1
|
Jorgensen A, Köhler-Forsberg K, Henriksen T, Weimann A, Brandslund I, Ellervik C, Poulsen HE, Knudsen GM, Frokjaer VG, Jorgensen MB. Systemic DNA and RNA damage from oxidation after serotonergic treatment of unipolar depression. Transl Psychiatry 2022; 12:204. [PMID: 35577781 PMCID: PMC9110351 DOI: 10.1038/s41398-022-01969-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Previous studies have indicated that antidepressants that inhibit the serotonin transporter reduces oxidative stress. DNA and RNA damage from oxidation is involved in aging and a range of age-related pathophysiological processes. Here, we studied the urinary excretion of markers of DNA and RNA damage from oxidation, 8-oxodG and 8-oxoGuo, respectively, in the NeuroPharm cohort of 100 drug-free patients with unipolar depression and in 856 non-psychiatric community controls. Patients were subsequently treated for 8 weeks with escitalopram in flexible doses of 5-20 mg; seven of these switched to duloxetine by week 4, as allowed by the protocol. At week 8, 82 patients were followed up clinically and with measurements of 8-oxodG/8-oxoGuo. Contextual data were collected in patients, including markers of cortisol excretion and low-grade inflammation. The intervention was associated with a substantial reduction in both 8-oxodG/8-oxoGuo excretion (25% and 10%, respectively). The change was not significantly correlated to measures of clinical improvement. Both markers were strongly and negatively correlated to cortisol, as measured by the area under the curve for the full-day salivary cortisol excretion. Surprisingly, patients had similar levels of 8-oxodG excretion and lower levels of 8-oxoGuo excretion at baseline compared to the controls. We conclude that intervention with serotonin reuptake inhibitors in unipolar depression is associated with a reduction in systemic DNA and RNA damage from oxidation. To our knowledge, this to date the largest intervention study to characterize this phenomenon, and the first to include a marker of RNA oxidation.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark. .,Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark. .,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Kristin Köhler-Forsberg
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Trine Henriksen
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Allan Weimann
- grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark
| | - Ivan Brandslund
- grid.459623.f0000 0004 0587 0347Department of Clinical Immunology and Biochemistry, Lillebælt Hospital, Vejle, Denmark ,grid.10825.3e0000 0001 0728 0170Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| | - Henrik E. Poulsen
- grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Denmark ,grid.4973.90000 0004 0646 7373Department of Cardiology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark ,grid.4973.90000 0004 0646 7373Department of Endocrinology, Copenhagen University Hospital Hillerød, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G. Frokjaer
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B. Jorgensen
- grid.466916.a0000 0004 0631 4836Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark ,grid.475435.4Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XInstitute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Azzi A. Reflections on a century of vitamin E research: Looking at the past with an eye on the future. Free Radic Biol Med 2021; 175:155-160. [PMID: 34478835 DOI: 10.1016/j.freeradbiomed.2021.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022]
Abstract
The name vitamin E, was given by Barnett and Sure who suggested that the factor proposed by Evans and Bishop as substance "X," be termed vitamin "E" as the next vitamin after the A, B, C and D vitamins had been already described. The identification of vitamin E with a-tocopherol was made in 1936 by Evans' group. One year later β-tocopherol and 11 years later δ-tocopherol were isolated. Tocotrienol (named zetatocopherol) was first described in 1957 and later isolated in 1961. The antioxidant property of tocopherols was reported by Olcott and Emerson in 1937. Inherited vitamin E deficiency, AVED, characterized by a form of neuromyopathy was first described in 1981. The disease, was localized to chromosome 8q and found to be caused by a mutation of the a-TTP gene. The subsequent paragraphs are not a comprehensive review but only critical reflections on some important aspects of vitamin E research.
Collapse
Affiliation(s)
- Angelo Azzi
- School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, Boston, MA, 02116, USA.
| |
Collapse
|
3
|
Biswas P, Seal P, Sikdar J, Haldar R. Oxidative degradation perturbs physico-chemical properties of hemoglobin in cigarette smokers: a threat to different biomolecules. Inhal Toxicol 2021; 33:275-284. [PMID: 34662252 DOI: 10.1080/08958378.2021.1991529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Cigarette smokers develop structural modification in hemoglobin (Hb) and this modification enable Hb to undergo higher rate of auto-oxidation, leading to generation of further intracellular ROS. OBJECTIVE In this study, we exhibited the possible cause and consequences of Hb modification in cigarette smokers. METHODS Twenty-two smokers and 16 nonsmokers, aged 25 to 35 years, having a smoking history of 7-10 years were recruited in this study. Carbonyl content, ferryl form, peroxidase-like and esterase-like activities of Hb were assayed. Free iron release by Hb, erythrocyte membrane-bound Hb and plasma Hb were also measured along with assessment of important biomolecular degradations by Hb. RESULTS AND DISCUSSION Increase in carbonyl content in Hb indicates its oxidative degradation. Increase in ferryl Hb formation, peroxidase-like activity and decrease in esterase like activity of Hb along with increased release of nonheme iron (from Hb) clearly indicates alteration in physico-chemical properties of Hb in smokers. Moreover, increase in erythrocyte membrane-bound Hb and plasma-free Hb provide further evidences for higher rate of Hb oxidation in smokers' erythrocyte. The rates of protein, lipid, sugar and DNA degradation were noticed to be higher by smokers' Hb; and were further attenuated by desferrioxamine as well as mannitol. CONCLUSION We conclude that in cigarette smokers, there is oxidative degradation of Hb and the degradation causes alteration in its physico-chemical properties, which in turn may degrade different biomolecules in its close vicinity by releasing more iron and production of more superoxide as well as hydroxyl radical.
Collapse
Affiliation(s)
- Payel Biswas
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Paromita Seal
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Jyotirmoy Sikdar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| | - Rajen Haldar
- Department of Physiology, University Colleges of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Abstract
In this mini-reflection, I explain how during my doctoral work in a Botany Department I first became interested in H2O2 and later in my career in other reactive oxygen species, especially the role of "catalytic" iron and haem compounds (including leghaemoglobin) in promoting oxidative damage. The important roles that H2O2, other ROS and dietary plants play in respect to humans are discussed. I also review the roles of diet-derived antioxidants in relation to human disease, presenting reasons why clinical trials using high doses of natural antioxidants have generally given disappointing results. Iron chelators and ergothioneine are reviewed as potential cytoprotective agents with antioxidant properties that may be useful therapeutically. The discovery of ferroptosis may also lead to novel agents that can be used to treat certain diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| |
Collapse
|
5
|
Jiménez E, Pimentel E, Cruces MP, Amaya-Chávez A. Radioprotective effect of chloropyllin, protoporphyrin-IX and bilirubin compared with amifostine® in Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103464. [PMID: 32750419 DOI: 10.1016/j.etap.2020.103464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The identification of substances that prevent or minimize the detrimental effects of ionizing radiation is an essential undertaking. The aim of this paper was to evaluate and compare the radioprotective potential of chlorophyllin, protoporphyrin and bilirubin, with amifostine®, an US Food & Drug Administration approved radioprotector Using the somatic mutation and recombination assay in the Drosophila melanogaster wing, it was found that pretreatment (1-9 h) with any of the porphyrins or amifostine® alone, did not affect the larva-adult viability or the basal frequency of mutation. However, they were associated with significant reductions in frequency of somatic mutation and recombination compared with the gamma-irradiated (20 Gy) control as follows: bilirubin (69.3 %)> chlorophyllin (40.0 %)> protoporphyrin (39.0 %)> amifostine® (19.7 %). Bilirubin also caused a 16 % increase in larva-adult viability with 3 h of pretreatment respect to percentage induced in 20 Gy control group. Whilst amifostine® was associated with lower genetic damage after pre-treatment of 1 and 3 h, this did not attain significance. These findings suggest that the tested porphyrins may have some potential as radioprotectant agents.
Collapse
Affiliation(s)
- E Jiménez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - E Pimentel
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico.
| | - M P Cruces
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Edo. de México, C.P. 52750, Mexico
| | - A Amaya-Chávez
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
6
|
Larsen EL, Weimann A, Poulsen HE. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med 2019; 145:256-283. [PMID: 31563634 DOI: 10.1016/j.freeradbiomed.2019.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress is associated with the development and progression of numerous diseases. However, targeting oxidative stress has not been established in the clinical management of any disease. Several methods and markers are available to measure oxidative stress, including direct measurement of free radicals, antioxidants, redox balance, and oxidative modifications of cellular macromolecules. Oxidatively generated nucleic acid modifications have attracted much interest due to the pre-mutagenic oxidative modification of DNA into 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), associated with cancer development. During the last decade, the perception of RNA has changed from that of a 'silent messenger' to an 'active contributor', and, parallelly oxidatively generated RNA modifications measured as 8-oxo-7,8-dihydro-guanosine (8-oxoGuo), has been demonstrated as a prognostic factor for all-caused and cardiovascular related mortality in patients with type 2 diabetes. Several attempts have been made to modify the amount of oxidative nucleic acid modifications. Thus, this review aims to introduce researchers to the measurement of oxidatively generated nucleic acid modifications as well as critically review previous attempts and provide future directions for targeting oxidatively generated nucleic acid modifications.
Collapse
Affiliation(s)
- Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark.
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2716870. [PMID: 31737167 PMCID: PMC6815645 DOI: 10.1155/2019/2716870] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
A growing awareness of the mechanisms by which phytochemicals can influence upstream endogenous cellular defence processes has led to intensified research into their potential relevance in the prevention and treatment of disease. Pharmaceutical medicine has historically looked to plants as sources of the starting materials for drug development; however, the focus of nutraceutical medicine is to retain the plant bioactive in as close to its native state as possible. As a consequence, the potency of a nutraceutical concentrate or an extract may be lower than required for significant gene expression. The molecular structure of bioactive phytochemicals to a large extent determines the molecule's bioavailability. Polyphenols are abundant in dietary phytochemicals, and extensive in vitro research has established many of the signalling mechanisms involved in favourably modulating human biochemical pathways. Such pathways are associated with core processes such as redox modulation and immune modulation for infection control and for downregulating the synthesis of inflammatory cytokines. Although the relationship between oxidative stress and chronic disease continues to be affirmed, direct-acting antioxidants such as vitamins A, C, and E, beta-carotene, and others have not yielded the expected preventive or therapeutic responses, even though several large meta-analyses have sought to evaluate the potential benefit of such supplements. Because polyphenols exhibit poor bioavailability, few of their impressive in vitro findings have been replicated in vivo. SFN, an aliphatic isothiocyanate, emerges as a phytochemical with comparatively high bioavailability. A number of clinical trials have demonstrated its ability to produce favourable outcomes in conditions for which there are few satisfactory pharmaceutical solutions, foreshadowing the potential for SFN as a clinically relevant nutraceutical. Although myrosinase-inert broccoli sprout extracts are widely available, there now exist myrosinase-active broccoli sprout supplements that yield sufficient SFN to match the doses used in clinical trials.
Collapse
|
8
|
Ranard KM, Erdman JW. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr Rev 2019; 76:141-153. [PMID: 29301023 DOI: 10.1093/nutrit/nux067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of the 8 vitamin E analogues, RRR α-tocopherol likely has the greatest effect on health outcomes. Two sources of α-tocopherol, naturally sourced RRR α-tocopherol and synthetic all-racemic α-tocopherol, are commonly consumed from foods and dietary supplements in the United States. A 2016 US Food and Drug Administration ruling substantially changed the RRR to all-racemic α-tocopherol ratio of biopotency from 1.36:1 to 2:1 for food-labeling purposes, but the correct ratio is still under debate in the literature. Few studies have directly compared the 2 α-tocopherol sources, and existing studies do not compare the efficacy of either source for preventing or treating disease in humans. To help close this gap, this review evaluates studies that investigated the effects of either RRR α-tocopherol or all-racemic α-tocopherol on health outcomes, and compares the overall findings. α-Tocopherol has been used to prevent and/or treat cancer and diseases of the central nervous system, the immune system, and the cardiovascular system, so these diseases are the focus of the review. No firm conclusions about the relative effects of the α-tocopherol sources on health outcomes can be made. Changes to α-tocopherol-relevant policies have proceeded without adequate scientific support. Additional research is needed to assemble the pieces of the α-tocopherol puzzle and to determine the RRR to all-racemic α-tocopherol ratio of biopotency for health outcomes.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Hamza RZ, Al-Juaid NS, Althubaiti EH. Antioxidant Effect of Carnosine on Aluminum Oxide Nanoparticles (Al2O3-NPs)-induced Hepatotoxicity and Testicular Structure Alterations in Male Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.740.750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Prasad S, Kaisar MA, Cucullo L. Unhealthy smokers: scopes for prophylactic intervention and clinical treatment. BMC Neurosci 2017; 18:70. [PMID: 28985714 PMCID: PMC5639581 DOI: 10.1186/s12868-017-0388-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently accountable for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current proportion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from a smoking-related illness. Even though there has been a marginal smoking decline of around 5% in recent years (2005 vs 2015), smokers still account for 15% of the US adult population. What is also concerning is that 41,000 out of 480,000 deaths results from secondhand smoke (SHS) exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss prophylactic interventions and associated benefits and provide a rationale for the scope of clinical treatment. CONCLUSIONS Considering these premises, it is evident that much detailed translational and clinical studies are needed. Factors such as the length of smoking cessation for ex-smokers, the level of smoke exposure in case of SHS, pre-established health conditions, genetics (and epigenetics modification caused by chronic smoking) are few of the criteria that need to be evaluated to begin assessing the prophylactic and/or therapeutic impact of treatments aimed at chronic and former smokers (especially early stage ex-smokers) including those frequently subjected to second hand tobacco smoke exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss about prophylactic interventions and associated benefits and provide a rationale and scope for clinical treatment.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
11
|
Deng J, Zhong YF, Wu YP, Luo Z, Sun YM, Wang GE, Kurihara H, Li YF, He RR. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage. Redox Biol 2017; 14:1-6. [PMID: 28826042 PMCID: PMC5565745 DOI: 10.1016/j.redox.2017.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022] Open
Abstract
Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX). However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine), a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p.) significantly inhibited the generation of reactive oxygen species (ROS) and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG), and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h). Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Bone marrow cells suppression induced by CTX is associated with the increasement of ROS and oxidative DNA damage. Carnosine attenuates CTX-elevated oxidative DNA damage and bone marrow cells suppression. Favorable prospects of clinical applications for carnosine in combination with CTX.
Collapse
Affiliation(s)
- Jie Deng
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yi-Fei Zhong
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yan-Ping Wu
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhuo Luo
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yuan-Ming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Guo-En Wang
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Hiroshi Kurihara
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yi-Fang Li
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Rong-Rong He
- Anti-stress and Health Research Center, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, PR China; Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou, Guangdong 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong 510632, PR China
| |
Collapse
|
12
|
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 3:228-37. [PMID: 20972369 PMCID: PMC2952083 DOI: 10.4161/oxim.3.4.12858] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The balance between oxidation and antioxidation is believed to be critical in maintaining healthy biological systems. Under physiological conditions, the human antioxidative defense system including e.g., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH) and others, allows the elimination of excess reactive oxygen species (ROS) including, among others superoxide anions (O2.-), hydroxyl radicals (OH.), alkoxyl radicals (RO.) and peroxyradicals (ROO.). However, our endogenous antioxidant defense systems are incomplete without exogenous originating reducing compounds such as vitamin C, vitamin E, carotenoids and polyphenols, playing an essential role in many antioxidant mechanisms in living organisms. Therefore, there is continuous demand for exogenous antioxidants in order to prevent oxidative stress, representing a disequilibrium redox state in favor of oxidation. However, high doses of isolated compounds may be toxic, owing to prooxidative effects at high concentrations or their potential to react with beneficial concentrations of ROS normally present at physiological conditions that are required for optimal cellular functioning. This review aims to examine the double-edged effects of dietary originating antioxidants with a focus on the most abundant compounds, especially polyphenols, vitamin C, vitamin E and carotenoids. Different approaches to enrich our body with exogenous antioxidants such as via synthetic antioxidants, diets rich in fruits and vegetables and taking supplements will be reviewed and experimental and epidemiological evidences discussed, highlighting that antioxidants at physiological doses are generally safe, exhibiting interesting health beneficial effects.
Collapse
Affiliation(s)
- Jaouad Bouayed
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg.
| | - Torsten Bohn
- Centre de Recherche Public-Gabriel Lippmann; Environment and Agro-Biotechnolgies Department; Nutrition and Toxicology Unit; Belvaux, Luxembourg
| |
Collapse
|
13
|
Ji L, Gao W, Wei J, Pu L, Yang J, Guo C. In Vivo Antioxidant Properties of Lotus Root and Cucumber: A Pilot Comparative Study in Aged Subjects. J Nutr Health Aging 2015; 19:765-70. [PMID: 26193861 DOI: 10.1007/s12603-015-0524-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To compare the effects of lotus root and cucumber on antioxidant function in aged subjects. DESIGN Pilot comparative study. SETTING Research setting with vegetable intervention. PARTICIPANTS Healthy aged subjects over the age of sixty. INTERVENTION 30-day supplementation of lotus root or cucumber powder. MEASUREMENTS Plasma value of ferric reducing antioxidant power assay, activity of antioxidant enzymes, contents of some antioxidants, oxidation products, hemolysis, blood mononuclear cell DNA damage and urinary excretion of 8-hydroxy-2'-deoxyguanosine were measured before and after the intervention. RESULTS Plasma glutathione peroxidase activity, contents of vitamin C, total phenolics were significantly increased, while plasma uric acid content significantly decreased in both groups at the end of the intervention. Meanwhile, hemolysis was significantly reduced in both groups and DNA injury rate of blood mononuclear cells in lotus root group and the ratio of comet tail length to total length in cucumber group were also declined significantly post-intervention. However, plasma value of ferric reducing antioxidant power assay, contents of reduced glutathione, vitamin E, malondialdehyde, oxidized low density lipoprotein, carbonyls and activity of superoxide dismutase and catalase were not changed significantly in both group after the intervention. CONCLUSION These results suggest that lotus root and cucumber are not remarkably different in improving antioxidant function in aged subjects, though they are significantly different in antioxidant capacity in vitro. The benefits observed in this study may come from the additive or synergistic combinations of antioxidants contained in vegetables.
Collapse
Affiliation(s)
- L Ji
- Changjiang Guo, Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, P. R. China, Tel.: +86 22 84655429; fax: + 86 22 84655020, E-mail:
| | | | | | | | | | | |
Collapse
|
14
|
Ito K, Watanabe C, Nakamura A, Oikawa-Tada S, Murata M. Reduced Coenzyme Q10 Decreases Urinary 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Concentrations in Healthy Young Female Subjects. J Med Food 2015; 18:835-40. [DOI: 10.1089/jmf.2014.3302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kimiko Ito
- Department of Life Science, Tsu City College, Tsu, Mie, Japan
| | - Chigusa Watanabe
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akari Nakamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Saeko Oikawa-Tada
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
15
|
Roy A, Sikdar J, Seal P, Haldar R. Cigarette smokers develop structurally modified hemoglobin: a possible way of increasing oxidative stress. Inhal Toxicol 2015; 27:300-7. [DOI: 10.3109/08958378.2015.1045052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Scientific Opinion on the re‐evaluation of ascorbic acid (E 300), sodium ascorbate (E 301) and calcium ascorbate (E 302) as food additives. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Balcerczyk A, Gajewska A, Macierzyńska-Piotrowska E, Pawelczyk T, Bartosz G, Szemraj J. Enhanced antioxidant capacity and anti-ageing biomarkers after diet micronutrient supplementation. Molecules 2014; 19:14794-808. [PMID: 25232703 PMCID: PMC6270881 DOI: 10.3390/molecules190914794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
A growing number of studies confirm an important effect of diet, lifestyle and physical activity on health status, the ageing process and many metabolic disorders. This study focuses on the influence of a diet supplement, NucleVital®Q10 Complex, on parameters related to redox homeostasis and ageing. An experimental group of 66 healthy volunteer women aged 35–55 supplemented their diet for 12 weeks with the complex, which contained omega-3 acids (1350 mg/day), ubiquinone (300 mg/day), astaxanthin (15 mg/day), lycopene (45 mg/day), lutein palmitate (30 mg/day), zeaxanthine palmitate (6 mg/day), L-selenomethionine (330 mg/day), cholecalciferol (30 µg/day) and α-tocopherol (45 mg/day). We found that NucleVital®Q10 Complex supplementation significantly increased total antioxidant capacity of plasma and activity of erythrocyte superoxide dismutase, with slight effects on oxidative stress biomarkers in erythrocytes; MDA and 4-hydroxyalkene levels. Apart from the observed antioxidative effects, the tested supplement also showed anti-ageing activity. Analysis of expression of SIRT1 and 2 in PBMCs showed significant changes for both genes on a mRNA level. The level of telomerase was also increased by more than 25%, although the length of lymphocyte telomeres, determined by RT-PCR, remained unchanged. Our results demonstrate beneficial effects concerning the antioxidant potential of plasma as well as biomarkers related to ageing even after short term supplementation of diet with NucleVital®Q10 Complex.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Tomasz Pawelczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, Lodz 92-216, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University in Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
| |
Collapse
|
18
|
de Dieu Ndikubwimana J, Lee BH. Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnol Lett 2014; 36:1917-26. [DOI: 10.1007/s10529-014-1587-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
|
19
|
Galas A, Cebulska-Wasilewska A. Can consumption of raw vegetables decrease the count of sister chromatid exchange? Results from a cross-sectional study in Krakow, Poland. Eur J Nutr 2014; 54:161-71. [PMID: 24740589 PMCID: PMC4323515 DOI: 10.1007/s00394-014-0697-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/01/2014] [Indexed: 11/30/2022]
Abstract
Background
Sister chromatid exchange (SCE) is a widely used sensitive cytogenetic biomarker of exposure to genotoxic and cancerogenic agents. Results of human monitoring studies and cytogenetic damage have revealed that biological effects of genotoxic exposures are influenced by confounding factors related to life-style. Vegetable and fruit consumption may play a role, but available results are not consistent. The purpose of the study was to investigate the effect of consumption of raw and cooked vegetables and fruits on SCE frequency. Methods A total of 62 participants included colorectal cancer (CRC) patients, hospital-based controls and healthy laboratory workers. SCE frequency was assessed in blood lymphocytes. Frequency of vegetable and fruit consumption was gathered by structured semi-quantitative food frequency questionnaire. Results SCE frequency was lowest among hospital-based controls (4.4 ± 1.1), a bit higher in CRC patients (4.5 ± 1.0) and highest among laboratory workers (7.4 ± 1.2) (p < 0.05). Multivariable linear regression showed a significant inverse effect (b = −0.20) of raw vegetable consumption, but not so for intake of cooked vegetables and fruits. Conclusions The results of the study have shown the beneficial effect of consumption of raw vegetables on disrupted replication of DNA measured by SCE frequency, implying protection against genotoxic agents. Further effort is required to verify the role of cooked vegetables and fruits.
Collapse
Affiliation(s)
- Aleksander Galas
- Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, 7 Kopernika St, Kraków, Poland,
| | | |
Collapse
|
20
|
Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013; 19:2157-96. [PMID: 23458328 PMCID: PMC3869543 DOI: 10.1089/ars.2012.4662] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jubayer Al Hossain
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Thomas Kietzmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Kantor ED, Ulrich CM, Owen RW, Schmezer P, Neuhouser ML, Lampe JW, Peters U, Shen DD, Vaughan TL, White E. Specialty supplement use and biologic measures of oxidative stress and DNA damage. Cancer Epidemiol Biomarkers Prev 2013; 22:2312-22. [PMID: 23917455 DOI: 10.1158/1055-9965.epi-13-0470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Oxidative stress and resulting cellular damage have been suggested to play a role in the etiology of several chronic diseases, including cancer and cardiovascular disease. Identifying factors associated with reduced oxidative stress and resulting damage may guide future disease-prevention strategies. METHODS In the VITamins And Lifestyle (VITAL) biomarker study of 209 persons living in the Seattle area, we examined the association between current use of several specialty supplements and oxidative stress, DNA damage, and DNA repair capacity. Use of glucosamine, chondroitin, fish oil, methylsulfonylmethane (MSM), coenzyme Q10 (CoQ10), ginseng, ginkgo, and saw palmetto was ascertained by a supplement inventory/interview, whereas the use of fiber supplements was ascertained by questionnaire. Supplements used by more than 30 persons (glucosamine and chondroitin) were evaluated as the trend across number of pills/week (non-use, <14 pills/week, 14+ pills/week), whereas less commonly used supplements were evaluated as use/non-use. Oxidative stress was measured by urinary 8-isoprostane and PGF2α concentrations using enzyme immunoassays (EIA), whereas lymphocyte DNA damage and DNA repair capacity were measured using the Comet assay. Multivariate-adjusted linear regression was used to model the associations between supplement use and oxidative stress/DNA damage. RESULTS Use of glucosamine (Ptrend: 0.01), chondroitin (Ptrend: 0.003), and fiber supplements (P: 0.01) was associated with reduced PGF2α concentrations, whereas CoQ10 supplementation was associated with reduced baseline DNA damage (P: 0.003). CONCLUSIONS Use of certain specialty supplements may be associated with reduced oxidative stress and DNA damage. IMPACT Further research is needed to evaluate the association between specialty supplement use and markers of oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Elizabeth D Kantor
- Authors' Affiliations: Public Health Sciences Division, Clinical Research Division, Fred Hutchinson Cancer Research Center; Departments of Epidemiology, Pharmacy, and Pharmaceutics, University of Washington, Seattle, Washington; Division of Preventive Oncology, National Center for Tumor Diseases; Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sram RJ, Binkova B, Rossner P. Vitamin C for DNA damage prevention. Mutat Res 2012; 733:39-49. [PMID: 22178550 DOI: 10.1016/j.mrfmmm.2011.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/25/2011] [Accepted: 12/04/2011] [Indexed: 05/27/2023]
Abstract
The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels>50μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels>50μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels>50μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.
Collapse
Affiliation(s)
- Radim J Sram
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4, Czech Republic.
| | | | | |
Collapse
|
23
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2012; 2012:CD007176. [PMID: 22419320 PMCID: PMC8407395 DOI: 10.1002/14651858.cd007176.pub2] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our systematic review has demonstrated that antioxidant supplements may increase mortality. We have now updated this review. OBJECTIVES To assess the beneficial and harmful effects of antioxidant supplements for prevention of mortality in adults. SEARCH METHODS We searched The Cochrane Library, MEDLINE, EMBASE, LILACS, the Science Citation Index Expanded, and Conference Proceedings Citation Index-Science to February 2011. We scanned bibliographies of relevant publications and asked pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Three authors extracted data. Random-effects and fixed-effect model meta-analyses were conducted. Risk of bias was considered in order to minimise the risk of systematic errors. Trial sequential analyses were conducted to minimise the risk of random errors. Random-effects model meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Seventy-eight randomised trials with 296,707 participants were included. Fifty-six trials including 244,056 participants had low risk of bias. Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases in a stable phase. The mean age was 63 years (range 18 to 103 years). The mean proportion of women was 46%. Of the 78 trials, 46 used the parallel-group design, 30 the factorial design, and 2 the cross-over design. All antioxidants were administered orally, either alone or in combination with vitamins, minerals, or other interventions. The duration of supplementation varied from 28 days to 12 years (mean duration 3 years; median duration 2 years). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects model meta-analysis (21,484 dead/183,749 (11.7%) versus 11,479 dead/112,958 (10.2%); 78 trials, relative risk (RR) 1.02, 95% confidence interval (CI) 0.98 to 1.05) but significantly increased mortality in a fixed-effect model (RR 1.03, 95% CI 1.01 to 1.05). Heterogeneity was low with an I(2)- of 12%. In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. Meta-regression analysis did not find a significant difference in the estimated intervention effect in the primary prevention and the secondary prevention trials. In the 56 trials with a low risk of bias, the antioxidant supplements significantly increased mortality (18,833 dead/146,320 (12.9%) versus 10,320 dead/97,736 (10.6%); RR 1.04, 95% CI 1.01 to 1.07). This effect was confirmed by trial sequential analysis. Excluding factorial trials with potential confounding showed that 38 trials with low risk of bias demonstrated a significant increase in mortality (2822 dead/26,903 (10.5%) versus 2473 dead/26,052 (9.5%); RR 1.10, 95% CI 1.05 to 1.15). In trials with low risk of bias, beta-carotene (13,202 dead/96,003 (13.8%) versus 8556 dead/77,003 (11.1%); 26 trials, RR 1.05, 95% CI 1.01 to 1.09) and vitamin E (11,689 dead/97,523 (12.0%) versus 7561 dead/73,721 (10.3%); 46 trials, RR 1.03, 95% CI 1.00 to 1.05) significantly increased mortality, whereas vitamin A (3444 dead/24,596 (14.0%) versus 2249 dead/16,548 (13.6%); 12 trials, RR 1.07, 95% CI 0.97 to 1.18), vitamin C (3637 dead/36,659 (9.9%) versus 2717 dead/29,283 (9.3%); 29 trials, RR 1.02, 95% CI 0.98 to 1.07), and selenium (2670 dead/39,779 (6.7%) versus 1468 dead/22,961 (6.4%); 17 trials, RR 0.97, 95% CI 0.91 to 1.03) did not significantly affect mortality. In univariate meta-regression analysis, the dose of vitamin A was significantly associated with increased mortality (RR 1.0006, 95% CI 1.0002 to 1.001, P = 0.002). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Beta-carotene and vitamin E seem to increase mortality, and so may higher doses of vitamin A. Antioxidant supplements need to be considered as medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- Goran Bjelakovic
- Department of InternalMedicine,Medical Faculty, University ofNis,Nis, Serbia.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E.
Collapse
Affiliation(s)
- Richard C Petersen
- University of Alabama at Birmingham, SDB 539, 1919 7 Avenue South, Biomaterials and Biomedical Engineering, Birmingham AL 35294, USA
| |
Collapse
|
25
|
Schmelzer C, Döring F. Micronutrient special issue: coenzyme Q(10) requirements for DNA damage prevention. Mutat Res 2011; 733:61-8. [PMID: 21964355 DOI: 10.1016/j.mrfmmm.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 01/12/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential component for electron transport in the mitochondrial respiratory chain and serves as cofactor in several biological processes. The reduced form of CoQ(10) (ubiquinol, Q(10)H(2)) is an effective antioxidant in biological membranes. During the last years, particular interest has been grown on molecular effects of CoQ(10) supplementation on mechanisms related to DNA damage prevention. This review describes recent advances in our understanding about the impact of CoQ(10) on genomic stability in cells, animals and humans. With regard to several in vitro and in vivo studies, CoQ(10) provides protective effects on several markers of oxidative DNA damage and genomic stability. In comparison to the number of studies reporting preventive effects of CoQ(10) on oxidative stress biomarkers, CoQ(10) intervention studies in humans with a direct focus on markers of DNA damage are limited. Thus, more well-designed studies in healthy and disease populations with long-term follow up results are needed to substantiate the reported beneficial effects of CoQ(10) on prevention of DNA damage.
Collapse
Affiliation(s)
- Constance Schmelzer
- Leibniz Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | |
Collapse
|
26
|
Edeas M. Strategies to target mitochondria and oxidative stress by antioxidants: key points and perspectives. Pharm Res 2011; 28:2771-9. [PMID: 21918914 DOI: 10.1007/s11095-011-0587-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/07/2011] [Indexed: 12/22/2022]
Abstract
For several decades, many antioxidants studies have emphasized the marked disparity between the beneficial effect of the antioxidants shown in preclinical studies and their inability to show beneficial effects in clinical trials. Besides, it is not uncommon to find highly contradictory clinical results, which may explain why consumers are less enthusiastic for antioxidant uses. This perspective article aims to highlights the critical role of Reactive Oxygen Species (ROS) and antioxidants, the potential mechanisms that might account for these discrepancies in clinical trials and some strategies to target oxidative stress and mitochondria by antioxidants. We need urgently to set up standard methods to evaluate antioxidants and oxidative stress in human and in particular at mitochondria level. The determination of what the basal level of ROS is in normal human may be used to identify pathologic ROS levels in patients and ultimately guide antioxidants treatment.
Collapse
Affiliation(s)
- Marvin Edeas
- Institute For Antioxidants Applications International Society of Antioxidants in Nutrition and Health Antioxidants Task Force, 15 rue de la paix, 75002 Paris, France.
| |
Collapse
|
27
|
Lemaire-Ewing S, Desrumaux C, Néel D, Lagrost L. Vitamin E transport, membrane incorporation and cell metabolism: Is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol Nutr Food Res 2010; 54:631-40. [PMID: 20166147 DOI: 10.1002/mnfr.200900445] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vitamin E is composed of closely related compounds, including tocopherols and tocotrienols. Studies of the last decade provide strong support for a specific role of alpha-tocopherol in cell signalling and the regulation of gene expression. It produces significant effects on inflammation, cell proliferation and apoptosis that are not shared by other vitamin E isomers with similar antioxidant properties. The different behaviours of vitamin E isomers might relate, at least in part, to the specific effects they exert at the plasma membrane. alpha-Tocopherol is not randomly distributed throughout the phospholipid bilayer of biological membranes, and as compared with other isomers, it shows a propensity to associate with lipid rafts. Distinct aspects of vitamin E transport and metabolism is discussed with emphasis on the interaction between alpha-tocopherol and lipid rafts and the consequences of these interactions on cell metabolism.
Collapse
|
28
|
|
29
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
In my career I have moved from chemistry to biochemistry to plant science to clinical chemistry and back again (in a partial way) to plants. This review presents a brief history of my research achievements (ascorbate-glutathione cycle, role of iron in oxidative damage and human disease, biomarkers of free radical damage, and studies on atherosclerosis and neurodegeneration) and how they relate to my research activities today. The field of free radicals/other reactive species/antioxidants underpins all of modern Biology. These agents helped to drive human evolution and the basic principles of the field are repeatedly found to be relevant in other research areas. It was an exciting field when I started some 40 years ago, and it still is today, but some major challenges must be faced.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:445-62. [PMID: 19440393 PMCID: PMC2672368 DOI: 10.3390/ijerph6020445] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/25/2009] [Indexed: 01/10/2023]
Abstract
Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2 (*-)) and hydroxyl (HO(*)) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2'-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO(*), through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM(10), PM(2.5) and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM(2.5) and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and "bio-filters" with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, Free Radical Research Group, University of Athens, University Campus Zografou, 15784 Athens, Greece.
| | | | | |
Collapse
|
33
|
Chen CM, Liu JL, Wu YR, Chen YC, Cheng HS, Cheng ML, Chiu DTY. Increased oxidative damage in peripheral blood correlates with severity of Parkinson's disease. Neurobiol Dis 2008; 33:429-35. [PMID: 19110057 DOI: 10.1016/j.nbd.2008.11.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 11/08/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022] Open
Abstract
Increased oxidative stress contributes to neuronal dysfunction in Parkinson's disease (PD). We investigated whether the pathological changes in PD brains may also be present in peripheral tissues. Leukocyte 8-hydroxydeoxyguanosine (8-OHdG), plasma malondialdehyde (MDA), erythrocyte glutathione peroxidase (GPx) and plasma vitamin E (Vit E) were measured for 211 PD patients and 135 healthy controls. Leukocyte 8-OHdG and plasma MDA were elevated, whereas erythrocyte GPx and plasma Vit E were reduced in PD patients when compared to the controls. After adjusting for environmental factors, logistic regression analysis showed that PD severity was independently correlated with 8-OHdG and MDA level, and inversely correlated with GPx activity and Vit E level. Leucocyte 8-OHdG level was continuously increased with advanced PD Hoehn-Yahr stages, while plasma MDA level peaked at early disease stages, among PD patients. These results suggest increased oxidative damage and decreased anti-oxidant capacity in peripheral blood, and a significant correlation between leucocyte 8-OHdG level and disease severity in PD.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Al-Johar D, Shinwari N, Arif J, Al-Sanea N, Jabbar AA, El-Sayed R, Mashhour A, Billedo G, El-Doush I, Al-Saleh I. Role ofNigella sativaand a number of its antioxidant constituents towards azoxymethane-induced genotoxic effects and colon cancer in rats. Phytother Res 2008; 22:1311-23. [PMID: 18570215 DOI: 10.1002/ptr.2487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dalal Al-Johar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- MARK TORAASON
- Cellular Toxicology Section, National Institute for Occupational Safety and Health,4676 Columbia Parkway, Cincinnati OH 45226, USA
| |
Collapse
|
36
|
Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 2008; 476:107-12. [DOI: 10.1016/j.abb.2008.01.028] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/26/2007] [Accepted: 01/29/2008] [Indexed: 12/17/2022]
|
37
|
Loft S, Møller P, Cooke MS, Rozalski R, Olinski R. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker? Eur J Nutr 2008; 47 Suppl 2:19-28. [PMID: 18458832 DOI: 10.1007/s00394-008-2004-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative damage to DNA is regarded as an important step in carcinogenesis. These lesions may arise as a consequence of exposure to xenobiotics, but are also generated as a consequence of endogenous generation of oxidizing compounds. Measurements of oxidative damage to guanines, such as 8-oxo-7, 8-dihydroguanine (8-oxodG) are increasingly being regarded as reliable biomarkers of oxidative stress and they may have a predictive value of cancer risk, although this needs to be established independently in several cohort studies. A survey of intervention studies of the ingestion of antioxidant-containing foods or tablets of antioxidants indicate that about one-third of the studies reported a protective effect in terms of lower levels of oxidative damage to DNA in white blood cells or decreased urinary excretion of 8-oxodG. Although firm conclusions cannot be reached, there appears to be links between ingestion of antioxidants, oxidative damage to DNA, and risk of cancer.
Collapse
Affiliation(s)
- Steffen Loft
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Yoshioka N, Nakashima H, Hosoda K, Eitaki Y, Shimada N, Omae K. Urinary Excretion of an Oxidative Stress Marker, 8‐hydroxyguanine (8‐OH‐Gua), among Nickel‐cadmium Battery Workers. J Occup Health 2008; 50:229-35. [DOI: 10.1539/joh.l7125] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Noriyuki Yoshioka
- Department of Preventive Medicine and Public HealthSchool of Medicine, Keio University
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public HealthNational Defense Medical College
| | - Kanae Hosoda
- Department of Preventive Medicine and Public HealthSchool of Medicine, Keio University
| | - Yoko Eitaki
- Osaka Occupational Health Service CenterJapan Industrial Safety and Health AssociationJapan
| | - Naoki Shimada
- Department of Preventive Medicine and Public HealthSchool of Medicine, Keio University
| | - Kazuyuki Omae
- Department of Preventive Medicine and Public HealthSchool of Medicine, Keio University
| |
Collapse
|
40
|
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev 2008:CD007176. [PMID: 18425980 DOI: 10.1002/14651858.cd007176] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal and physiological research as well as observational studies suggest that antioxidant supplements may improve survival. OBJECTIVES To assess the effect of antioxidant supplements on mortality in primary or secondary prevention randomised clinical trials. SEARCH STRATEGY We searched The Cochrane Library (Issue 3, 2005), MEDLINE (1966 to October 2005), EMBASE (1985 to October 2005), and the Science Citation Index Expanded (1945 to October 2005). We scanned bibliographies of relevant publications and wrote to pharmaceutical companies for additional trials. SELECTION CRITERIA We included all primary and secondary prevention randomised clinical trials on antioxidant supplements (beta-carotene, vitamin A, vitamin C, vitamin E, and selenium) versus placebo or no intervention. Included participants were either healthy (primary prevention trials) or had any disease (secondary prevention trials). DATA COLLECTION AND ANALYSIS Three authors extracted data. Trials with adequate randomisation, blinding, and follow-up were classified as having a low risk of bias. Random-effects and fixed-effect meta-analyses were performed. Random-effects meta-regression analyses were performed to assess sources of intertrial heterogeneity. MAIN RESULTS Sixty-seven randomised trials with 232,550 participants were included. Forty-seven trials including 180,938 participants had low risk of bias. Twenty-one trials included 164,439 healthy participants. Forty-six trials included 68111 participants with various diseases (gastrointestinal, cardiovascular, neurological, ocular, dermatological, rheumatoid, renal, endocrinological, or unspecified). Overall, the antioxidant supplements had no significant effect on mortality in a random-effects meta-analysis (relative risk [RR] 1.02, 95% confidence interval [CI] 0.99 to 1.06), but significantly increased mortality in a fixed-effect model (RR 1.04, 95% CI 1.02 to 1.06). In meta-regression analysis, the risk of bias and type of antioxidant supplement were the only significant predictors of intertrial heterogeneity. In the trials with a low risk of bias, the antioxidant supplements significantly increased mortality (RR 1.05, 95% CI 1.02 to 1.08). When the different antioxidants were assessed separately, analyses including trials with a low risk of bias and excluding selenium trials found significantly increased mortality by vitamin A (RR 1.16, 95% CI 1.10 to 1.24), beta-carotene (RR 1.07, 95% CI 1.02 to 1.11), and vitamin E (RR 1.04, 95% CI 1.01 to 1.07), but no significant detrimental effect of vitamin C (RR 1.06, 95% CI 0.94 to 1.20). Low-bias risk trials on selenium found no significant effect on mortality (RR 0.91, 95% CI 0.76 to 1.09). AUTHORS' CONCLUSIONS We found no evidence to support antioxidant supplements for primary or secondary prevention. Vitamin A, beta-carotene, and vitamin E may increase mortality. Future randomised trials could evaluate the potential effects of vitamin C and selenium for primary and secondary prevention. Such trials should be closely monitored for potential harmful effects. Antioxidant supplements need to be considered medicinal products and should undergo sufficient evaluation before marketing.
Collapse
Affiliation(s)
- G Bjelakovic
- Copenhagen University Hospital, Rigshospitalet, Department 3344,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | | | | | | | |
Collapse
|
41
|
Brzozowska A, Kaluza J, Knoops KTB, de Groot LCPGM. Supplement use and mortality: the SENECA study. Eur J Nutr 2008; 47:131-7. [PMID: 18414768 DOI: 10.1007/s00394-008-0706-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 04/02/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND It is hypothesis that in relatively healthy older people supplement usage can be consider as healthy life style habit and as such can positively influence longevity. AIM OF THE STUDY To determine whether supplement use was associated with all-cause mortality in the participants of the SENECA study. METHODS Baseline measurements were carried out in 1988/1989 among 75 to 80-year-old people living in 15 European small towns. All-cause mortality was followed up to April 30, 1999. Data from 920 men and 980 women who were ischemic heart diseases-, stroke- and cancer-free at baseline were included. The multivariate adjusted (for sex, age, years of education, physical activity, BMI, chronic diseases, Mediterranean Diet Score, alcohol use and the place of living) hazard ratio (HRs) and 95% confidence intervals (CIs) of mortality by use of any type of nutrient supplement and by particular nutrient supplement use were estimated by Cox proportional hazards regression models. RESULTS At baseline, 13% of participants used nutritional supplements, 19% of subjects were smokers. During 10 years of follow-up 445 men and 252 women died. Among non-smokers no significant associations between total supplement use and particular nutrient supplement use were observed. Among smokers use of any type of supplements (Multivariate HR: 1.52; 95%CI: 1.02-2.28), use of vitamin B(1) (Multivariate HR: 1.57; 95%CI: 1.00-2.48) and vitamin B(2) supplements (Multivariate HR: 1.60; 95%CI: 1.00-2.56) were associated with a significantly higher risk of all-cause mortality. The similar tendencies were observed among vitamin B(6) and vitamin C supplement users who were smokers. CONCLUSIONS Among smokers, participants of the SENECA study, supplement use increased all-cause mortality risk.
Collapse
Affiliation(s)
- Anna Brzozowska
- Dept. Human Nutrition, Warsaw University of Life Sciences-SGGW, 159c Nowoursynowska St., 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
42
|
Calişkan-Can E, Firat H, Ardiç S, Simşek B, Torun M, Yardim-Akaydin S. Increased levels of 8-hydroxydeoxyguanosine and its relationship with lipid peroxidation and antioxidant vitamins in lung cancer. Clin Chem Lab Med 2008; 46:107-12. [PMID: 18194082 DOI: 10.1515/cclm.2008.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reactive oxygen species produced either endogenously or exogenously can attack lipids, proteins and DNA in human cells and cause potentially deleterious consequences. In recent years, their role in the pathogenesis of lung cancer and the preventive effect of antioxidants have been studied extensively. In this study, our aim was to investigate the levels of 8-hydroxy-2'-deoxyguanosine (8OHdG) and malondialdehyde as a marker for the effects of reactive oxygen species on DNA and lipids, the levels of antioxidant vitamins and the correlations between these oxidative stress markers and antioxidants in lung cancer. METHODS Serum malondialdehyde, beta-carotene, retinol, and vitamins C and E were measured by high-performance liquid chromatography methods in fasting blood samples and 8OHdG was measured by gas chromatography-mass spectrometry in 24-h urine samples of patients with lung cancer (n=39) and healthy controls (n=31). RESULTS The levels of 8OHdG and malondialdehyde were significantly higher (p<0.05 and p<0.005, respectively) and beta-carotene, retinol, and vitamins C and E (p<0.0001, p<0.0001, p<0.0001, and p<0.05, respectively) were significantly lower in patients than in controls. There was a significantly positive correlation between 8OHdG and malondialdehyde (r=0.463, p=0.01) and a negative correlation between the levels of 8OHdG and retinol (r=-0.419, p=0.021) in the patient group. CONCLUSIONS Our results demonstrate that the oxidant/antioxidant balance was spoiled in favor of lipid peroxidation and DNA damage in lung cancer patients. Significant increases in the levels of malondialdehyde and 8OHdG and decreases in the levels of antioxidants suggest the possible involvement of oxidative stress in lung cancer.
Collapse
Affiliation(s)
- Emel Calişkan-Can
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Etiler, and Department of Chest Diseases, Social Insurance Educational Hospital of Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
43
|
Guo C, Wei J, Yang J, Xu J, Pang W, Jiang Y. Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr Res 2008; 28:72-7. [DOI: 10.1016/j.nutres.2007.12.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 11/29/2007] [Accepted: 12/02/2007] [Indexed: 11/30/2022]
|
44
|
Borthakur G, Butryee C, Stacewicz-Sapuntzakis M, Bowen PE. Exfoliated Buccal Mucosa Cells as a Source of DNA to Study Oxidative Stress. Cancer Epidemiol Biomarkers Prev 2008; 17:212-9. [DOI: 10.1158/1055-9965.epi-07-0706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Li N, Jia X, Chen CYO, Blumberg JB, Song Y, Zhang W, Zhang X, Ma G, Chen J. Almond consumption reduces oxidative DNA damage and lipid peroxidation in male smokers. J Nutr 2007; 137:2717-22. [PMID: 18029489 DOI: 10.1093/jn/137.12.2717] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Smoking increases the risk of several chronic diseases associated with elevated oxidative stress status. Almonds are a good source of antioxidant nutrients and may diminish smoking-related biomarkers of oxidative stress. We investigated whether almond consumption decreases biomarkers of oxidative stress in young male smokers. We conducted a randomized, crossover clinical trial with 60 healthy male soldiers (18-25 y) who were habitual smokers (5-20 cigarettes/d) and supplemented their diet with 84 g almonds or 120 g pork (to control for calories) daily for 4 wk with a 4-wk washout period between treatment periods. In addition, 30 healthy nonsmoking men were provided the same daily serving of pork as reference comparison. Blood and urine were collected and assessed for biomarkers of oxidative stress. Baseline values of urinary 8-hydroxy-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) and peripheral lymphocyte DNA strand breaks were significantly higher by 185, 64, and 97% in smokers than nonsmokers, whereas activities of plasma superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase were significantly lower by 15, 10, and 9%, respectively. After the almond intervention, serum alpha-tocopherol, SOD, and GPX increased significantly in smokers by 10, 35, and 16%, respectively and 8-OHdG, MDA, and DNA strand breaks decreased significantly by 28, 34, and 23%. In smokers, after almond supplementation, the concentration of 8-OHdG remained significantly greater than in nonsmokers by 98%. These results suggest almond intake can enhance antioxidant defenses and diminish biomarkers of oxidative stress in smokers.
Collapse
Affiliation(s)
- Ning Li
- National Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Azzi A. Molecular mechanism of alpha-tocopherol action. Free Radic Biol Med 2007; 43:16-21. [PMID: 17561089 DOI: 10.1016/j.freeradbiomed.2007.03.013] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/01/2007] [Accepted: 03/19/2007] [Indexed: 12/22/2022]
Abstract
The inability of other antioxidants to substitute for alpha-tocopherol in a number of cellular reactions, the lack of a compensatory antioxidant response in the gene expression under conditions of alpha-tocopherol deficiency, the unique uptake of alpha-tocopherol relative to the other tocopherols and its slower catabolism, and the striking differences in the molecular function of the different tocopherols and tocotrienols, observed in vitro, unrelated to their antioxidant properties, are all data in support of a nonantioxidant molecular function of alpha-tocopherol. Furthermore, in vivo studies have also shown that alpha-tocopherol is not able, at physiological concentrations, to protect against oxidant-induced damage or prevent disease allegedly caused by oxidative damage. Alpha-tocopherol appears to act as a ligand of not yet identified specific proteins (receptors, transcription factors) capable of regulating signal transduction and gene expression.
Collapse
Affiliation(s)
- Angelo Azzi
- Vascular Biology Laboratory, Office 622, JM USDA-HNRCA at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
47
|
Guarnieri S, Riso P, Porrini M. Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr 2007; 97:639-43. [PMID: 17349075 DOI: 10.1017/s0007114507657948] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The intake of fruits rich in vitamin C seems to increase the antioxidant defence of the organism. However, it is still not clear whether vitamin C alone is responsible for this effect. The aim of the present investigation was to study the effect of the intake of a single portion of blood orange juice (BOJ, 300 ml, providing 150 mg vitamin C) on mononuclear blood cell (MNBC) DNA damage, compared with a drink supplemented with the same amount of vitamin C (C-drink) or sugars (S-drink). Seven young healthy subjects were randomised in a repeated-measures design in which they received each drink on different occasions, 2 weeks apart. Blood samples were collected at baseline, every hour for 8 h, and at 24 h after the intake of each drink. Vitamin C was analysed at each time point by HPLC, whereas H2O2-induced MNBC DNA damage was evaluated at 0, 3 and 24 h by means of the comet assay. Plasma vitamin C concentration increased similarly following BOJ or C-drink intake and was not affected by the S-drink. DNA damage significantly decreased 3 h after BOJ intake (about 18 %; P < 0.01) and remained constant at 24 h (about 16 %; P < 0.01). No effect of the C-drink and S-drink was observed. In conclusion, the intake of a single portion of BOJ provided an early protection of MNBC against oxidative DNA damage; however, the protective effect of BOJ was not explained by vitamin C alone, thus other phytochemicals could be involved.
Collapse
Affiliation(s)
- Serena Guarnieri
- Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, 20133 Milan, Italy.
| | | | | |
Collapse
|
48
|
Hwang ES, Bowen PE. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment. Crit Rev Food Sci Nutr 2007; 47:27-50. [PMID: 17364694 DOI: 10.1080/10408390600550299] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Free radicals and other reactive oxygen or nitrogen species are constantly generated in vivo and can cause oxidative damage to DNA. This damage has been implicated to be important in many diseases, including cancer. The assessment of damage in various biological matrices, such as tissues, cells, and urine, is vital to understanding this role and subsequently devising intervention strategies. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay. The objective of this review is to discuss the biological significance of oxidative DNA damage, evaluate the effectiveness of several techniques for measurement of oxidative DNA damage in various biological samples and review current research on factors (dietary and non-dietary) that influence DNA oxidative damage using these techniques.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Department of Human Nutrition, University of Illinois at Chicago. Chicago, IL, 60612, USA
| | | |
Collapse
|
49
|
Nocentini S, Guggiari M, Rouillard D, Surgis S. Exacerbating Effect of Vitamin E Supplementation on DNA Damage Induced in Cultured Human Normal Fibroblasts by UVA Radiation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730370eeoves2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Palazzetti S, Rousseau AS, Richard MJ, Favier A, Margaritis I. Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 2007; 91:91-100. [PMID: 14748941 DOI: 10.1079/bjn20031027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present controlled-training double-blind study (supplemented (S) group,n7; placebo (P) group,n10) was designed to investigate whether an antioxidant mixture (Se 150 μg, retinyl acetate mg, ascorbic acid 120 mg, α-tocopheryl succinate) would allow overloaded triathletes to avoid adaptation failure in the antioxidant system. Dietary intakes were recorded. The supplement of Se, and vitamins A and E provided 100 % of the French RDA. Four weeks of overloaded training (OT) followed 4 weeks of normal training (NT). After NT and OT, biological studies were conducted at rest and after a duathlon test (run 5 km, cycle 20 km, run 5 km). During the 4-week period of NT, blood levels of GSH levels increased in response to supplementation (P<0·05) and remained elevated during OT. Plasma glutathione peroxidase activity was significantly higher in the S group in all situations after NT and OT (P<0·01). The S group had increased erythrocyte Cu,Zn-superoxide dismutase activity in response to OT (P<0·05). Supplementation significantly reduced (P<0·05) the magnitude in duathlon-induced creatine kinase isoenzyme MB mass increase, which tended to be higher with OT (P=0·09). We conclude that the antioxidant mixture helped to preserve the antioxidant system during an OT-induced stress in subjects with initially low antioxidant intakes. Effects of supplementation during NT and/or OT are shown mostly by the alleviated muscle damage. The effects of the antioxidant mixture were observed for doses that can be provided by a diversified and well-balanced diet. The maintenance of normal nutritional status with regard to the antioxidant intake (Se, vitamins C and E) plays a key role in antioxidant adaptive effects during NT and OT.
Collapse
Affiliation(s)
- Stéphane Palazzetti
- Laboratoire Physiologie des Adaptations, Performance Motrice et Santé, Université de Nice-Sophia-Antipolis, France
| | | | | | | | | |
Collapse
|