss of bacterial membrane integrity. Microbiol Spectr 2024; 12:e0014624. [PMID: 38917423 PMCID: PMC11302729 DOI: 10.1128/spectrum.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
The discovery of antimicrobials with novel mechanisms of action is crucial to tackle the foreseen global health crisis due to antimicrobial resistance. Bacterial two-component signaling systems (TCSs) are attractive targets for the discovery of novel antibacterial agents. TCS-encoding genes are found in all bacterial genomes and typically consist of a sensor histidine kinase (HK) and a response regulator. Due to the conserved Bergerat fold in the ATP-binding domain of the TCS HK and the human chaperone Hsp90, there has been much interest in repurposing inhibitors of Hsp90 as antibacterial compounds. In this study, we explore the chemical space of the known Hsp90 inhibitor scaffold 3,4-diphenylpyrazole (DPP), building on previous literature to further understand their potential for HK inhibition. Six DPP analogs inhibited HK autophosphorylation in vitro and had good antimicrobial activity against Gram-positive bacteria. However, mechanistic studies showed that their antimicrobial activity was related to damage of bacterial membranes. In addition, DPP analogs were cytotoxic to human embryonic kidney cell lines and induced the cell arrest phenotype shown for other Hsp90 inhibitors. We conclude that these DPP structures can be further optimized as specific disruptors of bacterial membranes providing binding to Hsp90 and cytotoxicity are lowered. Moreover, the X-ray crystal structure of resorcinol, a substructure of the DPP derivatives, bound to the HK CheA represents a promising starting point for the fragment-based design of novel HK inhibitors. IMPORTANCE The discovery of novel antimicrobials is of paramount importance in tackling the imminent global health crisis of antimicrobial resistance. The discovery of novel antimicrobials with novel mechanisms of actions, e.g., targeting bacterial two-component signaling systems, is crucial to bypass existing resistance mechanisms and stimulate pharmaceutical innovations. Here, we explore the possible repurposing of compounds developed in cancer research as inhibitors of two-component systems and investigate their off-target effects such as bacterial membrane disruption and toxicity. These results highlight compounds that are promising for further development of novel bacterial membrane disruptors and two-component system inhibitors.
Collapse
Affiliation(s)
- Blanca Fernandez-Ciruelos
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Marco Albanese
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Anmol Adhav
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Vitalii Solomin
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Arabela Ritchie-Martinez
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Femke Taverne
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Nadya Velikova
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group, Latvian Institute of Organic Synthesis (LIOS), Riga, Latvia
| | - Alberto Marina
- Macromolecular Crystallography Group, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Paul W. Finn
- Oxford Drug Design (ODD), Oxford Centre for Innovation, Oxford, United Kingdom
- School of Computer Science, University of Buckingham, Buckingham, United Kingdom
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands
| |
Collapse
|
3
|
Zhang G, Zhang C, Cai M, Luo C, Zhu F, Liang Z. FuncPhos-STR: An integrated deep neural network for functional phosphosite prediction based on AlphaFold protein structure and dynamics. Int J Biol Macromol 2024; 266:131180. [PMID: 38552697 DOI: 10.1016/j.ijbiomac.2024.131180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Phosphorylation modifications play important regulatory roles in most biological processes. However, the functional assignment for the vast majority of the identified phosphosites remains a major challenge. Here, we provide a deep learning framework named FuncPhos-STR as an online resource, for functional prediction and structural visualization of human proteome-level phosphosites. Based on our reported FuncPhos-SEQ framework, which was built by integrating phosphosite sequence evolution and protein-protein interaction (PPI) information, FuncPhos-STR was developed by further integrating the structural and dynamics information on AlphaFold protein structures. The characterized structural topology and dynamics features underlying functional phosphosites emphasized their molecular mechanism for regulating protein functions. By integrating the structural and dynamics, sequence evolutionary, and PPI network features from protein different dimensions, FuncPhos-STR has advantage over other reported models, with the best AUC value of 0.855. Using FuncPhos-STR, the phosphosites inside the pocket regions are accessible to higher functional scores, theoretically supporting their potential regulatory mechanism. Overall, FuncPhos-STR would accelerate the functional identification of huge unexplored phosphosites, and facilitate the elucidation of their allosteric regulation mechanisms. The web server of FuncPhos-STR is freely available at http://funcptm.jysw.suda.edu.cn/str.
Collapse
Affiliation(s)
- Guangyu Zhang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Cai Zhang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Mingyue Cai
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Fei Zhu
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Rouges C, Asad M, Laurent AD, Marchand P, Le Pape P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms 2023; 11:2837. [PMID: 38137982 PMCID: PMC10745388 DOI: 10.3390/microorganisms11122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Improving the armamentarium to treat invasive candidiasis has become necessary to overcome drug resistance and the lack of alternative therapy. In the pathogenic fungus Candida albicans, the 90-kDa Heat-Shock Protein (Hsp90) has been described as a major regulator of virulence and resistance, offering a promising target. Some human Hsp90 inhibitors have shown activity against Candida spp. in vitro, but host toxicity has limited their use as antifungal drugs. The conservation of Hsp90 across all species leads to selectivity issues. To assess the potential of Hsp90 as a druggable antifungal target, the activity of nine structurally unrelated Hsp90 inhibitors with different binding domains was evaluated against a panel of Candida clinical isolates. The Hsp90 sequences from human and yeast species were aligned. Despite the degree of similarity between human and yeast N-terminal domain residues, the in vitro activities measured for the inhibitors interacting with this domain were not reproducible against all Candida species. Moreover, the inhibitors binding to the C-terminal domain (CTD) did not show any antifungal activity, with the exception of one of them. Given the greater sequence divergence in this domain, the identification of selective CTD inhibitors of fungal Hsp90 could be a promising strategy for the development of innovative antifungal drugs.
Collapse
Affiliation(s)
- Célia Rouges
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Mohammad Asad
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Adèle D. Laurent
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Pascal Marchand
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (C.R.); (P.M.)
| |
Collapse
|
5
|
Szebesczyk A, Słowik J. Heat shock proteins and metal ions - Reaction or interaction? Comput Struct Biotechnol J 2023; 21:3103-3108. [PMID: 37273852 PMCID: PMC10236365 DOI: 10.1016/j.csbj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Heat shock proteins (HSPs) are part of the cell's molecular chaperone system responsible for the proper folding (or refolding) of proteins. They are expressed in cells of a wide variety of organisms, from bacteria and fungi to humans. While some HSPs require metal ions for proper functioning, others are expressed as a response of the organism to either essential or toxic metal ions. Their presence can influence the occurrence of cellular processes, even those as significant as programmed cell death. The development of research methods and structural modeling has enabled increasingly accurate recognition of new HSP functions, including their role in maintaining metal ion homeostasis. Current investigations on the expression of HSPs in response to heavy metal ions include not only the direct effect of these ions on the cell but also analysis of reactive oxygen species (ROS) and the increased production of HSPs with increasing ROS concentration. This minireview contains information about the direct and indirect interactions of heat shock proteins with metal ions, both those of biological importance and heavy metals.
Collapse
|
6
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Fan L, Kishore A, Jansen-Olliges L, Wang D, Stahl F, Psathaki OE, Harre J, Warnecke A, Weder J, Preller M, Zeilinger C. Identification of a Thyroid Hormone Binding Site in Hsp90 with Implications for Its Interaction with Thyroid Hormone Receptor Beta. ACS OMEGA 2022; 7:28932-28945. [PMID: 36033668 PMCID: PMC9404468 DOI: 10.1021/acsomega.2c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments. The binding of TRb to Hsp90 was prevented by T3 or by the thyroid mimetic sobetirome. Purified recombinant TRb trapped Hsp90 from cell lysate or purified Hsp90 in pull-down experiments. The affinity of Hsp90 for TRb was 124 nM. Furthermore, T3 induced the release of bound TRb from Hsp90, which was shown by streptavidin-conjugated quantum dot (SAv-QD) masking assay. The data indicate that the T3 interaction with TRb and Hsp90 may be an amplifier of the cellular stress response by blocking Hsp90 activity.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Anusha Kishore
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Linda Jansen-Olliges
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| | - Dahua Wang
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Frank Stahl
- Institut
für Technische Chemie, Gottfried-Wilhelm-Leibniz
University of Hannover, Hannover 30167, Germany
| | - Olympia Ekaterini Psathaki
- Center
of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück 49076, Germany
| | - Jennifer Harre
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Athanasia Warnecke
- Clinic
for Otorhinolaryngology Surgery, Hannover
Medical School (MHH), Hannover 30625, Germany
| | - Julia Weder
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Matthias Preller
- Institute
for Biophysical Chemistry, Hannover Medical
School, Carl-Neuberg-Straβe
1, Hannover 30625, Germany
- Institute
for Functional Gene Analytics (IFGA), Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, Rheinbach 53359, Germany
| | - Carsten Zeilinger
- BMWZ
(Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Hannover 30167, Germany
| |
Collapse
|
8
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
9
|
Stachowski TR, Fischer M. Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots. J Med Chem 2022; 65:13692-13704. [PMID: 35970514 PMCID: PMC9619398 DOI: 10.1021/acs.jmedchem.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein flexibility is important for ligand binding but
often ignored
in drug design. Considering proteins as ensembles rather than static
snapshots creates opportunities to target dynamic proteins that lack
FDA-approved drugs, such as the human chaperone, heat shock protein
90 (Hsp90). Hsp90α accommodates ligands with a dynamic lid domain,
yet no comprehensive analysis relating lid conformations to ligand
properties is available. To date, ∼300 ligand-bound Hsp90α
crystal structures are deposited in the Protein Data Bank, which enables
us to consider ligand binding as a perturbation of the protein conformational
landscape. By estimating binding site volumes, we classified structures
into distinct major and minor lid conformations. Supported by retrospective
docking, each conformation creates unique hotspots that bind chemically
distinguishable ligands. Clustering revealed insightful exceptions
and the impact of crystal packing. Overall, Hsp90α’s
plasticity provides a cautionary tale of overinterpreting individual
crystal structures and motivates an ensemble-based view of drug design.
Collapse
Affiliation(s)
- Timothy R Stachowski
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
10
|
Fan L, Warnecke A, Weder J, Preller M, Zeilinger C. Triiodothyronine Acts as a Smart Influencer on Hsp90 via a Triiodothyronine Binding Site. Int J Mol Sci 2022; 23:ijms23137150. [PMID: 35806154 PMCID: PMC9266618 DOI: 10.3390/ijms23137150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microarray-based experiments revealed that thyroid hormone triiodothyronine (T3) enhanced the binding of Cy5-labeled ATP on heat shock protein 90 (Hsp90). By molecular docking experiments with T3 on Hsp90, we identified a T3 binding site (TBS) near the ATP binding site on Hsp90. A synthetic peptide encoding HHHHHHRIKEIVKKHSQFIGYPITLFVEKE derived from the TBS on Hsp90 showed, in MST experiments, the binding of T3 at an EC50 of 50 μM. The binding motif can influence the activity of Hsp90 by hindering ATP accessibility or the release of ADP.
Collapse
Affiliation(s)
- Lu Fan
- BMWZ (Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany;
| | - Athanasia Warnecke
- Department for Otorhinolaryngology—Head and Neck Surgery, Hannover Medical School (MHH), 30625 Hannover, Germany;
| | - Julia Weder
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.W.); (M.P.)
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.W.); (M.P.)
- Institute for Functional Gene Analytics (IFGA), University of Applied Sciences Bonn-Rhein-Sieg, Von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Carsten Zeilinger
- BMWZ (Zentrum für Biomolekulare Wirkstoffe), Gottfried-Wilhelm-Leibniz University of Hannover, Schneiderberg 38, 30167 Hannover, Germany;
- Correspondence: ; +49-51176216351
| |
Collapse
|
11
|
Ge H, Du J, Long S, Xia X, Zheng J, Xu N, Yao Q, Fan J, Peng X. Near-Infrared Light Triggered H 2 Generation for Enhanced Photothermal/Photodynamic Therapy against Hypoxic Tumor. Adv Healthc Mater 2022; 11:e2101449. [PMID: 34879433 DOI: 10.1002/adhm.202101449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Indexed: 01/09/2023]
Abstract
The principle of photochemical transformation has shown significant inspiration on phototherapy of solid tumors. However, both photodynamic therapy (PDT) and photothermal therapy (PTT) can induce stress response of tumor cells, which draw the attention in recent. Herein, an asymmetric and lollipop like nanostructure consisting of gold nanorod/titanium dioxide (l-TiO2 -GNR) is developed by controlling single head growth of titanium dioxide (TiO2 ) on gold nanorods (GNR). Through the reasonable utilization of hot electrons of GNR by 808 nm light irradiation, l-TiO2 -GNR perform type I-PDT, mild PTT (48 °C), and H2 therapy which is efficient for hypoxic tumors. In particular, H2 can downregulate both triphosadenine and heat shock protein which are found to be main source of tumor stress response. l-TiO2 -GNR opens a new window for treatment of hypoxic tumor by the perfect synergy of type I-PDT, mild PTT, and H2 therapy.
Collapse
Affiliation(s)
- Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiang Xia
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Jiazhu Zheng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
12
|
Wang RYR, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature 2022; 601:460-464. [PMID: 34937942 PMCID: PMC9179170 DOI: 10.1038/s41586-021-04252-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.
Collapse
Affiliation(s)
- Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Kirschke
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alexander G. Myasnikov
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Present address: Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA,Correspondence and requests for materials should be addressed to David A. Agard.
| |
Collapse
|
13
|
Chen C, Wang YS, Zhang ET, Li GA, Liu WY, Li Y, Jin YH. (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells. Int J Mol Sci 2021; 22:ijms222313170. [PMID: 34884975 PMCID: PMC8658384 DOI: 10.3390/ijms222313170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
(20S) ginsenoside Rh2 (G-Rh2), a major bioactive metabolite of ginseng, effectively inhibits the survival and proliferation of human liver cancer cells. However, its molecular targets and working mechanism remain largely unknown. Excitingly, we screened out heat shock protein 90 alpha (HSP90A), a key regulatory protein associated with liver cancer, as a potential target of (20S) G-Rh2 by phage display analysis and mass spectrometry. The molecular docking and thermal shift analyses demonstrated that (20S) G-Rh2 directly bound to HSP90A, and this binding was confirmed to inhibit the interaction between HSP90A and its co-chaperone, cell division cycle control protein 37 (Cdc37). It is well-known that the HSP90A-Cdc37 system aids in the folding and maturation of cyclin-dependent kinases (CDKs). As expected, CDK4 and CDK6, the two G0-G1 phase promoting kinases as well as CDK2, a key G1-S phase transition promoting kinase, were significantly downregulated with (20S) G-Rh2 treatment, and these downregulations were mediated by the proteasome pathway. In the same condition, the cell cycle was arrested at the G0-G1 phase and cell growth was inhibited significantly by (20S) G-Rh2 treatment. Taken together, this study for the first time reveals that (20S) G-Rh2 exerts its anti-tumor effect by targeting HSP90A and consequently disturbing the HSP90A-Cdc37 chaperone system. HSP90A is frequently overexpressed in human hepatoma cells and the higher expression is closely correlated to the poor prognosis of liver cancer patients. Thus, (20S) G-Rh2 might become a promising alternative drug for liver cancer therapy.
Collapse
|
14
|
Zhao D, Xu YM, Cao LQ, Yu F, Zhou H, Qin W, Li HJ, He CX, Xing L, Zhou X, Li PQ, Jin X, He Y, He JH, Cao HL. Complex Crystal Structure Determination and in vitro Anti-non-small Cell Lung Cancer Activity of Hsp90 N Inhibitor SNX-2112. Front Cell Dev Biol 2021; 9:650106. [PMID: 33855025 PMCID: PMC8039390 DOI: 10.3389/fcell.2021.650106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
SNX-2112, as a promising anticancer lead compound targeting heat shock protein 90 (Hsp90), absence of complex crystal structure of Hsp90N-SNX-2112 hindered further structural optimization and understanding on molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90N-SNX-2112 was successfully determined by X-ray diffraction, resolution limit, 2.14 Å, PDB ID 6LTK, and their molecular interaction was analyzed in detail, which suggested that SNX-2112 was well accommodated in the ATP-binding pocket to disable molecular chaperone activity of Hsp90, therefore exhibiting favorable inhibiting activity on three non–small cell lung cancer (NSCLC) cell lines (IC50, 0.50 ± 0.01 μM for A549, 1.14 ± 1.11 μM for H1299, 2.36 ± 0.82 μM for H1975) by inhibited proliferation, induced cell cycle arrest, and aggravated cell apoptosis. SNX-2112 exhibited high affinity and beneficial thermodynamic changes during the binding process with its target Hsp90N confirmed by thermal shift assay (TSA, ΔTm, and −9.51 ± 1.00°C) and isothermal titration calorimetry (Kd, 14.10 ± 1.60 nM). Based on the complex crystal structure and molecular interaction analysis, 32 novel SNX-2112 derivatives were designed, and 25 new ones displayed increased binding force with the target Hsp90N verified by molecular docking evaluation. The results would provide new references and guides for anti-NSCLC new drug development based on the lead compound SNX-2112.
Collapse
Affiliation(s)
- Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Yi-Ming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Lu-Qi Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xin Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Yuan He
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule, Ministry of Education, Northwest University, Xi'an, China
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an, China.,College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
15
|
Siddiqui FA, Parkkola H, Vukic V, Oetken-Lindholm C, Jaiswal A, Kiriazis A, Pavic K, Aittokallio T, Salminen TA, Abankwa D. Novel Small Molecule Hsp90/Cdc37 Interface Inhibitors Indirectly Target K-Ras-Signaling. Cancers (Basel) 2021; 13:927. [PMID: 33672199 PMCID: PMC7927014 DOI: 10.3390/cancers13040927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 μM-44 μM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases.
Collapse
Affiliation(s)
- Farid Ahmad Siddiqui
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
| | - Vladimir Vukic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Christina Oetken-Lindholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
| | - Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (A.J.); (T.A.)
| | - Alexandros Kiriazis
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg;
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland; (A.J.); (T.A.)
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, N-0372 Oslo, Norway
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; (F.A.S.); (H.P.); (V.V.); (C.O.-L.); (A.K.)
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg;
| |
Collapse
|
16
|
Li HJ, Wang QS, Han W, Zhou H, Li P, Zhou F, Qin W, Zhao D, Zhou X, He CX, Xing L, Li PQ, Jin X, Yu F, He JH, Cao HL. Anti-NSCLC activity in vitro of Hsp90 N inhibitor KW-2478 and complex crystal structure determination of Hsp90 N-KW-2478. J Struct Biol 2021; 213:107710. [PMID: 33610655 DOI: 10.1016/j.jsb.2021.107710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
KW-2478 is a promising anti-cancer lead compound targeting to the molecular chaperone heat shock protein 90 N (Hsp90N). Absence of complex crystal structure of Hsp90N-KW-2478, however, hampered further structure optimization of KW-2478 and understanding on the molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90N-KW-2478 was determined by X-ray diffraction (XRD, resolution limit: 1.59 Å; PDB ID: 6LT8) and their molecular interaction was analyzed in detail, which suggested that KW-2478 perfectly bound in the N-terminal ATP-binding pocket of Hsp90 to disable its molecular chaperone function, therefore suppressed or killed cancer cells. The results from thermal shift assay (TSA, ΔTm, 18.82 ± 0.51 °C) and isothermal titration calorimetry (ITC, Kd, 7.30 ± 2.20 nM) suggested that there is an intense binding force and favorable thermodynamic changes during the process of KW-2478 binding with Hsp90N. Additionally, KW-2478 exhibited favorable anti-NSCLC activity in vitro, as it inhibited cell proliferation (IC50, 8.16 μM for A549; 14.29 μM for H1975) and migration, induced cell cycle arrest and promoted apoptosis. Thirty-six novel KW-2478 derivatives were designed, based on the complex crystal structure and molecular interaction analysis of Hsp90N-KW-2478 complex. Among them, twenty-two derivatives exhibited increased binding force with Hsp90N evaluated by molecular docking assay. The results would provide new guidance for anti-NSCLC new drug development based on the lead compound KW-2478.
Collapse
Affiliation(s)
- Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Han
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Fang Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
17
|
Qin W, Yu F, Zhou H, Li P, Zhou F, Li HJ, He CX, Xing L, Zhou X, Zhao D, Li PQ, Jin X, Wang QS, He JH, Cao HL. Complex crystal structure determination and anti-non-small-cell lung cancer activity of the Hsp90 N inhibitor Debio0932. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:86-97. [PMID: 33404528 DOI: 10.1107/s2059798320014990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Debio0932 is a promising lead compound in phase I clinical trials targeting the N-terminal ATP-binding pocket of the molecular chaperone heat-shock protein 90 (Hsp90N). The absence of a crystal structure of the Hsp90N-Debio0932 complex, however, has impeded further structural optimization of Debio0932 and understanding of the molecular-interaction mechanism. Here, a high-resolution crystal structure of the Hsp90N-Debio0932 complex was successfully determined (resolution limit 2.20 Å; PDB entry 6lr9) by X-ray diffraction and the molecular-interaction mechanism was analysed in detail, which suggested that Debio0932 suppresses cancer cells by accommodating itself in the ATP-binding pocket of Hsp90N, disabling its molecular-chaperone capability. The results of a thermal shift assay (ΔTm = 8.83 ± 0.90°C) and isothermal titration calorimetry (Kd = 15.50 ± 1.30 nM) indicated strong binding and favourable thermodynamic changes in the binding of Hsp90N and Debio0932. Based on the crystal structure of the complex and on molecular-interaction analysis, 30 new Debio0932 derivatives were designed and nine new derivatives exhibited increased binding to Hsp90N, as determined by molecular-docking evaluation. Additionally, Debio0932 suppressed cell proliferation (IC50 values of 3.26 ± 2.82 µM for A549, 20.33 ± 5.39 µM for H1299 and 3.16 ± 1.04 µM for H1975), induced cell-cycle arrest and promoted apoptosis in three non-small-cell lung cancer (NSCLC) cell lines. These results provide novel perspectives and guidance for the development of new anti-NSCLC drugs based on the lead compound Debio0932.
Collapse
Affiliation(s)
- Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ping Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Fang Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Hui Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Chun Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Peng Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Qi Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Hui Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, People's Republic of China
| |
Collapse
|
18
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
19
|
Dai J, Zhu M, Qi X, Wang Y, Li H, Tang S, Wang Q, Chen A, Liu M, Gu Q, Li D, Li J. Fungal mycotoxin penisuloxazin A, a novel C-terminal Hsp90 inhibitor and characteristics of its analogues on Hsp90 function related to binding sites. Biochem Pharmacol 2020; 182:114218. [PMID: 32949584 DOI: 10.1016/j.bcp.2020.114218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Academy of Sciences, Shanghai 201203, PR China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
20
|
Quel NG, Pinheiro GMS, Rodrigues LFDC, Barbosa LRS, Houry WA, Ramos CHI. Heat shock protein 90 kDa (Hsp90) from Aedes aegypti has an open conformation and is expressed under heat stress. Int J Biol Macromol 2020; 156:522-530. [PMID: 32302629 DOI: 10.1016/j.ijbiomac.2020.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Cellular proteostasis is maintained by a system consisting of molecular chaperones, heat shock proteins (Hsps) and proteins involved with degradation. Among the proteins that play important roles in the function of this system is Hsp90, which acts as a node of this network, interacting with at least 10% of the proteome. Hsp90 is ATP-dependent, participates in critical cell events and protein maturation and interacts with large numbers of co-chaperones. The study of Hsp90 orthologs is justified by their differences in ATPase activity levels and conformational changes caused by Hsp90 interaction with nucleotides. This study reports the characterization of Hsp90 from Aedes aegypti, a vector of several diseases in many regions of the planet. Aedes aegypti Hsp90, AaHsp90, was cloned, purified and characterized for its ATPase and chaperone activities and structural conformation. These parameters indicate that it has the characteristics of eukaryotic Hsp90s and resembles orthologs from yeast rather than from human. Finally, constitutive and increased stress expression in Aedes cells was confirmed. Taken together, the results presented here help to understand the relationship between structure and function in the Hsp90 family and have strong potential to form the basis for studies on the network of chaperone and Hsps in Aedes.
Collapse
Affiliation(s)
- Natália G Quel
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP 13083-970, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP 13083-970, Brazil
| | | | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
21
|
Magwenyane AM, Mhlongo NN, Lawal MM, Amoako DG, Somboro AM, Sosibo SC, Shunmugam L, Khan RB, Kumalo HM. Understanding the Hsp90 N-terminal Dynamics: Structural and Molecular Insights into the Therapeutic Activities of Anticancer Inhibitors Radicicol (RD) and Radicicol Derivative (NVP-YUA922). Molecules 2020; 25:E1785. [PMID: 32295059 PMCID: PMC7221724 DOI: 10.3390/molecules25081785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a crucial component in carcinogenesis and serves as a molecular chaperone that facilitates protein maturation whilst protecting cells against temperature-induced stress. The function of Hsp90 is highly dependent on adenosine triphosphate (ATP) binding to the N-terminal domain of the protein. Thus, inhibition through displacement of ATP by means of competitive binding with a suitable organic molecule is considered an attractive topic in cancer research. Radicicol (RD) and its derivative, resorcinylic isoxazole amine NVP-AUY922 (NVP), have shown promising pharmacodynamics against Hsp90 activity. To date, the underlying binding mechanism of RD and NVP has not yet been investigated. In this study, we provide a comprehensive understanding of the binding mechanism of RD and NVP, from an atomistic perspective. Density functional theory (DFT) calculations enabled the analyses of the compounds' electronic properties and results obtained proved to be significant in which NVP was predicted to be more favorable with solvation free energy value of -23.3 kcal/mol and highest stability energy of 75.5 kcal/mol for a major atomic delocalization. Molecular dynamic (MD) analysis revealed NVP bound to Hsp90 (NT-NVP) is more stable in comparison to RD (NT-RD). The Hsp90 protein exhibited a greater binding affinity for NT-NVP (-49.4 ± 3.9 kcal/mol) relative to NT-RD (-28.9 ± 4.5 kcal/mol). The key residues influential in this interaction are Gly 97, Asp 93 and Thr 184. These findings provide valuable insights into the Hsp90 dynamics and will serve as a guide for the design of potent novel inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Ayanda M. Magwenyane
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| | - Ndumiso N. Mhlongo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sphelele C. Sosibo
- School of Physical and Chemical Sciences, Department of Chemistry, North West University, Mafikeng Campus, Mmabatho 2790, South Africa;
| | - Letitia Shunmugam
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (A.M.M.); (N.N.M.); (M.M.L.); (D.G.A.); (A.M.S.); (L.S.); (R.B.K.)
| |
Collapse
|
22
|
Rashid S, Lee BL, Wajda B, Spyracopoulos L. Nucleotide Binding and Active Site Gate Dynamics for the Hsp90 Chaperone ATPase Domain from Benchtop and High Field 19F NMR Spectroscopy. J Phys Chem B 2020; 124:2984-2993. [PMID: 32212608 DOI: 10.1021/acs.jpcb.0c00626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein turnover in cells is regulated by the ATP dependent activity of the Hsp90 chaperone. In concert with accessory proteins, ATP hydrolysis drives the obligate Hsp90 dimer through a cycle between open and closed states that is critical for assisting the folding and stability of hundreds of proteins. Cycling is initiated by ATP binding to the ATPase domain, with the chaperone and the active site gates in the dimer in open states. The chaperone then adopts a short-lived, ATP bound closed state with a closed active site gate. The structural and dynamic changes induced in the ATPase domain and active site gate upon nucleotide binding, and their impact on dimer closing are not well understood. We site-specifically 19F-labeled the ATPase domain at the active site gate to enable benchtop and high field 19F NMR spectroscopic studies. Combined with MD simulations, this allowed accurate characterization of pico- to nanosecond time scale motions of the active site gate, as well as slower micro- to millisecond time scale processes resulting from nucleotide binding. ATP binding induces increased flexibility at one of the hinges of the active site gate, a necessary prelude to release of the second hinge and eventual gate closure in the intact chaperone.
Collapse
Affiliation(s)
- Suad Rashid
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brian L Lee
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Benjamin Wajda
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
23
|
Tang QY, Kaneko K. Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis. PLoS Comput Biol 2020; 16:e1007670. [PMID: 32053592 PMCID: PMC7043781 DOI: 10.1371/journal.pcbi.1007670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/26/2020] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Proteins in cellular environments are highly susceptible. Local perturbations to any residue can be sensed by other spatially distal residues in the protein molecule, showing long-range correlations in the native dynamics of proteins. The long-range correlations of proteins contribute to many biological processes such as allostery, catalysis, and transportation. Revealing the structural origin of such long-range correlations is of great significance in understanding the design principle of biologically functional proteins. In this work, based on a large set of globular proteins determined by X-ray crystallography, by conducting normal mode analysis with the elastic network models, we demonstrate that such long-range correlations are encoded in the native topology of the proteins. To understand how native topology defines the structure and the dynamics of the proteins, we conduct scaling analysis on the size dependence of the slowest vibration mode, average path length, and modularity. Our results quantitatively describe how native proteins balance between order and disorder, showing both dense packing and fractal topology. It is suggested that the balance between stability and flexibility acts as an evolutionary constraint for proteins at different sizes. Overall, our result not only gives a new perspective bridging the protein structure and its dynamics but also reveals a universal principle in the evolution of proteins at all different sizes. The long-range correlated fluctuations are closely related to many biological processes of the proteins, such as catalysis, ligand binding, biomolecular recognition, and transportation. In this paper, we elucidate the structural origin of the long-range correlation and describe how native contact topology defines the slow-mode dynamics of the native proteins. Our result suggests an evolutionary constraint for proteins at different sizes, which may shed light on solving many biophysical problems such as structure prediction, multi-scale molecular simulations, and the design of molecular machines. Moreover, in statistical physics, as the long-range correlations are notable signs of the critical point, unveiling the origin of such criticality can extend our understanding of the organizing principle of a large variety of complex systems.
Collapse
Affiliation(s)
- Qian-Yuan Tang
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Babbitt GA, Fokoue EP, Evans JR, Diller KI, Adams LE. DROIDS 3.0-Detecting Genetic and Drug Class Variant Impact on Conserved Protein Binding Dynamics. Biophys J 2019; 118:541-551. [PMID: 31928763 PMCID: PMC7002913 DOI: 10.1016/j.bpj.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023] Open
Abstract
The application of statistical methods to comparatively framed questions about the molecular dynamics (MD) of proteins can potentially enable investigations of biomolecular function beyond the current sequence and structural methods in bioinformatics. However, the chaotic behavior in single MD trajectories requires statistical inference that is derived from large ensembles of simulations representing the comparative functional states of a protein under investigation. Meaningful interpretation of such complex forms of big data poses serious challenges to users of MD. Here, we announce Detecting Relative Outlier Impacts from Molecular Dynamic Simulation (DROIDS) 3.0, a method and software package for comparative protein dynamics that includes maxDemon 1.0, a multimethod machine learning application that trains on large ensemble comparisons of concerted protein motions in opposing functional states generated by DROIDS and deploys learned classifications of these states onto newly generated MD simulations. Local canonical correlations in learning patterns generated from independent, yet identically prepared, MD validation runs are used to identify regions of functionally conserved protein dynamics. The subsequent impacts of genetic and/or drug class variants on conserved dynamics can also be analyzed by deploying the classifiers on variant MD simulations and quantifying how often these altered protein systems display opposing functional states. Here, we present several case studies of complex changes in functional protein dynamics caused by temperature, genetic mutation, and binding interactions with nucleic acids and small molecules. We demonstrate that our machine learning algorithm can properly identify regions of functionally conserved dynamics in ubiquitin and TATA-binding protein (TBP). We quantify the impact of genetic variation in TBP and drug class variation targeting the ATP-binding region of Hsp90 on conserved dynamics. We identify regions of conserved dynamics in Hsp90 that connect the ATP binding pocket to other functional regions. We also demonstrate that dynamic impacts of various Hsp90 inhibitors rank accordingly with how closely they mimic natural ATP binding.
Collapse
Affiliation(s)
- Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York.
| | - Ernest P Fokoue
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York
| | - Joshua R Evans
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Kyle I Diller
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York; Golisano College for Computing and Information Science, Rochester, New York
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| |
Collapse
|
25
|
Pinto GP, Vavra O, Filipovic J, Stourac J, Bednar D, Damborsky J. Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock. Front Chem 2019; 7:709. [PMID: 31737596 PMCID: PMC6828983 DOI: 10.3389/fchem.2019.00709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
Protein tunnels and channels are attractive targets for drug design. Drug molecules that block the access of substrates or release of products can be efficient modulators of biological activity. Here, we demonstrate the applicability of a newly developed software tool CaverDock for screening databases of drugs against pharmacologically relevant targets. First, we evaluated the effect of rigid and flexible side chains on sets of substrates and inhibitors of seven different proteins. In order to assess the accuracy of our software, we compared the results obtained from CaverDock calculation with experimental data previously collected with heat shock protein 90α. Finally, we tested the virtual screening capabilities of CaverDock with a set of oncological and anti-inflammatory FDA-approved drugs with two molecular targets—cytochrome P450 17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories using four processors took on average 53 min per molecule with 90% successfully calculated cases. The screening identified functional tunnels based on the profile of potential energies of binding and unbinding trajectories. We concluded that CaverDock is a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of pharmacologically important targets with buried functional sites. The standalone version of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the web version at https://loschmidt.chemi.muni.cz/caverweb/.
Collapse
Affiliation(s)
- Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jiri Filipovic
- Institute of Computer Science, Masaryk University, Brno, Czechia
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia.,International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
26
|
Yang X, Deng M, Zhang X, Wang Y, Song K, Cong R, Meng L, Zhang J. Design, synthesis, and biological evaluation of thieno[3,2‐d]pyrimidine derivatives as potential simplified phosphatidylinositol 3‐kinase alpha inhibitors. Chem Biol Drug Des 2019; 94:2013-2022. [DOI: 10.1111/cbdd.13425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Xiuyan Yang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Meng Deng
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xi Zhang
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Yi Wang
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Kun Song
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Ruan Cong
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
| | - Linghua Meng
- Division of Anti‐tumor PharmacologyShanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Jian Zhang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of Medicine Shanghai China
- Basic Clinical Research CenterRenji HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
27
|
Hsp90 Mediates Membrane Deformation and Exosome Release. Mol Cell 2019; 71:689-702.e9. [PMID: 30193096 DOI: 10.1016/j.molcel.2018.07.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Abstract
Hsp90 is an essential chaperone that guards proteome integrity and amounts to 2% of cellular protein. We now find that Hsp90 also has the ability to directly interact with and deform membranes via an evolutionarily conserved amphipathic helix. Using a new cell-free system and in vivo measurements, we show this amphipathic helix allows exosome release by promoting the fusion of multivesicular bodies (MVBs) with the plasma membrane. We dissect the relationship between Hsp90 conformation and membrane-deforming function and show that mutations and drugs that stabilize the open Hsp90 dimer expose the helix and allow MVB fusion, while these effects are blocked by the closed state. Hence, we structurally separated the Hsp90 membrane-deforming function from its well-characterized chaperone activity, and we show that this previously unrecognized function is required for exosome release.
Collapse
|
28
|
Chatterjee BK, Jayaraj A, Kumar V, Blagg B, Davis RE, Jayaram B, Deep S, Chaudhuri TK. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32. J Biol Chem 2019; 294:6450-6467. [PMID: 30792306 DOI: 10.1074/jbc.ra118.002502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a eukaryotic chaperone responsible for the folding and functional activation of numerous client proteins, many of which are oncoproteins. Thus, Hsp90 inhibition has been intensely pursued, resulting in the development of many potential Hsp90 inhibitors, not all of which are well-characterized. Hsp90 inhibitors not only abrogate its chaperone functions, but also could help us gain insight into the structure-function relationship of this chaperone. Here, using biochemical and cell-based assays along with isothermal titration calorimetry, we investigate KU-32, a derivative of the Hsp90 inhibitor novobiocin (NB), for its ability to modulate Hsp90 chaperone function. Although NB and KU-32 differ only slightly in structure, we found that upon binding, they induce completely opposite conformational changes in Hsp90. We observed that NB and KU-32 both bind to the C-terminal domain of Hsp90, but surprisingly, KU-32 stimulated the chaperone functions of Hsp90 via allosteric modulation of its N-terminal domain, responsible for the chaperone's ATPase activity. In vitro and in silico studies indicated that upon KU-32 binding, Hsp90 undergoes global structural changes leading to the formation of a "partially closed" intermediate that selectively binds ATP and increases ATPase activity. We also report that KU-32 promotes HeLa cell survival and enhances the refolding of an Hsp90 substrate inside the cell. This discovery explains the effectiveness of KU-32 analogs in the management of neuropathies and may facilitate the design of molecules that promote cell survival by enhancing Hsp90 chaperone function and reducing the load of misfolded proteins in cells.
Collapse
Affiliation(s)
| | - Abhilash Jayaraj
- the Supercomputing Facility for Bioinformatics and Computational Biology, and
| | - Vinay Kumar
- the Department of Chemistry, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India and
| | - Brian Blagg
- the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Rachel E Davis
- the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - B Jayaram
- the Supercomputing Facility for Bioinformatics and Computational Biology, and
| | - Shashank Deep
- the Department of Chemistry, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India and
| | | |
Collapse
|
29
|
Minari K, de Azevedo ÉC, Kiraly VTR, Batista FAH, de Moraes FR, de Melo FA, Nascimento AS, Gava LM, Ramos CHI, Borges JC. Thermodynamic analysis of interactions of the Hsp90 with adenosine nucleotides: A comparative perspective. Int J Biol Macromol 2019; 130:125-138. [PMID: 30797004 DOI: 10.1016/j.ijbiomac.2019.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Hsp90s are key proteins in cellular homeostasis since they interact with many client proteins. Several studies indicated that Hsp90s are potential targets for treating diseases, such as cancer or malaria. It has been shown that Hsp90s from different organisms have peculiarities despite their high sequence identity. Therefore, a detailed comparative analysis of several Hsp90 proteins is relevant to the overall understanding of their activity. Accordingly, the goal of this work was to evaluate the interaction of either ADP or ATP with recombinant Hsp90s from different organisms (human α and β isoforms, Plasmodium falciparum, Leishmania braziliensis, yeast and sugarcane) by isothermal titration calorimetry. The measured thermodynamic signatures of those interactions indicated that despite the high identity among all Hsp90s, they have specific thermodynamic characteristics. Specifically, the interactions with ADP are driven by enthalpy but are opposed by entropy, whereas the interaction with ATP is driven by both enthalpy and entropy. Complimentary structural and molecular dynamics studies suggested that specific interactions with ADP that differ from those with ATP may contribute to the observed enthalpies and entropies. Altogether, the data suggest that selective inhibition may be more easily achieved using analogues of the Hsp90-ADP bound state than those of Hsp90-ATP bound state.
Collapse
Affiliation(s)
- Karine Minari
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil; Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | - Érika Chang de Azevedo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil
| | | | | | - Fábio Rogério de Moraes
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Fernando Alves de Melo
- Biosciences, Languages, and Exact Sciences Institute, Multiuser Center for Biological Innovation (CMIB), São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | | | - Lisandra Marques Gava
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP 13560-970, Brazil
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
30
|
Tang YH, Wu J, Fan TT, Zhang HH, Gong XX, Cao ZY, Zhang J, Lin HW, Han BN. Chemical and biological study of aplysiatoxin derivatives showing inhibition of potassium channel Kv1.5. RSC Adv 2019; 9:7594-7600. [PMID: 35521179 PMCID: PMC9061199 DOI: 10.1039/c9ra00965e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
Three new aplysiatoxins, neo-debromoaplysiatoxin D (1), oscillatoxin E (2) and oscillatoxin F (3), accompanied by four known analogues (4–7), were identified from the marine cyanobacterium Lyngbya sp. Structural frames differ amongst these metabolites, and therefore we classified compounds 1 and 4–6 as aplysiatoxins as they possess 6/12/6 and 6/10/6 tricyclic ring systems featuring a macrolactone ring, and compounds 2, 3 and 7 as oscillatoxins that feature a hexane-tetrahydropyran in a spirobicyclic system. Bioactivity experiments showed that compounds 1 and 4–6 presented significant expression of phosphor-PKCδ whereas compounds 2, 5 and 7 showed the most potent blocking activity against potassium channel Kv1.5 with IC50 values of 0.79 ± 0.032 μM, 1.28 ± 0.080 μM and 1.47 ± 0.138 μM, respectively. Molecular docking analysis supplementing the binding interaction of oscillatoxin E (2) and oscillatoxin F (3) with Kv1.5 showed oscillatoxin E (2) with a strong binding affinity of −37.645 kcal mol−1 and oscillatoxin F (3) with a weaker affinity of −32.217 kcal mol−1, further supporting the experimental data. New aplysiatoxin derivative (oscillatoxin E) exhibiting potent blocking activity against potassium channel Kv1.5 is consistent with molecular docking analysis.![]()
Collapse
Affiliation(s)
- Yang-Hua Tang
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jing Wu
- Department of Pathophysiology
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200025
- China
| | - Ting-Ting Fan
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Hui-Hui Zhang
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiao-Xia Gong
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Zheng-Yu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development
- China Pharmaceutical University
- Nanjing
- China
| | - Jian Zhang
- Department of Pathophysiology
- Shanghai Jiaotong University
- School of Medicine
- Shanghai 200025
- China
| | - Hou-Wen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Department of Pharmacy
- Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
| | - Bing-Nan Han
- Research Center of Marine Biology and Natural Products
- College of Life Sciences and Medicine
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
31
|
An X, Lu S, Song K, Shen Q, Huang M, Yao X, Liu H, Zhang J. Are the Apo Proteins Suitable for the Rational Discovery of Allosteric Drugs? J Chem Inf Model 2018; 59:597-604. [PMID: 30525607 DOI: 10.1021/acs.jcim.8b00735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allosteric modulators, by targeting the less-conserved allosteric sites, represent an innovative strategy in drug discovery. These modulators have a distinctive advantage over orthosteric ligands that attach to the conserved, functional orthosteric sites. However, in structure-based drug design, it remains unclear whether allosteric protein structures determined without orthosteric ligand binding are suitable for allosteric drug screening. In this study, we performed large-scale conformational samplings of six representative allosteric proteins uncomplexed ( apo) and complexed ( holo) with orthosteric ligands to explore the effect of orthosteric site binding on the conformational dynamics of allosteric sites. The results, coupled with the redocking evaluation of allosteric modulators to their apo and holo proteins using their MD trajectories, indicated that orthosteric site binding had an effect on the dynamics of the allosteric sites and allosteric modulators preferentially bound to their holo proteins. According to the analysis data, we constructed a new correlation model for quantifying the allosteric site change driven by substrate binding to the orthosteric site. These results highlight the strong demand to select holo allosteric proteins as initial inputs in structure-based allosteric drug screening when the distance between orthosteric and allosteric sites in the protein is below 5 Å, which is expected to contribute to allosteric drug discovery.
Collapse
Affiliation(s)
- Xiaoli An
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China.,School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China
| | - Kun Song
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China
| | - Qiancheng Shen
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering , Queen's University Belfast , Northern Ireland BT9 5AG , United Kingdom
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau 999078 , China
| | - Huanxiang Liu
- School of Pharmacy , Lanzhou University , Lanzhou 730000 , China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200127 , China.,Medicinal Bioinformatics Center , Shanghai Jiao Tong University, School of Medicine , Shanghai , 200025 , China
| |
Collapse
|
32
|
Morra G, Meli M, Colombo G. How the Ligand-Induced Reorganization of Protein Internal Energies Is Coupled to Conformational Events. J Chem Theory Comput 2018; 14:5992-6001. [PMID: 30281309 DOI: 10.1021/acs.jctc.8b00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we introduce a novel computational method to identify the protein substructures most likely to support the functionally oriented structural deformations that occur upon ligand-binding. To this aim, we study the modulation of protein energetics along the trajectory of a molecular dynamics simulation of different proteins in the presence and in the absence of their respective ligands, namely, human FGF, human second PDZ from human PTP1E/PTPL1, and the N terminal domain of human Hsp90. The method is based on the idea that a subset of protein residues (hotspots) may initiate the global response via the disassembly and reassembly of interactions, which is reflected in the modulation of the overall protein energetics. To identify structural hotspots and dynamic states linked to the onset of functionally relevant conformational transitions, we define an energy profile to monitor the protein energetics, based on a previously introduced approach that highlights the essential nonbonded couplings among all residues. The energy profiles are calculated along the trajectory to yield a time-dependent evolution, and their relative population in the presence and absence of the ligand is evaluated by means of a clustering procedure. It is found that interconversion between clusters, as well as their population and the density of specific energy profiles in the vicinity of structural transitions, provides specific information on the impact of the ligand in driving the protein conformational response. This analysis also highlights the hotspot residues that are most responsive to the presence of the ligand. Importantly, identified hotspots are in agreement with experimental evidence in the three considered systems. We propose that this approach can be generally used in the prediction of "allosteric hotspots" and ligand-induced conformational responses, as well as to select conformations more likely to support functional transitions (e.g., in the framework of adaptive sampling approaches).
Collapse
Affiliation(s)
- Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare , Consiglio Nazionale delle Ricerche , Via Mario Bianco 9 , 20131 Milano , Italy
| | - Massimiliano Meli
- Istituto di Chimica del Riconoscimento Molecolare , Consiglio Nazionale delle Ricerche , Via Mario Bianco 9 , 20131 Milano , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare , Consiglio Nazionale delle Ricerche , Via Mario Bianco 9 , 20131 Milano , Italy.,Dipartimento di Chimica , Università di Pavia , Via Taramelli 10 , 27100 Pavia , Italy
| |
Collapse
|
33
|
Tassone G, Mangani S, Botta M, Pozzi C. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1190-1198. [PMID: 30248409 DOI: 10.1016/j.bbapap.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
In Brazil, the mucocutaneous form of leishmaniasis, caused by the parasite Leishmania braziliensis, is a widespread and very challenging disease responsible for disfiguration and, in the most severe cases, death. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone playing a pivotal role in the folding process of client proteins, and therefore its activity is fundamental for cell survival and proliferation. Since the chaperone activity requires ATP hydrolysis, molecules able to occupy the ATP binding pocket in the protein N-terminal domain (NTD) act as Hsp90 inhibitors. The development of selective molecules targeting the ATPase site of protozoan Hsp90 is tricky for the high homology with the human Hsp90 NTD (hNTD). Notably, only the human Lys112 is replaced by Arg97 in the L. braziliensis enzyme. Recently, this difference has been probed to design selective inhibitors targeting parasite Hsp90s. Here, a reliable protocol for expression and purification of LbHsp90-NTD (LbNTD) was developed but its structural characterization was unsuccessful. The role of Arg97 in LbNTD was hence probed by means of the "leishmanized" K112R variant of hNTDα. To deeply investigate the role of this residue, also the hNTDα K112A variant was generated. Structural studies performed on hNTDα and its variants using various ADP and ATP analogues and cAMP revealed that this residue is not crucial for nucleotide binding. This finding strongly suggests that Arg97 in LbNTD and more generally the conserved arginine residue in parasite Hsp90s are not exploitable for the development of selective inhibitors.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro, 2, 53100 Siena (SI), Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro, 2, 53100 Siena (SI), Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro, 2, 53100 Siena (SI), Italy; Lead Discovery Siena S.r.l., Castelnuovo Berardenga, Siena, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro, 2, 53100 Siena (SI), Italy.
| |
Collapse
|
34
|
Lescanne M, Ahuja P, Blok A, Timmer M, Akerud T, Ubbink M. Methyl group reorientation under ligand binding probed by pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2018; 71:275-285. [PMID: 29860649 PMCID: PMC6132577 DOI: 10.1007/s10858-018-0190-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/26/2018] [Indexed: 05/05/2023]
Abstract
Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.
Collapse
Affiliation(s)
- Mathilde Lescanne
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Puneet Ahuja
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anneloes Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tomas Akerud
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
35
|
Activation of HRI is mediated by Hsp90 during stress through modulation of the HRI-Hsp90 complex. Int J Biol Macromol 2018; 118:1604-1613. [PMID: 30170366 DOI: 10.1016/j.ijbiomac.2018.06.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 12/28/2022]
Abstract
Heme Regulated Inhibitor (HRI) is known to get activated in various stresses such as heme deficiency, heat shock, heavy metal toxicity etc. Heat shock protein 90 (Hsp90), a ubiquitous cytoplasmic protein interacts with HRI in order to regulate protein synthesis. However, it still remains to establish this interaction of HRI and Hsp90 at cellular levels and how this modulation of HRI activity is mediated by Hsp90 during stress. In the present report, using co-immunoprecipitation analysis we show that HRI interacts with Hsp90 and this association is independent of other co-chaperones in in vitro conditions. Further, analysis using truncated domains of HRI revealed that the K1 subdomain is essential for HRI - Hsp90 complex formation. Our in silico protein - protein interaction studies also indicated interaction of Hsp90 with K1 subdomain of HRI. Mammalian two hybrid assay validated this HRI - Hsp90 interaction at cellular levels. When the in vitro kinase assay was carried out with the co-immunoprecipitated complex of HRI - Hsp90, an increase in the kinase activity was observed resulting elevated levels of eIF2α phosphorylation upon heavy metal stress and heat shock. Thus, our results clearly indicate modulation of HRI kinase activity with simultaneous Hsp90 association under stress conditions.
Collapse
|
36
|
Penkler DL, Atilgan C, Tastan Bishop Ö. Allosteric Modulation of Human Hsp90α Conformational Dynamics. J Chem Inf Model 2018; 58:383-404. [PMID: 29378140 DOI: 10.1021/acs.jcim.7b00630] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central to Hsp90's biological function is its ability to interconvert between various conformational states. Drug targeting of Hsp90's regulatory mechanisms, including its modulation by cochaperone association, presents as an attractive therapeutic strategy for Hsp90 associated pathologies. In this study, we utilized homology modeling techniques to calculate full-length structures of human Hsp90α in closed and partially open conformations and used these structures as a basis for several molecular dynamics based analyses aimed at elucidating allosteric mechanisms and modulation sites in human Hsp90α. Atomistic simulations demonstrated that bound adenosine triphosphate (ATP) stabilizes the dimer by "tensing" each protomer, while adenosine diphosphate (ADP) and apo configurations "relax" the complex by increasing global flexibility, the former case resulting in a fully open "v-like" conformation. Dynamic residue network analysis revealed regions of the protein involved in intraprotein communication and identified several key communication hubs that correlate with known functional sites. Pairwise comparison of betweenness centrality, shortest path, and residue fluctuations revealed that a proportional relationship exists between the latter two measurables and an inverse relationship between these two and betweenness centrality. This analysis showed how protein flexibility, degree of compactness, and the distance cutoff used for network construction influence the correlations between these metrics. These findings are novel and suggest shortest path and betweenness centrality to be more relevant quantities to follow for detecting functional residues in proteins compared to residue fluctuations. Perturbation response scanning analysis identified several potential residue sites capable of modulating conformational change in favor of interstate conversion. For the ATP-bound open conformation, these sites were found to overlap with known Aha1 and client binding sites, demonstrating how naturally occurring forces associated with cofactor binding could allosterically modulate conformational dynamics.
Collapse
Affiliation(s)
- David L Penkler
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University , Tuzla 34956, Istanbul, Turkey
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University , Grahamstown, 6140, South Africa
| |
Collapse
|
37
|
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 2017; 8:2276. [PMID: 29273709 PMCID: PMC5741624 DOI: 10.1038/s41467-017-02258-w] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-based drug design has often been restricted by the rather static picture of protein-ligand complexes presented by crystal structures, despite the widely accepted importance of protein flexibility in biomolecular recognition. Here we report a detailed experimental and computational study of the drug target, human heat shock protein 90, to explore the contribution of protein dynamics to the binding thermodynamics and kinetics of drug-like compounds. We observe that their binding properties depend on whether the protein has a loop or a helical conformation in the binding site of the ligand-bound state. Compounds bound to the helical conformation display slow association and dissociation rates, high-affinity and high cellular efficacy, and predominantly entropically driven binding. An important entropic contribution comes from the greater flexibility of the helical relative to the loop conformation in the ligand-bound state. This unusual mechanism suggests increasing target flexibility in the bound state by ligand design as a new strategy for drug discovery.
Collapse
|
38
|
Lescanne M, Skinner SP, Blok A, Timmer M, Cerofolini L, Fragai M, Luchinat C, Ubbink M. Methyl group assignment using pseudocontact shifts with PARAssign. JOURNAL OF BIOMOLECULAR NMR 2017; 69:183-195. [PMID: 29181729 PMCID: PMC5736784 DOI: 10.1007/s10858-017-0136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
A new version of the program PARAssign has been evaluated for assignment of NMR resonances of the 76 methyl groups in leucines, isoleucines and valines in a 25 kDa protein, using only the structure of the protein and pseudocontact shifts (PCS) generated with a lanthanoid tag at up to three attachment sites. The number of reliable assignments depends strongly on two factors. The principle axes of the magnetic susceptibility tensors of the paramagnetic centers should not be parallel so as to avoid correlated PCS. Second, the fraction of resonances in the spectrum of a paramagnetic sample that can be paired with the diamagnetic counterparts is critical for the assignment. With the data from two tag positions a reliable assignment could be obtained for 60% of the methyl groups and for many of the remaining resonances the number of possible assignments is limited to two or three. With a single tag, reliable assignments can be obtained for methyl groups with large PCS near the tag. It is concluded that assignment of methyl group resonances by paramagnetic tagging can be particularly useful in combination with some additional data, such as from mutagenesis or NOE-based experiments. Approaches to yield the best assignment results with PCS generating tags are discussed.
Collapse
Affiliation(s)
- Mathilde Lescanne
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Simon P. Skinner
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH UK
- Present Address: School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | - Anneloes Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Linda Cerofolini
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
| | - Marco Fragai
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
- Magnetic Resonance Center - CERM, University of Florence, Via Sacconi 6, 50019 Sesto Fiorentino, FI Italy
| | - Claudio Luchinat
- Giotto Biotech, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, FI Italy
- Magnetic Resonance Center - CERM, University of Florence, Via Sacconi 6, 50019 Sesto Fiorentino, FI Italy
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
39
|
Booth L, Shuch B, Albers T, Roberts JL, Tavallai M, Proniuk S, Zukiwski A, Wang D, Chen CS, Bottaro D, Ecroyd H, Lebedyeva IO, Dent P. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function. Oncotarget 2017; 7:12975-96. [PMID: 26887051 PMCID: PMC4914336 DOI: 10.18632/oncotarget.7349] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/16/2016] [Indexed: 12/03/2022] Open
Abstract
We performed proteomic studies using the GRP78 chaperone-inhibitor drug AR-12 (OSU-03012) as bait. Multiple additional chaperone and chaperone-associated proteins were shown to interact with AR-12, including: GRP75, HSP75, BAG2; HSP27; ULK-1; and thioredoxin. AR-12 down-regulated in situ immuno-fluorescence detection of ATP binding chaperones using antibodies directed against the NH2-termini of the proteins but only weakly reduced detection using antibodies directed against the central and COOH portions of the proteins. Traditional SDS-PAGE and western blotting assessment methods did not exhibit any alterations in chaperone detection. AR-12 altered the sub-cellular distribution of chaperone proteins, abolishing their punctate speckled patterning concomitant with changes in protein co-localization. AR-12 inhibited chaperone ATPase activity, which was enhanced by sildenafil; inhibited chaperone – chaperone and chaperone – client interactions; and docked in silico with the ATPase domains of HSP90 and of HSP70. AR-12 combined with sildenafil in a GRP78 plus HSP27 –dependent fashion to profoundly activate an eIF2α/ATF4/CHOP/Beclin1 pathway in parallel with inactivating mTOR and increasing ATG13 phosphorylation, collectively resulting in formation of punctate toxic autophagosomes. Over-expression of [GRP78 and HSP27] prevented: AR-12 –induced activation of ER stress signaling and maintained mTOR activity; AR-12 –mediated down-regulation of thioredoxin, MCL-1 and c-FLIP-s; and preserved tumor cell viability. Thus the inhibition of chaperone protein functions by AR-12 and by multi-kinase inhibitors very likely explains why these agents have anti-tumor effects in multiple genetically diverse tumor cell types.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brian Shuch
- Urologic and Diagnostic Radiology, Yale School of Medicine, New Haven, CT 06520-8058, USA.,Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | - Dasheng Wang
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ching-Shih Chen
- Molecular and Translational Science, United States Medicinal Chemistry and Pharmacognosy, School of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Don Bottaro
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Heath Ecroyd
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, NSW 2522, Australia
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
40
|
Wang Y, Zhang T, Zhang H, Yang H, Li Y, Jiang Y. Bovine Hemoglobin Derived Peptide Asn-Phe-Gly-Lys Inhibits Pancreatic Cancer Cells Metastasis by Targeting Secreted Hsp90α. J Food Sci 2017; 82:3005-3012. [PMID: 29083493 DOI: 10.1111/1750-3841.13962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/02/2017] [Indexed: 01/12/2023]
Abstract
Pancreatic cancer is a digestive system malignant carcinoma with poor prognosis. The majority of patients are diagnosed with metastatic disease, which is also the leading cause of pancreatic cancer death. The aim of this study was to investigate the antimetastatic effect of Asn-Phe-Gly-Lys (NFGK), a tetrapeptide derived from bovine hemoglobin pepsin hydrolysate, on human pancreatic cancer cell line MIAPaCa-2. Wound healing assay and transwell invasion assay results showed that NFGK inhibited MIAPaCa-2 cell migration and invasion dose-dependently. Cell proliferation assay data showed that NFGK had slight cytotoxicity on MIAPaCa-2 cells. Fluorescence confocal imaging data revealed that NFGK targeted the cell membrane of MIAPaCa-2. Molecular docking data displayed that NFGK bond to the N-terminus ATP-binding pocket of secreted heat shock protein 90α (Hsp90α). Western blotting results further proved that NFGK inhibited secreted Hsp90α and downstream matrix metalloproteinase-9 (MMP-9) level dose dependently, while it did not inhibit intracellular Hsp90 and cyclin-dependent-kinase 4 (CDK4). All above results demonstrated that bovine hemoglobin derived peptide NFGK inhibited pancreatic cancer cell metastasis by targeting secreted Hsp90α and its downstream MMP-9. PRACTICAL APPLICATION Peptide NFGK comes from bovine hemoglobin, which is digested by pepsin in stomach after eating. After digesting to NFGK, bovine hemoglobin will obtain new function of inhibiting pancreatic cancer cell metastasis without dramatic cell toxicity. These means NFGK may help those patients who are suffering pancreatic cancer to avoid cancer cell metastasis without too much side effect.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Sciences, Jilin Univ., Changchun, PR China
| | - Ting Zhang
- Laboratory of Nutrition and Functional Food, Jilin Univ., Changchun, PR China
| | - Hongyi Zhang
- School of Stomatology, Jilin Univ., Changchun, PR China
| | - Haixia Yang
- School of Life Sciences, Jilin Univ., Changchun, PR China
| | - Yanju Li
- School of Life Sciences, Jilin Univ., Changchun, PR China
| | - Yiqun Jiang
- School of Life Sciences, Jilin Univ., Changchun, PR China
| |
Collapse
|
41
|
Surai PF, Kochish II. Antioxidant Systems and Vitagenes in Poultry Biology: Heat Shock Proteins. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90. Sci Rep 2015; 5:17015. [PMID: 26599366 PMCID: PMC4657054 DOI: 10.1038/srep17015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
The involvement of Hsp90 in progression of diseases like cancer, neurological
disorders and several pathogen related conditions is well established. Hsp90,
therefore, has emerged as an attractive drug target for many of these diseases.
Several small molecule inhibitors of Hsp90, such as geldanamycin derivatives, that
display antitumor activity, have been developed and are under clinical trials.
However, none of these tested inhibitors or drugs are peptide-based compounds. Here
we report the first crystal structure of a peptide bound at the ATP binding site of
the N-terminal domain of Hsp90. The peptide makes several specific interactions with
the binding site residues, which are comparable to those made by the nucleotide and
geldanamycin. A modified peptide was designed based on these interactions.
Inhibition of ATPase activity of Hsp90 was observed in the presence of the modified
peptide. This study provides an alternative approach and a lead peptide molecule for
the rational design of effective inhibitors of Hsp90 function.
Collapse
|
43
|
He Q, Liu K, Tian Z, Du SJ. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization. PLoS One 2015; 10:e0142573. [PMID: 26562659 PMCID: PMC4642942 DOI: 10.1371/journal.pone.0142573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/24/2015] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.
Collapse
Affiliation(s)
- Qiuxia He
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21202, United States of America
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, 250014, P. R. China
| | - Kechun Liu
- Biology Institute of Shandong Academy of Sciences, Jinan, Shandong, 250014, P. R. China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, Shaanxi, 710062, P. R. China
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21202, United States of America
- * E-mail:
| |
Collapse
|
44
|
Raman S, Suguna K. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain. Acta Crystallogr F Struct Biol Commun 2015; 71:688-96. [PMID: 26057797 PMCID: PMC4461332 DOI: 10.1107/s2053230x15006639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 11/12/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.
Collapse
Affiliation(s)
- Swetha Raman
- Molecular Biophysics Unit, Indian institute of Science, Bangalore, India 560 012, India
| | - Kaza Suguna
- Molecular Biophysics Unit, Indian institute of Science, Bangalore, India 560 012, India
| |
Collapse
|
45
|
A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain. Sci Rep 2015; 5:9542. [PMID: 25867902 PMCID: PMC4394755 DOI: 10.1038/srep09542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is one of the most important chaperones involved in multiple cellular processes. The chaperoning function of Hsp90 is intimately coupled to the ATPase activity presented by its N-terminal domain. However, the molecular mechanism for the ATP-dependent working cycle of Hsp90 is still not fully understood. In this study, we use NMR techniques to investigate the structural characteristics and dynamic behaviors of Hsp90 N-terminal domain in its free and AMPPCP (ATP analogue) or ADP-bound states. We demonstrated that although AMPPCP and ADP bind to almost the same region of Hsp90, significantly different effects on the dynamics behaviors of the key structural elements were observed. AMPPCP binding favors the formation of the active homodimer of Hsp90 by enhancing the slow-motion featured conformational exchanges of those residues (A117–A141) within the lid segment (A111–G135) and around region, while ADP binding keeps Hsp90 staying at the inactive state by increasing the conformational rigidity of the lid segment and around region. Based on our findings, a dynamic working model for the ATP-dependent functioning cycle of Hsp90 was proposed.
Collapse
|
46
|
Stability of the human Hsp90-p50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2. Molecules 2015; 20:1643-60. [PMID: 25608045 PMCID: PMC4601640 DOI: 10.3390/molecules20011643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein–protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.
Collapse
|
47
|
Partridge JR, Lavery LA, Elnatan D, Naber N, Cooke R, Agard DA. A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity. eLife 2014; 3. [PMID: 25531069 PMCID: PMC4381864 DOI: 10.7554/elife.03487] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal
structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal
β-strand previously shown to cross between protomers in the closed state. In
this study, we address the regulatory function of this extension or
‘strap’ and demonstrate its responsibility for an unusual temperature
dependence in ATPase rates. This dependence is a consequence of a thermally sensitive
kinetic barrier between the apo ‘open’ and ATP-bound
‘closed’ conformations. The strap stabilizes the closed state through
trans-protomer interactions. Displacement of cis-protomer contacts from the apo state
is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation
of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap
is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting
its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique
cellular and organismal environments. DOI:http://dx.doi.org/10.7554/eLife.03487.001 Proteins—which are made of chains of molecules called amino acids—play
many important roles in cells. Before a newly made protein can work properly, the
amino acid chain has to be folded into the correct three-dimensional shape. Many
proteins that have folded incorrectly are harmless, but some can disrupt the cell and
cause damage. Although most proteins can fold properly on their own, they are often
helped by ‘chaperone’ proteins, which speed up the process and
encourage correct folding. Many chaperone proteins belong to a family called the heat shock proteins, which are
found in almost all species: from bacteria, to plants and animals. High temperatures
can severely impair and destabilize proper protein folding, and the heat shock
proteins counteract this by helping to prevent, or correct, protein misfolding. Most
animals and plants have at least four genes that make different versions of heat
shock protein 90 (Hsp90). These versions work in different places in the cell and
one—called TRAP1—is found in internal compartments called mitochondria.
Along with its role in assisting protein folding, TRAP1 also acts as an indicator of
the health of the proteins in the mitochondria. One section or ‘domain’ of Hsp90 is able to bind to and break down a
molecule called ATP. This releases energy that is used to change the shape of the
protein-binding domain—which is responsible for helping other proteins to
fold. Recent studies of TRAP1 using a technique called protein crystallography
highlighted the presence of a short amino acid tail or ‘strap’ at one
end of the protein, but it is not known what role it may play in protein folding. In this study, Partridge et al. reveal that the amino acid strap of TRAP1 controls
the breakdown of ATP in a way that depends on the surrounding temperature. Similar
straps are also present in the Hsp90 proteins that are found in other parts of the
cell. However, the strap is absent from the Hsp90 proteins of yeast and bacteria.
These experiments used proteins that had been taken from living cells and placed in
an artificial setting, so an important next step will be to study the role of the
strap in the folding of proteins inside living cells. Also, future work could
investigate the potential role of the protein in maintaining healthy
mitochondria. DOI:http://dx.doi.org/10.7554/eLife.03487.002
Collapse
Affiliation(s)
- James R Partridge
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Laura A Lavery
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Daniel Elnatan
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Nariman Naber
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Roger Cooke
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
48
|
Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol Cell 2014; 53:330-43. [PMID: 24462206 PMCID: PMC3947485 DOI: 10.1016/j.molcel.2013.12.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/04/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.
Collapse
Affiliation(s)
- Laura A Lavery
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James R Partridge
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, Miami University Oxford, OH 45056, USA
| | - Daniel Elnatan
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University Oxford, OH 45056, USA
| | - David A Agard
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep 2013; 30:1299-323. [PMID: 23934201 DOI: 10.1039/c3np70012g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering 2005 to 2013. In this review recent progress in the development of heat shock proteins (Hsp90) in oncogenesis is illuminated. Particular emphasis is put on inhibitors such as geldanamycin and analogues that serve as a natural product show case. Hsp90 has emerged as an important target in cancer therapy and/or against pathogenic cells which elicit abnormal Hsp patterns. Competition for ATP by geldanamycin and related compounds abrogate the chaperone function of Hsp90. In this context, this account pursues three topics in detail: a) Hsp90 and its biochemistry, b) Hsp90 and its role in oncogenesis and c) strategies to create compound libraries of structurally complex inhibitors like geldanamycin on which SAR studies and the development of drugs that are currently in different stages of clinical testing rely.
Collapse
Affiliation(s)
- Jana Franke
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| | | | | | | |
Collapse
|