1
|
Vakili S, Samare-Najaf M, Karimi A, Jahromi BN, Mohit M, Hashempur MH. Lycopene in male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4817-4835. [PMID: 39656221 DOI: 10.1007/s00210-024-03520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/06/2024] [Indexed: 04/11/2025]
Abstract
Male infertility is a major concern around the world, and efforts to find effective therapies to improve reproductive results are continuing. Factors such as genetics, hormonal disorders, lifestyle, and environmental pollutants have been mentioned as the pathoetiology of male infertility. The treatment of male infertility is far from optimal despite the recent signs of progress provided by assisted reproductive technology. Therefore, many efforts are being made to improve the therapeutical approaches to male infertility, which generally target the factors involved in the pathophysiology of the disease. Lycopene is a naturally occurring pigment belonging to the carotenoid family, which imparts a vibrant red color to various fruits and vegetables. It is widely assumed that lycopene may be an optimal option for the improvement of male fertility, however, the verification its therapeutic potential in male infertility has not been comprehensively reviewed. The study discusses the ability of lycopene to improve semen parameters, including sperm morphology, and motility which are important determinants of male reproductive health. Moreover, lycopene's capacity to regulate sex hormones, such as testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which play crucial roles in sperm production and maturation is explained. Additionally, lycopene effects on specific signaling pathways involved in male fertility, including prokineticin-2 (PROK2) and PI3K/Akt pathways, that influence sperm function are clarified. Furthermore, the impacts of lycopene as a potent antioxidant in defending against oxidative stress, a leading cause of male infertility, are presented. Overall, the results indicate that lycopene may have beneficial effects on improving male fertility by increasing sperm parameters, modulating sex hormones and signaling pathways, and providing antioxidant protection. Due to limited reports, additional clinical data is required to confirm the positive effects of lycopene on male fertility in humans.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Aliasghar Karimi
- Research Center for Neuromodulation and Pain, NAB Pain Clinic, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohit
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Weaver CM, Givens DI. Overview: the food matrix and its role in the diet. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39905830 DOI: 10.1080/10408398.2025.2453074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The food matrix which includes the physiochemical structure and interaction with chemical constituents is a focus of investigation that is revealing potentially important influences on diet and health. This paper, the first in an article collection titled, The Important Role of the Dairy Matrix in Diet and Health, serves as an introduction to the food matrix to put into context the subsequent articles specific to the matrix effects of dairy milk, cheese and yogurt on human health. This introductory article describes the effects of processing on the food matrix and implications for diet and health, examines the contribution of nutrients compared to whole foods and food patterns, and characterizes examples of the complexity of the food matrix including current controversies of dairy fat and ultra-processed foods. The gaps in knowledge and research identified in this overview may help guide researchers and funding entities moving forward. Current knowledge indicates that translating research on the food matrix to the consumer through recommendations for the intake of whole foods and food patterns is prudent at this time.
Collapse
Affiliation(s)
- Connie M Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - D Ian Givens
- Institute for Food, Nutrition and Health, Earley Gate, University of Reading, Reading, UK
| |
Collapse
|
3
|
Cui W, Jin Z, Han J, Liu W. Structure changes and carotenoids release of tomato during in vitro dynamic digestion: Effect of heating and oil addition. Food Chem 2025; 464:141934. [PMID: 39515153 DOI: 10.1016/j.foodchem.2024.141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
There is still a gap between the food processing and carotenoids release and structure degradation during digestion. This study investigated the effect of heating and coconut oil addition on the digestion behavior of tomatoes during in vitro dynamic digestion. Coconut oil and heating increased gastric retention, and the value of heat-treated tomatoes with coconut oil maintained at a highest level throughout the gastric digestion. The contents of lycopene and β-carotene increased after heating and coconut oil addition. After stimulated intestinal digestion, coconut oil and heating increased the particle size of tomato slurry. Besides, heat-treated tomatoes released more particles under the light microscopy and SEM observation, while the oil-treated tomatoes showed rougher cell surfaces. Heating and coconut oil also significantly increased the bioaccessibility of lycopene to 70 % ± 5 % and 81 % ± 4 %, respectively. These findings would provide theoretical guidance to develop tomato-derived foods with high bioaccessibility.
Collapse
Affiliation(s)
- Weining Cui
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Rosok LM, Fifield LM, Sarma R, Keye SA, Walk AM, Khan NA. Skin Carotenoids Are Related to Cognitive Abilities among Toddlers. J Nutr 2024; 154:3485-3494. [PMID: 39278413 PMCID: PMC11600069 DOI: 10.1016/j.tjnut.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Carotenoids are antioxidant pigments that deposit in human tissues (e.g., skin, macula, and brain) upon dietary consumption. The health implications of skin carotenoids, which reflect overall dietary carotenoid consumption, have not been adequately studied in younger populations. OBJECTIVES This work aimed to examine links between skin carotenoids and cognitive, language, and motor skills among toddlers. A secondary aim explored relationships between skin carotenoids and neurophysiologic outcomes of sensory memory [i.e., mismatch negativity (MMN)] and the functional integrity of the visual pathway [i.e., visual evoked potentials (VEPs)]. METHODS Toddlers aged 12-18 mo (n = 45) were included in a cross-sectional study. Skin carotenoids were measured with reflection spectroscopy via the Veggie Meter®. Cognitive, language, and motor skills were measured using the Bayley Scale of Infant and Toddler Development IV Screening Test (BSID-IV). MMN and VEPs were collected with an auditory oddball task and a pattern reversal task, respectively, using electroencephalography. Analyses adjusted for age, household income, highest level of parental education, and total carotenoid intake (mg/1000 kcal). RESULTS Regression modeling revealed that skin carotenoids significantly related to cognition (β = 0.24; P = 0.04) and not to any other BSID-IV subsets. Neither MMN nor VEP outcomes significantly related to skin carotenoids. CONCLUSIONS Greater skin carotenoids were selectively related to cognition, indicating that carotenoids may play a role in cognition in toddlers. Additional research is needed to understand links between skin carotenoids and specific domains of cognitive function and brain health in early life.
Collapse
Affiliation(s)
- Laura M Rosok
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, Unites States
| | - Lexi M Fifield
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, Unites States
| | - Rhea Sarma
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, Unites States
| | - Shelby A Keye
- Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, Unites States
| | - Anne M Walk
- Department of Psychology, Eastern Illinois University, Charleston, IL, Unites States
| | - Naiman A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, Unites States; Department of Health and Kinesiology, University of Illinois Urbana-Champaign, Urbana, IL, Unites States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, Unites States; Beckman Institute for the Advancement of Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, Unites States.
| |
Collapse
|
5
|
Gómez-Hoyos C, Serpa-Guerra A, Argel. Pérez S, Velásquez. Cock JA, Vélez-Acosta L, Gañán-Rojo P, Zuluaga-Gallego R. A Novel French-Style Salad Dressing Based on Pickering Emulsion of Oil-Water Lycopene from Guava and Cellulose Nanofibers. Molecules 2024; 29:5118. [PMID: 39519759 PMCID: PMC11547640 DOI: 10.3390/molecules29215118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The objective of this research was to assess the potential of a Pickering emulsion based on lycopene extracted from guava by sunflower oil-water and cellulose nanofibers (CNFs) isolated from banana residues as a novel ingredient for a French-style salad dressing. The aim was to determine the impact of this emulsion on the stability and rheological properties of the dressing as well as ascertain the presence of lycopene in the final product. The particle size distribution, rheological properties, and emulsion stability of the Pickering emulsion and salad dressing were evaluated. The sample exhibiting the optimal stability condition contained 0.5 wt.% of CNFs (EPI0.5). In order to prepare the French salad dressing based on this Pickering emulsion, three concentrations of vinegar were analyzed. All samples contained white salt and sugar. The findings suggest that alterations in emulsion stability may be influenced by the vinegar content and the presence of salt, particularly during the storage period, which also affects the concentration of lycopene. Notwithstanding these findings, the untrained panelists expressed a favorable opinion and acceptance of the dressings, indicating that the product could serve as an alternative means of enriching food through the incorporation of beneficial substances such as lycopene.
Collapse
Affiliation(s)
- Catalina Gómez-Hoyos
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Angélica Serpa-Guerra
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| | - Shaydier Argel. Pérez
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Jorge Andrés Velásquez. Cock
- Programa de Ingeniería en Nanotecnología, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (S.A.P.); (J.A.V.C.)
| | - Lina Vélez-Acosta
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| | - Piedad Gañán-Rojo
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia
| | - Robin Zuluaga-Gallego
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1—No 70-01, Medellín 050031, Colombia; (A.S.-G.); (L.V.-A.); (R.Z.-G.)
| |
Collapse
|
6
|
Masri A, Armanazi M, Inouye K, Geierhart DL, Davey PG, Vasudevan B. Macular Pigment Optical Density as a Measurable Modifiable Clinical Biomarker. Nutrients 2024; 16:3273. [PMID: 39408240 PMCID: PMC11478551 DOI: 10.3390/nu16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Carotenoids are present throughout retina and body its dense deposition leads to an identifiable yellow spot in the macula. Macular pigment optical density (MPOD) measured in the macula is vital to macular well-being and high-resolution visual acuity. MPOD has also been associated with various health and disease states. We sought to review the literature on this topic and summarize MPODs role as a measurable modifiable clinical biomarker, particularly as a measure of the eye's antioxidant capacity in the context of oxidative damage and retinal ischemia. METHODS A literature review collated the articles relevant to MPOD, carotenoid intake or supplementation, and their influence on various health and disease states. RESULTS Literature reveals that MPOD can serve as a reliable biomarker for assessing the retinal defense mechanisms against oxidative stress and the deleterious effects of excessive light exposure. Elevated MPOD levels offer robust protection against the onset and progression of age-related macular degeneration (AMD), a prevalent cause of vision impairment among the elderly population. MPOD's implications in diverse ocular conditions, including diabetic retinopathy and glaucoma, have been explored, underscoring the real need for clinical measurement of MPOD. The integration of MPOD measurement into routine eye examinations presents an unparalleled opportunity for early disease detection, precise treatment planning, and longitudinal disease monitoring. CONCLUSIONS Longitudinal investigations underscore the significance of MPOD in the context of age-related ocular diseases. These studies show promise and elucidate the dynamic nuances of MPOD's status and importance as a measurable, modifiable clinical biomarker.
Collapse
Affiliation(s)
- Abdul Masri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;
| | - Mohammed Armanazi
- College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Keiko Inouye
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
- EyePromise, LLC, Chesterfield, MO 63005, USA;
| | | |
Collapse
|
7
|
Ahn S, Hwang JE, Kim YJ, Eom K, Jung MH, Moon H, Ham D, Park JM, Oh SU, Park JY, Joung H. Examination of the utility of skin carotenoid status in estimating dietary intakes of carotenoids and fruits and vegetables: A randomized, parallel-group, controlled feeding trial. Nutrition 2024; 119:112304. [PMID: 38154397 DOI: 10.1016/j.nut.2023.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE Optical spectroscopy-measured skin carotenoid status (SCS) has been validated for estimating fruit and vegetable (F&V) intake; however, there is limited research addressing SCS kinetics in whole-diet interventions. The aim of this controlled feeding trial was to explore SCS's response to carotenoid intake changes via whole-diet intervention, evaluating its biomarker potential. METHODS Eighty participants ages 20 to 49 y, without underlying diseases, were randomly allocated to the high-carotenoid group (HG; n = 40) or control group (CG; n = 40). The HG consumed a high-carotenoid diet (21 mg total carotenoids/2000 kcal), whereas the CG consumed a control diet (13.6 mg total carotenoids/2000 kcal) for 6 wk. Subsequently, skin and blood carotenoid concentrations were tracked without intervention for 4 wk. SCS was measured weekly via resonance Raman spectroscopy, and serum carotenoid concentrations were analyzed biweekly using high-performance liquid chromatography. Baseline carotenoid and F&V intakes were assessed via a 3-d diet record. The kinetics of SCS and serum carotenoid concentrations were analyzed using a weighted generalized estimating equation. Pearson's correlation analyses were used to examine baseline correlations between SCS and dietary carotenoid and F&V intakes, as well as serum carotenoid concentrations. RESULTS During the intervention, the HG showed a faster and greater SCS increase than the CG (difference in slope per week = 8.87 AU, Pinteraction <0.001). Baseline SCS had positive correlations with total carotenoid intake (r = 0.45), total F&V intake (r = 0.49), and total serum carotenoid concentration (r = 0.79; P < 0.001 for all). CONCLUSION These results suggest that SCS is a valid biomarker for monitoring changes in carotenoid intake through whole diet, which supports using SCS for assessing carotenoid-rich F&V intake.
Collapse
Affiliation(s)
- Seoeun Ahn
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Eun Hwang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Yoon Jae Kim
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Kunsun Eom
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Myoung Hoon Jung
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - HyunSeok Moon
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Dongwoo Ham
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Park
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Se Uk Oh
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Park
- Device Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, Gyeonggi-do, Republic of Korea.
| | - Hyojee Joung
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Neufeld LM, Ho E, Obeid R, Tzoulis C, Green M, Huber LG, Stout M, Griffiths JC. Advancing nutrition science to meet evolving global health needs. Eur J Nutr 2023; 62:1-16. [PMID: 38015211 PMCID: PMC10684707 DOI: 10.1007/s00394-023-03276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Collapse
Affiliation(s)
- Lynnette M Neufeld
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Emily Ho
- Linus Pauling Institute and College of Health, Oregon State University, Corvallis, OR, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Marina Green
- Nutrition Research Centre Ireland, South East Technological University, Waterford, Ireland
| | - Luke G Huber
- Council for Responsible Nutrition, Washington, DC, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
9
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
10
|
Valicente VM, Peng CH, Pacheco KN, Lin L, Kielb EI, Dawoodani E, Abdollahi A, Mattes RD. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv Nutr 2023; 14:718-738. [PMID: 37080461 PMCID: PMC10334162 DOI: 10.1016/j.advnut.2023.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiologic evidence supports a positive association between ultraprocessed food (UPF) consumption and body mass index. This has led to recommendations to avoid UPFs despite very limited evidence establishing causality. Many mechanisms have been proposed, and this review critically aimed to evaluate selected possibilities for specificity, clarity, and consistency related to food choice (i.e., low cost, shelf-life, food packaging, hyperpalatability, and stimulation of hunger/suppression of fullness); food composition (i.e., macronutrients, food texture, added sugar, fat and salt, energy density, low-calorie sweeteners, and additives); and digestive processes (i.e., oral processing/eating rate, gastric emptying time, gastrointestinal transit time, and microbiome). For some purported mechanisms (e.g., fiber content, texture, gastric emptying, and intestinal transit time), data directly contrasting the effects of UPF and non-UPF intake on the indices of appetite, food intake, and adiposity are available and do not support a unique contribution of UPFs. In other instances, data are not available (e.g., microbiome and food additives) or are insufficient (e.g., packaging, food cost, shelf-life, macronutrient intake, and appetite stimulation) to judge the benefits versus the risks of UPF avoidance. There are yet other evoked mechanisms in which the preponderance of evidence indicates ingredients in UPFs actually moderate body weight (e.g., low-calorie sweetener use for weight management; beverage consumption as it dilutes energy density; and higher fat content because it reduces glycemic responses). Because avoidance of UPFs holds potential adverse effects (e.g., reduced diet quality, increased risk of food poisoning, and food wastage), it is imprudent to make recommendations regarding their role in diets before causality and plausible mechanisms have been verified.
Collapse
Affiliation(s)
- Vinicius M Valicente
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Ching-Hsuan Peng
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Kathryn N Pacheco
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Luotao Lin
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Elizabeth I Kielb
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, United States
| | - Elina Dawoodani
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
11
|
Petersen JM, Naimi AI, Bodnar LM. Does heterogeneity underlie differences in treatment effects estimated from SuperLearner versus logistic regression? An application in nutritional epidemiology. Ann Epidemiol 2023; 83:30-34. [PMID: 37121376 PMCID: PMC10330341 DOI: 10.1016/j.annepidem.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE A strength of SuperLearner is that it may accommodate key interactions between model variables without a priori specification. In prior research, protective associations between fruit intake and preeclampsia were stronger when estimated using SuperLearner with targeted maximum likelihood estimation (TMLE) compared with multivariable logistic regression without any interaction terms. We explored whether heterogeneity (i.e., differences in the effect estimate due to interactions between fruit intake and covariates) may partly explain differences in estimates from these two models. METHODS Using a U.S. prospective pregnancy cohort (2010-2013, n = 7781), we estimated preeclampsia risk differences (RDs) for higher versus lower fruit density using multivariable logistic regression and included two-way statistical interactions between fruit density and each of the 25 model covariates. We compared the RDs with those from SuperLearner with TMLE (gold standard) and logistic regression with no interaction. RESULTS From the logistic regression models with two-way statistical interactions, 48% of the preeclampsia RDs were ≤-0.02 (closer to SuperLearner with TMLE estimate); 40% equaled -0.01 (same as logistic regression with no interaction estimate); the minority of RDs were at or crossed the null. CONCLUSIONS Our exploratory analysis provided preliminary evidence that heterogeneity may partly explain differences in estimates from logistic regression versus SuperLearner with TMLE.
Collapse
Affiliation(s)
- Julie M Petersen
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Ashley I Naimi
- Epidemiology Department, Emory University, Rollins School of Public Health, Atlanta, GA
| | - Lisa M Bodnar
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA; Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
12
|
Flynn MM, Tierney A, Itsiopoulos C. Is Extra Virgin Olive Oil the Critical Ingredient Driving the Health Benefits of a Mediterranean Diet? A Narrative Review. Nutrients 2023; 15:2916. [PMID: 37447242 DOI: 10.3390/nu15132916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Most chronic diseases are preventable with a healthy diet, although there is debate about the optimal dietary approach. Increasingly more countries are focusing on food-based guidelines rather than the traditional nutrient-based approach. Although there is good agreement on plant foods, controversy remains about the types and amounts of fats and oils. This narrative review aims to systematically summarize and evaluate the latest evidence on the protective effects of extra virgin olive oil (EVOO) on disease risk factors. A systematic search of the relevant literature using PubMed, Cochrane Library, and Embase databases was conducted for the years 2000 through December 2022. A narrative synthesis was then undertaken. Of 281 retrieved articles, 34 articles fulfilled our inclusion criteria and were included. Compared with other dietary fats and low-fat diets, EVOO is superior in the management of clinical biomarkers including lowering blood pressure and LDL-c, increasing protective HDL-c, improving glycemic control, and weight management. The protective effects of EVOO are likely due to its polyphenol content rather than the monounsaturated fat content. It is therefore important to promote the regular use of EVOO in the context of healthy dietary patterns such as the Mediterranean diet for maximal health benefit.
Collapse
Affiliation(s)
- Mary M Flynn
- Department of Medicine, The Miriam Hospital, Brown University, 164 Summit Ave., Providence, RI 02912, USA
| | - Audrey Tierney
- Health Implementation Science and Technology Research Group, Human Nutrition and Dietetics School of Allied Health, Health Research Institute, University of Limerick, Castletroy, V94 T9PX Limerick, Ireland
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
13
|
Kiamiloglou D, Girousi S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. BIOSENSORS 2023; 13:651. [PMID: 37367016 PMCID: PMC10296722 DOI: 10.3390/bios13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Vitamins comprise a group of organic chemical compounds that contribute significantly to the normal functioning of living organisms. Although they are biosynthesized in living organisms, some are also obtained from the diet to meet the needs of organisms, which is why they are characterized as essential chemical compounds. The lack, or low concentrations, of vitamins in the human body causes the development of metabolic dysfunctions, and for this reason their daily intake with food or as supplements, as well as the control of their levels, are necessary. The determination of vitamins is mainly accomplished by using analytical methods, such as chromatographic, spectroscopic, and spectrometric methods, while studies are carried out to develop new and faster methodologies and techniques for their analysis such as electroanalytical methods, the most common of which are voltammetry methods. In this work, a study is reported that was carried out on the determination of vitamins using both electroanalytical techniques, the common significant of which is the voltammetry technique that has been developed in recent years. Specifically, the present review presents a detailed bibliographic survey including, but not limited to, both electrode surfaces that have been modified with nanomaterials and serve as (bio)sensors as well as electrochemical detectors applied in the determination of vitamins.
Collapse
Affiliation(s)
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
14
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Effect of the Emulsifier Used in Dunaliella salina-Based Nanoemulsions Formulation on the β-Carotene Absorption and Metabolism in Rats. Mol Nutr Food Res 2023; 67:e2200492. [PMID: 36708270 DOI: 10.1002/mnfr.202200492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Indexed: 01/29/2023]
Abstract
SCOPE Microalgae such as Dunaliella salina are a potential sustainable source of natural β-carotene due to their fast growth and high adaptability to environmental conditions. This work aims to evaluate the effect of the incorporation of β-carotene from this alga into different emulsifier-type nanoemulsions (soybean lecithin [SBL], whey protein isolate [WPI], sodium caseinate [SDC]) on its absorption, metabolization, and biodistribution in rats. METHODS AND RESULTS Nanoemulsions formulated with different emulsifiers at 8% concentration are obtained by five cycles of microfluidization at 130 mPa, then expose to an in vitro digestion or orally administer to rats. Feeding rats with nanoemulsions improves β-carotene uptake compared to control suspension, especially using SDC and WPI as emulsifiers. A greater presence of β-carotene and retinol in the intestine, plasma, and liver is observed, being the liver the tissue that shows the highest accumulation. This fact can be a consequence of the smaller droplets that protein-nanoemulsions present compared to that with SBL in the intestine of rats, which promote faster digestibility and higher β-carotene bioaccessibility (35%-50% more) according to the in vitro observations. CONCLUSIONS Nanoemulsions, especially those formulated with protein emulsifiers, are effective systems for increasing β-carotene absorption, as well as retinol concentration in different rat tissues.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, Lleida, 25198, Spain
| |
Collapse
|
15
|
Casperson SL, Scheett A, Palmer DG, Jahns L, Hess JM, Roemmich JN. Biochemical Validation of a Self-Administered Carotenoid Intake Screener to Assess Carotenoid Intake in Nonobese Adults. Curr Dev Nutr 2023; 7:100024. [PMID: 37180085 PMCID: PMC10111597 DOI: 10.1016/j.cdnut.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Epidemiological studies have demonstrated an association between carotenoid intake and health. However, an accurate measurement of carotenoid intake is challenging. FFQ is the most commonly used dietary assessment method and is typically composed of 100-200 items. However, the greater participant burden that accompanies a more detailed FFQ provides only a marginal gain in accuracy. Therefore, a brief validated carotenoid intake screener is needed. Objectives To conduct secondary analysis evaluating the validity of a newly developed 44-item carotenoid intake screener from The Juice Study: Sensitivity of Skin Carotenoid Status to Detect Change in Intake (NCT03202043) against corresponding plasma carotenoid concentrations (primary) and skin carotenoids (secondary) in nonobese Midwestern American adults. Methods Healthy adults (n = 83; 25 men and 58 women) aged 18-65 y (mean age, 32 ± 12 y) with a BMI (in kg/m2) of 18.5-29.9 (mean BMI, 25 ± 3) were recruited between 25 April 2018 and 28 March 2019. Participants completed the carotenoid intake screener weekly during the 8-wk parent study. Plasma carotenoid concentrations were assessed at weeks 0, 4, and 8 using HPLC. Skin carotenoids were assessed weekly using pressure-mediated reflection spectroscopy (RS). Correlation matrices from mixed models were used to determine the correlation between carotenoid intake and plasma and skin carotenoids over time. Results The total carotenoid intake, as determined by the carotenoid intake screener, correlated with both the plasma total carotenoid concentration (r = 0.52; P < 0.0001) and the RS-assessed skin carotenoid concentration (r = 0.43; P < 0.0001). Correlations between reported intake and plasma concentrations of α-carotene (r = 0.40; P = 0.0002), cryptoxanthin (r = 0.28; P = 0.0113), and lycopene (r = 0.33; P = 0.0022) were also observed. Conclusions The results of this study demonstrate an acceptable relative validity of the carotenoid intake screener to assess total carotenoid intake in adults classified as those having a healthy body or those with overweight.
Collapse
Affiliation(s)
- Shanon L. Casperson
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Services, Grand Forks, ND, USA
| | - Angela Scheett
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Services, Grand Forks, ND, USA
| | - Daniel G. Palmer
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Services, Grand Forks, ND, USA
| | - Lisa Jahns
- Division of Nutrition, REE National Institute of Food and Agriculture Institute of Food Safety and Nutrition, USDA, Kansas City, MO, USA
| | - Julie M. Hess
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Services, Grand Forks, ND, USA
| | - James N. Roemmich
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Services, Grand Forks, ND, USA
| |
Collapse
|
16
|
Casperson SL, Roemmich JN, Larson KJ, Hess JM, Palmer DG, Jahns L. Sensitivity of Pressure-Mediated Reflection Spectroscopy to Detect Changes in Skin Carotenoids in Adults Without Obesity in Response to Increased Carotenoid Intake: A Randomized Controlled Trial. J Nutr 2023; 153:588-597. [PMID: 36894250 DOI: 10.1016/j.tjnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The sensitivity of commercially available devices to detect changes in skin carotenoids is not known. OBJECTIVES We aimed to determine the sensitivity of pressure-mediated reflection spectroscopy (RS) to detect changes in skin carotenoids in response to increasing carotenoid intake. METHODS Nonobese adults were randomly assigned to a control (water; n = 20; females = 15 (75%); mean age: 31 ± 3 (SE) y; mean BMI: 26 ± 1 kg/m2) or one of 3 carotenoid intake levels: 1) LOW - 13.1 mg; n = 22; females = 18(82%); age: 33 ± 3 y; BMI: 25 ± 1 kg/m2; 2) MED - 23.9 mg; n = 22; females = 17 (77%); age: 30 ± 2 y; BMI: 26 ± 1 kg/m2); or 3) HIGH - 31.0 mg; n = 19; females = 9 (47%); age: 33 ± 3 y; BMI: 24 ± 1 kg/m2. A commercial vegetable juice was provided daily to ensure that the additional carotenoid intake was achieved. Skin carotenoids (RS intensity [RSI]) were measured weekly. Plasma carotenoid concentrations were assessed at wk 0, 4, and 8. Mixed models were used to test the effect of treatment, time, and their interaction. Correlation matrices from mixed models were used to determine the correlation between plasma and skin carotenoids. RESULTS A correlation was observed between skin and plasma carotenoids (r = 0.65; P < 0.001). Skin carotenoids were greater than baseline starting at week 1 in the HIGH (290 ± 20 vs. 321 ± 24 RSI; P ≤ 0.01), week 2 in the MED (274 ± 18 vs. 290 ± 23 RSI; P ≤ 0.03), and week 3 in the LOW (261 ± 18 vs. 288 ± 15 RSI; P ≤ 0.03). Compared with control, differences in skin carotenoids were observed starting at week 2 in the HIGH ([268 ± 16 vs. 338 ± 26 RSI; P ≤ 0.01] except for week 3 [287 ± 20 vs. 335 ± 26 RSI; P = 0.08]) and week 6 in the MED (303 ± 26 vs. 363 ± 27 RSI; P ≤ 0.03). No differences were observed between the control and LOW. CONCLUSIONS These findings demonstrate that RS can detect changes in skin carotenoids in adults without obesity when daily carotenoid intake is increased by 13.1 mg for a minimum of 3 wk. However, a minimum difference in intake of 23.9 mg of carotenoids is needed to detect group differences. This trial was registered at ClinicalTrials.gov as NCT03202043.
Collapse
Affiliation(s)
- Shanon L Casperson
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA.
| | - James N Roemmich
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Kate J Larson
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Julie M Hess
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Daniel G Palmer
- USDA Agricultural Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Lisa Jahns
- USDA National Institute of Food and Agriculture Institute of Food Safety and Nutrition, Division of Nutrition, Kansas City, MO, USA
| |
Collapse
|
17
|
Wang C, Fu Y, Cao Y, Huang J, Lin H, Shen P, Julian McClements D, Han L, Zhao T, Yan X, Li Q. Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: Effect of dark tea polysaccharides. Food Res Int 2023; 163:112123. [PMID: 36596089 DOI: 10.1016/j.foodres.2022.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
This study fabricated a novel excipient emulsion by adding dark tea polysaccharides to improve the bioaccessibility of lycopene from tomatoes. Results indicated that addition of tea polysaccharides greatly increased the antioxidant activity of excipient emulsions. Additionally, tea polysaccharides markedly improved the physical stability of excipient emulsion when being mixed with tomato puree and passing through a simulated gastrointestinal tract, contributing to an increase in electrostatic and steric repulsion between the droplets. Besides, certain amount of tea polysaccharides (0.05 - 0.2 wt%) could increase the rate and extent of lipid digestion in tomato-emulsion mixtures. Finally, lycopene bioaccessibility was significantly increased (from 16.95 % to 26.21 %) when 0.1 wt% tea polysaccharides were included, which was mainly ascribed to the ability of tea polysaccharides to increase lipid digestion and reduce carotenoid oxidation within the gastrointestinal tract. These results suggest that well-designed excipient emulsions may increase carotenoids bioavailability in the complex food matrices.
Collapse
Affiliation(s)
- Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Puai Hospital, Wuhan, Hubei 430032, China
| | - Yi Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jialu Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Hongyi Lin
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | | | - Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Tiantian Zhao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoxuan Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qian Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
18
|
Qin Y, Naumovski N, Ranadheera CS, D'Cunha NM. Nutrition-related health outcomes of sweet potato (Ipomoea batatas) consumption: A systematic review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Coe S, Spiro A. Cooking at home to retain nutritional quality and minimise nutrient losses: A focus on vegetables, potatoes and pulses. NUTR BULL 2022; 47:538-562. [PMID: 36299246 DOI: 10.1111/nbu.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023]
Abstract
Cooking at home has experienced a decline in many countries since the mid-20th century. As rates of obesity have increased, there has been an emphasis on more frequent home cooking, including its incorporation into several food-based dietary guidelines around the world as a strategy to improve dietary quality. With the recent trend towards the adoption of diets richer in plant-based foods, many consumers cooking at home may now be cooking plant foods such as vegetables, potatoes and pulses more often. It is, therefore, timely to explore the impact that different home cooking methods have on the range of nutrients (e.g. vitamin C and folate) and bioactive phytochemicals (e.g. carotenoids and polyphenols) that such plant foods provide, and this paper will explore this and whether advice can be tailored to minimise such losses. The impact of cooking on nutritional quality can be both desirable and/or undesirable and can vary according to the cooking method and the nutrient or phytochemical of interest. Cooking methods that expose plant foods to high temperatures and/or water for long periods of time (e.g. boiling) may be the most detrimental to nutrient content, whereas other cooking methods such as steaming or microwaving may help to retain nutrients, particularly those that are water-soluble. Dishes that use cooking liquids may retain nutrients that would have been lost through leaching. It may be helpful to provide the public with more information about better methods to prepare and cook plant foods to minimise any nutrient losses. However, for some nutrients/phytochemicals the insufficient and inconsistent research findings make clear messages around the optimal cooking method difficult, and factors such as bioaccessibility rather than just quantity may also be important to consider.
Collapse
Affiliation(s)
- Sarah Coe
- British Nutrition Foundation, London, UK
| | | |
Collapse
|
20
|
Plants, Plants, and More Plants: Plant-Derived Nutrients and Their Protective Roles in Cognitive Function, Alzheimer’s Disease, and Other Dementias. Medicina (B Aires) 2022; 58:medicina58081025. [PMID: 36013492 PMCID: PMC9414574 DOI: 10.3390/medicina58081025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Alzheimer’s disease (AD) is the most common form of dementia, with the risk of developing it attributed to non-modifiable and modifiable factors. Currently, there is no cure for AD. A plant-based diet may protect against cognitive decline, due to the effects of plant-based nutrients such as vitamins, antioxidants, and fiber. The aim of the review is to summarize current literature on plant-based nutrients and their impact on cognition. Materials and Methods: A search was conducted on PubMed for clinical and murine studies, using combinations of the following words: “Alzheimer’s disease”, “dementia”, “cognition”, “plant-based diet”, “mild cognitive impairment”, “vitamin B”, “vitamin C”, “vitamin E, “beta carotene”, “antioxidants”, “fiber”, “vitamin K”, “Mediterranean diet”, “vitamin D”, and “mushrooms”. Results and Conclusions: A diet rich in vitamin B and antioxidants can benefit the cognitive functions of individuals as shown in randomized clinical trials. Vitamin K is associated with improved cognition, although large randomized controlled trials need to be done. Fiber has been shown to prevent cognitive decline in animal studies. Vitamin D may contribute to cognitive health via anti-inflammatory processes. Several medical organizations have recommended a plant-based diet for optimizing cognitive health and potentially helping to prevent dementia.
Collapse
|
21
|
Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Tunçer E, Bayramoğlu B. Molecular dynamics simulations of duodenal self assembly in the presence of different fatty acids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Waki N, Suzuki S, Ebihara S, Suganuma H. Effect of combination intake of tomato and cheese on promoting lycopene absorption. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Hsieh MJ, Huang CY, Kiefer R, Lee SD, Maurya N, Velmurugan BK. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103235. [PMID: 35630709 PMCID: PMC9147660 DOI: 10.3390/molecules27103235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Foods rich in antioxidants such as lycopene have a major role in maintaining cardiac health. Lycopene, 80% of which can be obtained by consuming a common vegetable such as tomato, can prevent the disturbances that contribute to cardiovascular disease (CVD). The present work begins with a brief introduction to CVD and lycopene and its various properties such as bioavailability, pharmacokinetics, etc. In this review, the potential cardio-protective effects of lycopene that reduce the progression of CVD and thrombotic complications are detailed. Further, the protective effects of lycopene including in vitro, in vivo and clinical trials conducted on lycopene for CVD protective effects are explained. Finally, the controversial aspect of lycopene as a protective agent against CVD and toxicity are also mentioned.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Yang Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970302, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (S.-D.L.); (B.K.V.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +84-028-377-55-058 (B.K.V.); Fax: +886-4-22065051 (S.-D.L.); +84-028-37-755-055 (B.K.V.)
| | - Nancy Maurya
- Botany Department, Government Science College, Pandhurna, Chhindwara, M.P., Pandhurna 480334, India;
| | - Bharath Kumar Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (S.-D.L.); (B.K.V.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +84-028-377-55-058 (B.K.V.); Fax: +886-4-22065051 (S.-D.L.); +84-028-37-755-055 (B.K.V.)
| |
Collapse
|
25
|
Wattanakul J, Syamila M, Darwish R, Gedi MA, Sutcharit P, Chi C, Akepach P, Sahaka M, Gontero B, Carrière F, Gray DA. Bioaccessibility of essential lipophilic nutrients in a chloroplast-rich fraction (CRF) from agricultural green waste during simulated human gastrointestinal tract digestion. Food Funct 2022; 13:5365-5380. [PMID: 35470837 DOI: 10.1039/d2fo00604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in vitro gastrointestinal human digestion model, with and without additional rapeseed oil, was used to measure the bioaccessibility of the major lipophilic nutrients enriched in chloroplasts: β-carotene; lutein; α-tocopherol; and α-linolenic acid. Chloroplast-rich fraction (CRF) material for this work was prepared from post-harvest pea vine field residue (pea vine haulm, or PVH), an abundant source of freely available, underutilised green biomass. PVH was either steam sterilised (100 °C for 4 min) and then juiced (heat-treated PVH, or HPVH), or was juiced fresh and the juice heated (90 °C for 3 min) (heat-treated juice, or HJ); the CRF from all biomass treatments was recovered from the juice by centrifugation. The impact of postharvest heat treatment of the biomass (HPVH), or of heat treatment of the juice (HJ) derived from the biomass, on the retention and bioaccessibility of the target nutrients was determined. The results showed that both heat treatments increased the apparent retention of β-carotene, lutein, α-tocopherol, and α-linolenic acid in the CRF material during digestion. The presence of edible oil during digestion did not dramatically affect the retention of these nutrients, but it did increase the bioaccessibility of β-carotene, lutein, and α-tocopherol from CRF material derived from heated biomass or juice. The presence of oil also increased the bioaccessibility of β-carotene, but not of lutein, α-tocopherol, or α-linolenic acid, from fresh CRF material.
Collapse
Affiliation(s)
- Jutarat Wattanakul
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Department of Food Science and Technology, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Mansor Syamila
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 78100 Nilai, Negeri Sembilan, Malaysia
| | - Randa Darwish
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Mohamed A Gedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Poramat Sutcharit
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Chao Chi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Patchaniya Akepach
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK. .,Department of Food Innovation and Nutrition, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, 84100, Thailand
| | - Moulay Sahaka
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - Frédéric Carrière
- Aix Marseille Univ, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, 31 Chemin Joseph Aiguier, 13402 Marseille, Cedex 09, France.
| | - David A Gray
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
26
|
Daphnee Ngameni Tchonkouang R, Dulce Carlos Antunes M, Margarida Cortês Vieira M. Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The high consumption of tomatoes worldwide has made them an essential source of health-promoting carotenoids that prevent a variety of chronic degenerative diseases, such as diabetes, high blood pressure, and cardiovascular disease. Tomatoes are available year-round, consumed fresh, and used as a raw material for the production of many processed products, such as juices, pastes, and purees. A plethora of carotenoids has been characterized in tomatoes. Most of the relevant carotenoids in the human bloodstream are supplied by fresh and processed tomatoes. Lycopene is the predominant carotenoid in tomato and tomato-based food products. Other carotenoids such as α-, β-, γ- and ξ-carotene, phytoene, phytofluene, neurosporene, and lutein are present in tomatoes and related products. There is a growing body of evidence that these bioactive compounds possess beneficial properties, namely anticarcinogenic, cardioprotective, and hepatoprotective effects among other health benefits, due to their antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory, and anti-atherogenic properties. This chapter analyzes the carotenoid composition of tomatoes and their based products as major contributors to the chronic disease-preventive properties.
Collapse
|
27
|
Luo H, Li Z, Straight CR, Wang Q, Zhou J, Sun Y, Lo CY, Yi L, Wu Y, Huang J, Wolfe W, Sutherland DZ, Miller MS, McClements DJ, Decker EA, Xiao H. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans. Food Chem 2022; 373:131277. [PMID: 34799132 DOI: 10.1016/j.foodchem.2021.131277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
This study demonstrated the combination of black pepper and a canola oil-based emulsion synergistically enhanced carotenoid bioavailability of raw vegetables in humans. In a randomized crossover design, healthy young adults consumed (1) vegetable salad (control), (2) salad with canola oil emulsion (COE), (3) salad with black pepper (BP), and (4) salad with canola oil emulsion and black pepper (COE + BP). COE + BP led to a higher AUC0-10h of total plasma carotenoids (p < 0.0005) than the control (6.1-fold), BP (2.1-fold), and COE (3.0-fold). COE + BP increased AUC0-10h of plasma lutein, α-carotene, β-carotene, and lycopene by 4.8, 9.7, 7.6, and 5.5-fold than the control, respectively (p < 0.0001). COE + BP produced a significant synergy in increasing both Cmax and AUC0-10h of total carotenoids, α-carotene, β-carotene, and lycopene. Moreover, COE + BP produced a stronger enhancement on AUC0-10h of total carotenoids, α-carotene, β-carotene, and lycopene in females than in males.
Collapse
Affiliation(s)
- Haiyan Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chad R Straight
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jiazhi Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yukun Sun
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chia-Yu Lo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lingxiao Yi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanyan Wu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jingyuan Huang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - William Wolfe
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Mark S Miller
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Crusan AC, Reicks M, Demmer RT, Raatz SK. Serum β-carotene concentrations are associated with self-reported fatty acid intake in United States adults from the National Health and Examination Surveys. Lipids 2022; 57:163-171. [PMID: 35258100 PMCID: PMC9310765 DOI: 10.1002/lipd.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Bioavailability of dietary β‐carotene (BC) is dependent on dose, quantity, dispersion, and presence of fat in the diet. Fats are comprised of a variety of fatty acids, which may impact the bioavailability of carotenoids. However, there is a gap in research on whether specific fatty acid classes affect serum BC concentrations in population samples. The primary objective of this study was to assess the association between reported fat and fatty acid intake and serum BC concentrations utilizing data from the National Health and Nutrition Examination Surveys (NHANES) 2003–2006. Data from 3278 NHANES participants 20–85 years old were analyzed to estimate the relationships between serum BC concentrations and reported saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid intakes. Multiple linear regression estimated ln(serum BC) based on reported fatty acid intakes adjusted for age, sex, race/ethnicity, and reported dietary BC intakes. Mean and standard error (SE) for serum BC concentrations were 14.31 ± 0.05 μg/dl. Means and SE for total fat, SFA, MUFA, and PUFA were 85.7 ± 1.3, 26.9 ± 0.4, 31.1 ± 0.5, and 17.8 ± 0.4 g, respectively. There was a significant trend for association between serum BC and reported total fat intakes (r = −0.002, p < 0.0001), but the association was not strong. Multiple linear regression showed positive associations between serum BC concentrations and higher reported dietary PUFA consumption. PUFA alpha‐linolenic acid intakes are positively associated with serum BC concentrations, while MUFA palmitoleic acid and SFA stearic acid were inversely associated with serum BC. The inverse association between MUFA and SFA suggests there may be multiple post‐digestion factors affecting serum carotenoid concentrations.
Collapse
Affiliation(s)
- Ambria C Crusan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Nutrition and Dietetics, St. Catherine University, St. Paul, Minnesota, USA
| | - Marla Reicks
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Ryan T Demmer
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan K Raatz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
29
|
Review of the Analytical Methods Based on HPLC-Electrochemical Detection Coupling for the Evaluation of Organic Compounds of Nutritional and Environmental Interest. ANALYTICA 2022. [DOI: 10.3390/analytica3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review would like to show the state of the art regarding the coupling of High-Performance Liquid Chromatography (HPLC) with Electrochemical Detection (ED). Since a universal detector for HPLC is not available, the electrochemical detection methods, thanks to their versatility and specificity, are competitive with respect to the detectors currently used. The papers present in literature on HPLC-ED technique are analyzed and discussed: for example, they regard the development of analytical determinations of resveratrol, rosmarinic acid, aromatic heterocyclic amines and glyphosate in food matrices such as meat, aromatic plants, vegetables, fruit and tomato juices. These papers show that electrochemical sensors used as detectors for HPLC can offer better sensitivity values than other detectors. Furthermore, the use of specific working potentials allows avoid matrix interferences to be avoided by almost exclusively determining the analytes of interest. It should be underlined that HPLC-ED methods have a selectivity that allows for limitation of the sample preparation and clean-up procedures to a minimum, making them quick and easy to apply. In addition, these methods offer advantages such as the possibility of direct analysis, that derivatization is often not necessary, the cost-effectiveness of the instrumentation and the possibility of regenerating the electrodes which allows numerous analyses in succession.
Collapse
|
30
|
Kopčeková J, Kolesárová A, Schwarzová M, Kováčik A, Mrázová J, Gažarová M, Lenártová P, Chlebo P, Kolesárová A. Phytonutrients of Bitter Apricot Seeds Modulate Human Lipid Profile and LDL Subfractions in Adults with Elevated Cholesterol Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020857. [PMID: 35055679 PMCID: PMC8775948 DOI: 10.3390/ijerph19020857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
The objective of the present study was to evaluate the effect of short-term consumption of bitter apricot seeds phytonutrients on cardiovascular risk factors with a special focus on LDL cholesterol subfractions using the Lipoprint system. A group of 34 adult volunteers (21 female/13 male) consumed 60 mg kg−1 of body weight of bitter apricot seeds daily for 42 days. Subjects were divided into two groups: one with normal cholesterol levels (NTC) and one with elevated total cholesterol levels (ETC). Blood serum levels of total cholesterol (T-C), low-density cholesterol (LDL-C), high-density cholesterol (HDL-C), and triglycerides (TG) did not change significantly (p > 0.05) in NTC group. However, there were significant decreasing of T-C (p ˂ 0.05) and LDL-C (p < 0.01) in ETC group. The LDL1, LDL2, and atherogenic LDL3−7 subfractions progressively decreased after 42 days of apricot seeds consumption in ETC group (p < 0.05). Apricot seeds consumption was associated with a significant increase in the mean LDL particle size especially in ETC group (p ˂ 0.01). The results of the present study support the hypothesis that daily consumption of bitter apricot seeds for 42 days positively modified the lipoprotein profile in the group with elevated total cholesterol.
Collapse
Affiliation(s)
- Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
- Correspondence: ; Tel.: +421-37-641-4225
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Marianna Schwarzová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Martina Gažarová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Petra Lenártová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Peter Chlebo
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (M.S.); (J.M.); (M.G.); (P.L.); (P.C.)
| | - Adriana Kolesárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia; (A.K.); (A.K.)
| |
Collapse
|
31
|
Carotenoid extraction and analysis from blood plasma/serum. Methods Enzymol 2022; 670:423-457. [DOI: 10.1016/bs.mie.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Yao Y, Tan P, Kim JE. Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: a systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutr Rev 2021; 80:741-761. [PMID: 34897461 DOI: 10.1093/nutrit/nuab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Dietary fats are one of the well-known stimulators of carotenoid absorption, but the effects of the quantity and the type of dietary fats on carotenoid absorption have not yet been studied systematically. OBJECTIVE This review aimed to analyze data from both in vitro studies and randomized controlled trials (RCTs) to examine the effects of dietary fats on the bioaccessibility and bioavailability of carotenoids. DATA SOURCES A systematic search of 5 databases (Scopus, PubMed, Embase, CINAHL and the Cochrane Library) was conducted. STUDY SELECTION In vitro studies and RCTs were selected according to the PICOS criteria and were reviewed independently by 2 investigators. DATE EXTRACTION Key study characteristics from the eligible in vitro studies and RCTs were extracted independently by 2 investigators using a standardized table. RESULTS A total of 27 in vitro studies and 12 RCTs were included. The meta-regression of in vitro studies showed that the bioaccessibility of carotenoids, except for lycopene, was positively associated with the concentration of dietary fats. The meta-analysis of RCTs showed that the bioavailability of carotenoids was enhanced when a higher quantity of dietary fats was co-consumed. Moreover, fats rich in unsaturated fatty acids resulted in greater improvement in carotenoid bioavailability (SMD 0.90; 95%CI, 0.69-1.11) as compared with fats rich in saturated fatty acids (SMD 0.27; 95%CI, 0.08-0.47). CONCLUSIONS Co-consuming dietary fats, particularly those rich in unsaturated fatty acids, with carotenoid-rich foods can improve the absorption of carotenoids. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42020188539.
Collapse
Affiliation(s)
- Yuanhang Yao
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Peiyi Tan
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jung Eun Kim
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
33
|
Yao Y, Goh HM, Kim JE. The Roles of Carotenoid Consumption and Bioavailability in Cardiovascular Health. Antioxidants (Basel) 2021; 10:1978. [PMID: 34943081 PMCID: PMC8750451 DOI: 10.3390/antiox10121978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Carotenoids are natural pigments generally with a polyene chain consisting of 9-11 double bonds. In recent years, there has been increasing research interest in carotenoids because of their protective roles in cardiovascular diseases (CVDs). While the consumption of carotenoids may have a beneficial effect on CVDs, the literature shows inconsistencies between carotenoid consumption and reductions in the risk of CVDs. Therefore, this review aims to provide a summary of the association between dietary carotenoid intake and the risk of CVDs from published epidemiological studies. Meanwhile, to further elucidate the roles of carotenoid intake in CVD protection, this review outlines the evidence reporting the effects of carotenoids on cardiovascular health from randomized controlled trials by assessing classical CVD risk factors, oxidative stress, inflammatory markers and vascular health-related parameters, respectively. Given the considerable discrepancies among the published results, this review underlines the importance of bioavailability and summarizes the current dietary strategies for improving the bioavailability of carotenoids. In conclusion, this review supports the protective roles of carotenoids against CVDs, possibly by attenuating oxidative stress and mitigating inflammatory response. In addition, this review suggests that the bioavailability of carotenoids should be considered when evaluating the roles of carotenoids in CVD protection.
Collapse
Affiliation(s)
| | | | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore; (Y.Y.); (H.M.G.)
| |
Collapse
|
34
|
Skin carotenoid status and plasma carotenoids: biomarkers of dietary carotenoids, fruits and vegetables for middle-aged and older Singaporean adults. Br J Nutr 2021; 126:1398-1407. [PMID: 33441194 DOI: 10.1017/s0007114521000143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin carotenoid status (SCS) measured by resonance Raman spectroscopy (RRS) may serve as an emerging alternative measurement for dietary carotenoid, fruit and vegetable (FV) intake although its application had not been assessed in a middle-aged and older population in Asia. This cross-sectional study aims to concurrently examine the use of SCS and plasma carotenoids to measure FV and carotenoid intake in a middle-aged and older population, taking into consideration potential socio-demographic and nutritional confounders. The study recruited 103 middle-aged and older adults (mean age: 58 years) in Singapore. Dietary carotenoids and FV, plasma carotenoid concentration and SCS were measured using 3-d food records, HPLC and a biophotonic scanner which utilised RRS, respectively. Adjusted for statistically defined socio-demographic covariates sex, age, BMI, prescription medication and cigarette smoking, plasma carotenoids and SCS showed positive associations with dietary total carotenoids (βplasma: 0·020 (95 % CI 0·000, 0·040) µmol/l/mg, P = 0·05; βskin: 265 (95 % CI 23, 506) arbitrary units/mg, P = 0·03) and FV (βplasma: 0·076 (95 % CI 0·021, 0·132) µmol/l per FV serving, P = 0·008; βskin: 1036 (95 % CI 363, 1708) arbitrary units/FV serving, P = 0·003). The associations of SCS with dietary carotenoid and FV intake were null with the inclusion of dietary PUFA, fibre and vitamin C as nutritional covariates (P > 0·05). This suggests a potential influence of these nutritional factors on carotenoid circulation and deposition in the skin. In conclusion, SCS, similar to plasma carotenoids, may serve as a biomarker for both dietary carotenoid and FV intake in a middle-aged and older Singaporean population.
Collapse
|
35
|
Rowles JL, Wallig MA, Selting KA, Fan TM, Miller RJ, O'Brien WD, Erdman JW. A 10% Tomato Diet Selectively Reduces Radiation-Induced Damage in TRAMP Mice. J Nutr 2021; 151:3421-3430. [PMID: 34386819 DOI: 10.1093/jn/nxab257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tomatoes contain carotenoids that have the potential to alter the effects of external beam radiation therapy (EBRT). OBJECTIVES We hypothesized that dietary lyophilized tomato paste (TP) would reduce apoptosis within carotenoid-containing nonneoplastic tissues in EBRT-treated TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice. METHODS Male TRAMP mice (n = 73) were provided an AIN-93G diet or a modified AIN-93G diet containing 10% TP (wt:wt) at 4 wk of age. Prostate tumor growth was monitored by ultrasound. The caudal half of the mouse was irradiated with 7.5 Gy (Rad) or 0 Gy (sham) at 24 wk of age or after the tumor volume exceeded 1000 mm3 with a Cobalt-60 source. Mice were euthanized 24 h postradiation. Carotenoids and α-tocopherol were measured by HPLC and compared by a t test. Tissues were assessed for radiation-induced changes (hematoxylin and eosin) and apoptosis [cleaved caspase-3 (CC3)] and compared by Kruskal-Wallis test or Freedman-Lane's permutation test. RESULTS Serum concentrations of lycopene (52% lower), phytoene (26% lower), and α-tocopherol (22% lower) were decreased in TP-fed irradiated mice (TP-Rad) compared with TP-fed sham mice (P < 0.05). CC3 scores increased within the prostate tumor with radiation treatments (P < 0.05), but were not affected by tomato consumption. In nonneoplastic tissues, TP-Rad had a lower percentage of CC3-positive cells within the cranial (67% lower) and caudal (75% lower) duodenum than irradiated mice on the control diet (Rad) (P < 0.005). Likewise, CC3 scores within the dorsolateral prostate of TP-Rad trended toward lower scores than for Rad (P = 0.07). CONCLUSIONS TP selectively reduces radiation-induced apoptosis in extratumoral tissues without decreasing radiation-induced apoptosis within the prostate tumor in TRAMP mice. Additional studies are needed to confirm and expand upon these findings.
Collapse
Affiliation(s)
- Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew A Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kimberly A Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William D O'Brien
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Whey- and Soy Protein Isolates Added to a Carrot-Tomato Juice Alter Carotenoid Bioavailability in Healthy Adults. Antioxidants (Basel) 2021; 10:antiox10111748. [PMID: 34829619 PMCID: PMC8614763 DOI: 10.3390/antiox10111748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Recent findings suggested that proteins can differentially affect carotenoid bioaccessibility during gastro-intestinal digestion. In this crossover, randomized human trial, we aimed to confirm that proteins, specifically whey- and soy-protein isolates (WPI/SPI) impact postprandial carotenoid bioavailability. Healthy adults (n = 12 males, n = 12 females) were recruited. After 2-week washout periods, 350 g of a tomato-carrot juice mixture was served in the absence/presence of WPI or SPI (50% of the recommended dietary allowance, RDA ≈ 60 g/d). Absorption kinetics of carotenoids and triacylglycerols (TAGs) were evaluated via the triacylglycerol-rich lipoprotein (TRL) fraction response, at timed intervals up to 10 h after test meal intake, on three occasions separated by 1 week. Maximum TRL-carotenoid concentration (Cmax) and corresponding time (Tmax) were also determined. Considering both genders and carotenoids/TAGs combined, the estimated area under the curve (AUC) for WPI increased by 45% vs. the control (p = 0.018), to 92.0 ± 1.7 nmol × h/L and by 57% vs. SPI (p = 0.006). Test meal effect was significant in males (p = 0.036), but not in females (p = 0.189). In males, significant differences were found for phytoene (p = 0.026), phytofluene (p = 0.004), α-carotene (p = 0.034), and β-carotene (p = 0.031). Cmax for total carotenoids (nmol/L ± SD) was positively influenced by WPI (135.4 ± 38.0), while significantly lowered by SPI (89.6 ± 17.3 nmol/L) vs. the control (119.6 ± 30.9, p < 0.001). Tmax did not change. The results suggest that a well-digestible protein could enhance carotenoid bioavailability, whereas the less digestible SPI results in negative effects. This is, to our knowledge, the first study finding effects of proteins on carotenoid absorption in humans.
Collapse
|
37
|
Langston FMA, Nash GR, Bows JR. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit Rev Food Sci Nutr 2021; 63:2141-2177. [PMID: 34529547 DOI: 10.1080/10408398.2021.1971944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence supporting the role that phytochemicals play in reducing the risk of various chronic diseases. Although there has been a rise in health products marketed as being "supergrains," "superfood," or advertising their abundance in antioxidants, these food items are often limited to powdered blends, dried fruit, nuts, or seeds, rarely intercepting the market of baked snacks. This is in part due to the still limited understanding of the impact that different industrial processes have on phytochemicals in a complex food matrix and their corresponding bioavailability. This review brings together the current data on how various industrial dehydration processes influence the retention and bioaccessibility of phytochemicals in baked snacks. It considers the interplay of molecules in an intricate snack matrix, limitations of conventional technologies, and constraints with consumer acceptance preventing wider utilization of novel technologies. Furthermore, the review takes a holistic approach, encompassing each stage of production-discussing the potential for inclusion of by-products to promote a circular economy and the proposal for a shift in agriculture toward biofortification or tailored growing of crops for their nutritional and post-harvest attributes.
Collapse
Affiliation(s)
- Faye M A Langston
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | - Geoff R Nash
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | | |
Collapse
|
38
|
An Updated Comprehensive Review on Vitamin A and Carotenoids in Breast Cancer: Mechanisms, Genetics, Assessment, Current Evidence, and Future Clinical Implications. Nutrients 2021; 13:nu13093162. [PMID: 34579037 PMCID: PMC8465379 DOI: 10.3390/nu13093162] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A and carotenoids are fat-soluble micronutrients that play important role as powerful antioxidants modulating oxidative stress and cancer development. Breast cancer is the most common malignancy in women. As the risk of breast cancer is dependent on various lifestyle factors such as dietary modifications, there is increasing interest surrounding the anti-cancerous properties of vitamin A and carotenoids. Despite the suggested protective roles of vitamin A and carotenoids in breast cancer development, their clinical application for the prevention and treatment of breast cancer is limited. In this narrative review, we discuss the roles of vitamin A and carotenoids along with the evaluation method of vitamin A status. We also exhibit the association of genetic variations involved in metabolism of vitamin A and carotenoids with cancers and other diseases. We demonstrate the epidemiological evidence for the relationship of vitamin A and carotenoids with breast cancer risk, their effects on cancer mechanism, and the recent updates in clinical practice of vitamin A or carotenoids as a potential therapeutic agent against breast cancer. This review provides insight into the preventive and therapeutic roles of vitamin A and carotenoids in breast cancer development and progression.
Collapse
|
39
|
Ofoedu CE, Iwouno JO, Ofoedu EO, Ogueke CC, Igwe VS, Agunwah IM, Ofoedum AF, Chacha JS, Muobike OP, Agunbiade AO, Njoku NE, Nwakaudu AA, Odimegwu NE, Ndukauba OE, Ogbonna CU, Naibaho J, Korus M, Okpala COR. Revisiting food-sourced vitamins for consumer diet and health needs: a perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ 2021; 9:e11940. [PMID: 34557342 PMCID: PMC8418216 DOI: 10.7717/peerj.11940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
The significant attention gained by food-sourced vitamins has provided insights into numerous current researches; for instance, the potential reversal of epigenetic age using a diet and lifestyle intervention, the balance between food and dietary supplements in the general population, the role of diet and food intake in age-related macular degeneration, and the association of dietary supplement use, nutrient intake and mortality among adults. As relevant literature about food-sourced vitamin increases, continuous synthesis is warranted. To supplement existing information, this perspective review discussed food-sourced vitamins for consumer diet and health needs, scoping from vitamin absorption, metabolic functions, utilization, to balancing nutritional requirements. Relevant literatures were identified through a search of databases like Google Scholar, Web of Science, the Interscience Online Library, ScienceDirect, and PubMed. We demonstrated that vitamins whether from plant- and animal-based sources are prerequisites for the metabolic functions of the human body. The fat- and water-soluble classification of vitamins remains consistent with their respective absorption and dissolution potentials, underpinned by numerous physiological functions. Vitamins, largely absorbed in the small intestine, have their bioavailability dependent on the food composition, its associated interactions, as well as alignment with their metabolic functions, which involves antioxidants, coenzymes, electron acceptor/donor, and hormones. Moreover, vitamin deficiencies, in every form, pose a serious threat to human health. Vitamin toxicities remain rare, but can still occur mainly from supplementation, although it appears much less in water-soluble vitamins of which some excesses get readily removed by the human body, different from the fat-soluble ones that are stored in tissues and organs. Besides discussions of absorption, transport, and cellular uptake of vitamins, this perspective review also included approaches to meeting vitamin requirements and therapeutic strategies against micronutrient deficiency and COVID-19. We have also attempted on how to strike the balance between food-sourced vitamins and dietary supplements.
Collapse
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Jude O. Iwouno
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Ebelechukwu O. Ofoedu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chika C. Ogueke
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Victory S. Igwe
- Department of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Ijeoma M. Agunwah
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Arinze F. Ofoedum
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - James S. Chacha
- Department of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Onyinye P. Muobike
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Adedoyin O. Agunbiade
- Department of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Food Science, University of Ibadan, Ibadan, Nigeria
| | - Njideka E. Njoku
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Angela A. Nwakaudu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Nkiru E. Odimegwu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Onyekachi E. Ndukauba
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - Joncer Naibaho
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Korus
- Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | |
Collapse
|
40
|
Comment on: "Intake of Lycopene and Other Carotenoids and Incidence of Uterine Leiomyomata: A Prospective Ultrasound Study". J Acad Nutr Diet 2021; 121:418. [PMID: 33612171 DOI: 10.1016/j.jand.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
|
41
|
Laurora A, Bingham JP, Poojary MM, Wall MM, Ho KK. Carotenoid composition and bioaccessibility of papaya cultivars from Hawaii. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Inoue T, Yoshida K, Sasaki E, Aizawa K, Kamioka H. Effects of lycopene intake on HDL-cholesterol and triglyceride levels: A systematic review with meta-analysis. J Food Sci 2021; 86:3285-3302. [PMID: 34268742 DOI: 10.1111/1750-3841.15833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/28/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Lycopene is a lipophilic unsaturated carotenoid and has a very strong singlet oxygen-quenching ability. Increased serum or plasma lycopene levels have been reported to be associated with a lower risk of metabolic syndrome. We aimed to investigate the effects of lycopene intake on blood HDL-cholesterol (HCL-c) and triglyceride (TG) levels, which are metabolic syndrome biomarkers, by systematic review and meta-analyses of human interventional trials. We searched 15 databases and included studies that assessed the effects of oral lycopene intake on blood HDL-c and TG levels of participants ≥18 years of age. Three reviewers independently selected applicable studies, then assessed study qualities. Data were pooled as standardized mean difference (SMD) and analyzed by random-effects model. Heterogeneity was assessed by I2 statistics. Meta-analysis including 12 trial arms (n = 781) revealed a significantly increased HDL-c level in the lycopene group compared with that in the control group (SMD = 0.33 [95% CI: 0.12, 0.54], p = 0.002) and moderate heterogeneity (I2 = 45%). Most subgroup meta-analyses (restricted to study design, test food type, intake period, and participants' characteristics) showed similar results for HDL-c level. On the other hand, meta-analysis including 11 studies (n = 854) revealed no significant difference in TG level between the lycopene and control groups. Most studies which met eligibility criteria had moderate risk of bias. Funnel plots for HDL-c and TG suggested an absence of publication bias. In conclusion, this systematic review and meta-analyses suggested that lycopene intake significantly improved blood HDL-c levels but not TG levels.
Collapse
Affiliation(s)
- Takuro Inoue
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan.,Department of Ecological Symbiotic Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kazutaka Yoshida
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Erika Sasaki
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Koichi Aizawa
- Nature & Wellness Research Department, Innovation Division, KAGOME CO., LTD., Nasushiobara, Tochigi, Japan
| | - Hiroharu Kamioka
- Department of Ecological Symbiotic Science, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
43
|
de Souza Mesquita LM, Murador DC, Neves BV, Braga ARC, Pisani LP, de Rosso VV. Bioaccessibility and Cellular Uptake of Carotenoids Extracted from Bactris gasipaes Fruit: Differences between Conventional and Ionic Liquid-Mediated Extraction. Molecules 2021; 26:3989. [PMID: 34208810 PMCID: PMC8272118 DOI: 10.3390/molecules26133989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, on an industrial scale, synthetic colorants are used in many fields, as well as those extracted with conventional organic solvents (COSs), leading to several environmental issues. Therefore, we developed a sustainable extraction and purification method mediated by ionic liquids (IL), which is considered an alternative high-performance replacement for COSs. Carotenoids are natural pigments with low bioaccessibility (BCT) and bioavailability (BV) but with huge importance to health. To investigate if the BCT and cellular uptake of the carotenoids are modified by the extraction method, we conducted a comparison assay between both extraction procedures (IL vs. COS). For this, we used the Amazonian fruit Bactris gasipaes, a rich source of pro-vitamin A carotenoids, to obtain the extract, which was emulsified and subjected to an in vitro digestion model followed by the Caco-2 cell absorption assay. The bioaccessibility of carotenoids using IL was better than those using COS (33.25%, and 26.84%, respectively). The cellular uptake of the carotenoids extracted with IL was 1.4-fold higher than those extracted using COS. Thus, IL may be a feasible alternative as extraction solvent in the food industry, replacing COS, since, in this study, no IL was present in the final extract.
Collapse
Affiliation(s)
- Leonardo M. de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Daniella Carisa Murador
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Bruna Vitória Neves
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Department of Exact and Earth Sciences, Campus Diadema, Federal University of São Paulo (UNIFESP), Diadema, SP 09972-270, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Veridiana Vera de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| |
Collapse
|
44
|
Conboy Stephenson R, Ross RP, Stanton C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021; 10:1263. [PMID: 34199355 PMCID: PMC8226488 DOI: 10.3390/foods10061263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are a family of over 1100 known natural pigments synthesized by plants, algae, fungi and bacteria. Dietary intake of carotenoids is necessary for mammals as they cannot be synthesized in the body. In cows, the nature of the diet consumed strongly influences the composition of milk produced and this includes carotenoid concentration and profile. Fresh forage is the richest source of carotenoids for cows. The main carotenoids identified in forages are lutein, β-carotene, zeaxanthin and epilutein. Manipulating cow feed via carotenoid supplementation increases the carotenoid content of bovine milk. In humans, carotenoids have anti-oxidant, anti-inflammatory and provitamin A activity. Lutein is a major carotenoid in human milk and the brain tissue of adults and infants. Lutein and zeaxanthin are linked to improved eye health and cognitive function. Traditionally for humans, fruit and vegetables have been the main source of carotenoid intake. Functional foods present an opportunity to incorporate these naturally occurring compounds into milk products for added health benefits, widening the range of dietary sources of carotenoids. We offer an overview of the literature to date on carotenoid-fortified dairy products and infant formula. This review will describe and summarize the key mechanisms by which the carotenoid profile of bovine milk can be manipulated. We present findings on the origin and role of carotenoids in bovine and human milk, outline factors that impact the carotenoid content of milk, evaluate carotenoid-fortified milk products and discuss the associated challenges, such as bioaccessibility and stability.
Collapse
Affiliation(s)
- Ruth Conboy Stephenson
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
45
|
Grootaert C, Vansteenland M, Vandemoortele A, Van Camp J, De Meulenaer B. Method for beta-carotene extraction from processed baby foods as a model for plant-based fatty food products. Food Res Int 2021; 144:110332. [PMID: 34053535 DOI: 10.1016/j.foodres.2021.110332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Reliable quantitative determination of carotenoids in complex food matrices such as processed baby food products is challenging because of their incorporation in rigid cellular structures, their sensitivity to oxidation and their lipophilic character. A one-pot liquid-liquid β-carotene extraction procedure is described for solid baby foods, in the presence of enzymes (Clara-Diastase and Rapidase) facilitating matrix disintegration. The combined extraction and enzymatic dissolution not only protected β-carotene from oxidation compared to the sequential approach, but also reduced the use of solvents and amount of filtrations steps, favouring a higher recovery. The addition of phenolic antioxidants (BHT, TBHQ and BHA) to calibration solutions and during the procedure at 25 mg/mL resulted in an up to 2.5-fold higher absorbance of β-carotene solutions which was not observed for trans-β-apo-8'-carotenal (used as internal standard) solutions. When applying the full procedure on β-carotene spiked sunflower oil, an apparent recovery of 80% for β-carotene was obtained. Finally, this protocol was applied to 50 vegetable-based and 22 fruit-based processed baby foods (range 0 to 1179 and 504 µg/100 g, respectively), and it was concluded that this extraction procedure may be used for similar processed foods products. The procedure proved to be sensitive (LOD = 0.12 µg/mL) and reproducible (CV for baby foods: 4-10%).
Collapse
Affiliation(s)
- Charlotte Grootaert
- nutriFOODchem - Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent Belgium
| | - Margot Vansteenland
- nutriFOODchem - Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent Belgium
| | - Angelique Vandemoortele
- nutriFOODchem - Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent Belgium
| | - John Van Camp
- nutriFOODchem - Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent Belgium; Food2Know, Coupure Links 653, 9000 Gent, Belgium
| | - Bruno De Meulenaer
- nutriFOODchem - Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent Belgium; Food2Know, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
46
|
In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegetables using excipient nanoemulsions: Impact of lipid content. Food Res Int 2021; 141:110162. [DOI: 10.1016/j.foodres.2021.110162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
|
47
|
Fedullo AL, Ciccotti M, Giannotta P, Alviti F, Bernardi M, Raguzzini A, Toti E, Sciarra T, Peluso I. Hormetic Effects of Bioactive Compounds from Foods, Beverages, and Food Dressing: The Potential Role in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615752. [PMID: 33747346 PMCID: PMC7943269 DOI: 10.1155/2021/6615752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a damage or trauma to the spinal cord resulting in a total or partial loss of motor and sensory function. SCI is characterized by a disequilibrium between the production of reactive oxygen species and the levels of antioxidant defences, causing oxidative stress and neuroinflammation. This review is aimed at highlighting the hormetic effects of some compounds from foods, beverages, and food dressing that are able to reduce oxidative stress in patients with SCI. Although curcumin, ginseng, and green tea have been proposed for SCI management, low levels of antioxidant vitamins have been reported in individuals with SCI. Mediterranean diet includes food rich in vitamins and antioxidants. Moreover, food dressing, including spices, herbs, and extra virgin olive oil (EVOO), contains multiple components with hormetic effects. The latter involves the activation of the nuclear factor erythroid-derived 2, consequently increasing the antioxidant enzymes and decreasing inflammation. Furthermore, EVOO improves the bioavailability of carotenoids and could be a delivery system for bioactive compounds. In conclusion, Mediterranean dressing in addition to plant foods can have an important effect on redox balance in individuals with SCI.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | | | | | - Federica Alviti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Board of Physical Medicine and Rehabilitation, Sapienza University of Rome, Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome 00185, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| |
Collapse
|
48
|
Arballo J, Amengual J, Erdman JW. Lycopene: A Critical Review of Digestion, Absorption, Metabolism, and Excretion. Antioxidants (Basel) 2021; 10:antiox10030342. [PMID: 33668703 PMCID: PMC7996133 DOI: 10.3390/antiox10030342] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lycopene is a non-provitamin A carotenoid that exhibits several health benefits. Epidemiological data support a correlation between lycopene intake and the attenuation of several chronic diseases, including certain types of cancers and cardiovascular diseases. It is currently unknown whether the beneficial effects are from the native structure of lycopene or its metabolic derivatives: lycopenals, lycopenols, and lycopenoic acids. This literature review focuses on the current research on lycopene digestion, absorption, metabolism, and excretion. This review primarily focuses on in vivo studies because of the labile nature and difficulty of studying carotenoids within in vitro experimental models. The studies presented address tissue accumulation of lycopene, the modification of bioavailability due to genetic and dietary factors, and lycopene cleavage by the enzymes ß-carotene oxygenase 1 (BCO1) and ß-carotene oxygenase 2 (BCO2). The current literature suggests that the majority of lycopene is cleaved eccentrically by BCO2, yet further research is needed to probe the enzymatic cleavage activity at the tissue level. Additionally, results indicate that single nucleotide polymorphisms and dietary fat influence lycopene absorption and thus modify its health effects. Further research exploring the metabolism of lycopene, the mechanisms related to its health benefits, and optimal diet composition to increase the bioavailability is required.
Collapse
Affiliation(s)
- Joseph Arballo
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
| | - Jaume Amengual
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
- Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - John W. Erdman
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; (J.A.); (J.A.)
- Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
49
|
Ma L, Zhang M, Zhao R, Wang D, Ma Y, Li A. Plant Natural Products: Promising Resources for Cancer Chemoprevention. Molecules 2021; 26:933. [PMID: 33578780 PMCID: PMC7916513 DOI: 10.3390/molecules26040933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major factor threatening human health and life safety, and there is a lack of safe and effective therapeutic drugs. Intervention and prevention in premalignant process are effective ways to reverse carcinogenesis and prevent cancer from occurring. Plant natural products are rich in sources and are a promising source for cancer chemoprevention. This article reviews the chemopreventive effects of natural products, especially focused on polyphenols, flavonoids, monoterpene and triterpenoids, sulfur compounds, and cellulose. Meanwhile, the main mechanisms include induction of apoptosis, antiproliferation and inhibition of metastasis are briefly summarized. In conclusion, this article provides evidence for natural products remaining a prominent source of cancer chemoprevention.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - MengMeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - YueRong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
50
|
Schmidt KM, Haddad EN, Sugino KY, Vevang KR, Peterson LA, Koratkar R, Gross MD, Kerver JM, Comstock SS. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. J Food Sci 2021; 86:602-613. [PMID: 33449409 PMCID: PMC10035785 DOI: 10.1111/1750-3841.15586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Because microbes use carotenoids as an antioxidant for protection, dietary carotenoids could be associated with gut microbiota composition. We aimed to determine associations among reported carotenoid intake, plasma carotenoid concentrations, and fecal bacterial communities in pregnant women. Pregnant women (n = 27) were enrolled in a two-arm study designed to assess feasibility of biospecimen collection and delivery of a practical nutrition intervention. Plasma and fecal samples were collected and women were surveyed with a 24-hr dietary checklist and recalls. Plasma carotenoids were analyzed by HPLC using photodiode array detection. Fecal bacteria were analyzed by 16S rRNA DNA sequencing. Results presented are cross-sectional from the 36-week gestational study visit combined across both study arms due to lack of significant differences between intervention and usual care groups (n = 23 women with complete data). Recent intake of carotenoid-containing foods included carrots, sweet potatoes, mangos, apricots, and/or bell peppers for 48% of women; oranges/orange juice (17%); egg (39%); tomato/tomato-based sauces (52%); fruits (83%); and vegetables (65%). Average plasma carotenoid concentrations were 6.4 µg/dL α-carotene (AC), 17.7 µg/dL β-carotene (BC), 11.4 µg/dL cryptoxanthin, 39.0 µg/dL trans-lycopene, and 29.8 µg/dL zeaxanthin and lutein. AC and BC concentrations were higher in women who recently consumed foods high in carotenoids. CR concentrations were higher in women who consumed oranges/orange juice. Microbiota α-diversity positively correlated with AC and BC. Microbiota β-diversity differed significantly across reported intake of carotenoid containing foods and plasma concentrations of AC. This may reflect an effect of high fiber or improved overall dietary quality, rather than a specific effect of carotenoids. PRACTICAL APPLICATION: Little is known about the association between the gut microbiome and specific dietary microconstituents, such as carotenoids, especially during pregnancy. This research demonstrates that a carotenoid-rich diet during pregnancy supports a diverse microbiota, which could be one mechanism by which carotenoids promote health.
Collapse
Affiliation(s)
- Kristen M. Schmidt
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Eliot N. Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Karin R. Vevang
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A. Peterson
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Revati Koratkar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Myron D. Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|