1
|
Huang Y, Wang W, Jin J. Association between polyphenol subclasses and prostate cancer: a systematic review and meta-analysis of observational studies. Front Nutr 2024; 11:1428911. [PMID: 39144286 PMCID: PMC11322767 DOI: 10.3389/fnut.2024.1428911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The effect of polyphenol subclasses on prostate cancer (PCA) is controversial. Therefore, the purpose of this study was to investigate the relationship between polyphenol subclasses and PCA incidence. Methods From the establishment of the database to December 2023, a systematic search was conducted on PubMed, Web of Science, Embase, and Cochrane Library to identify relevant observational studies. The adjusted odds ratio (OR) and corresponding 95% confidence interval (95% CI) were used to assess the association. Results A total of 38 studies (11 were cohort studies and 27 were case-control studies), composing 824,933 participants, were included in this meta-analysis after excluding irrelevant records. The findings of the study revealed that men who consumed dietary polyphenols had a significantly higher risk of PCA compared to those who never or rarely consumed dietary polyphenols (OR = 1.01, p = 0.023), especially dietary flavonol (OR = 1.05, p = 0.042), flavanol (OR = 1.03, p = 0.026) and anthocyanin (OR = 1.06, p = 0.001). Neither total nor subclasses of dietary polyphenols have an effect on non-localized or high-grade PCA (OR = 1.01, p = 0.518). Dietary isoflavones tended to reduce the incidence of local or low-grade PCA, although there was no statistically significant difference (OR = 1.00, p = 0.081). Regarding serum/plasma polyphenol, total polyphenol (OR = 0.95, p = 0.002), genistein (OR = 0.92, p = 0.029) and enterolactone (OR = 0.92, p = 0.022) can reduce the incidence of PCA. No association was observed between total/subclasses of urinary polyphenols and PCA risk. Conclusion Polyphenols seem to generally increase the risk of PCA in the male population. The effect of polyphenols on PCA is affected by factors such as polyphenol subclasses, their forms (serum/plasma, urinary, dietary), and PCA-related factors (like PCA stage). Systematic review registration identifier: CRD42022322699.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Wenyan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxiang Jin
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
3
|
Trivedi A, Hasan A, Ahmad R, Siddiqui S, Srivastava A, Misra A, Mir SS. Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals. Chin J Integr Med 2024; 30:75-84. [PMID: 37340205 DOI: 10.1007/s11655-023-3701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 06/22/2023]
Abstract
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Collapse
Affiliation(s)
- Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Aparna Misra
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, India.
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India.
| |
Collapse
|
4
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
5
|
Hirao Y, Kobayashi H, Mori Y, Kato S, Kawanishi S, Murata M, Oikawa S. Myricetin causes site-specific DNA damage via reactive oxygen species generation by redox interactions with copper ions. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503694. [PMID: 37770136 DOI: 10.1016/j.mrgentox.2023.503694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Myricetin (MYR), found in tea and berries, may have preventive effects on diseases, including Alzheimer's disease and cancer. However, MYR is also a mutagen, inducing DNA damage in the presence of metal ions. We have studied the molecular mechanisms of DNA damage by MYR in the presence of Cu(II) (MYR+Cu). Using 32P-5'-end-labeled DNA fragments, we analyzed site-specific DNA damage caused by MYR+Cu. MYR+Cu caused concentration-dependent DNA strand breaks and base alterations, leading to cleavage of DNA at thymine, cytosine, and guanine nucleotides. Formation of the oxidative DNA damage indicator, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in calf thymus DNA was increased by MYR+Cu. The production of 8-oxodG in MYR-treated HL-60 cells was significantly higher than in HP100 cells, which are more resistant to H2O2 than are HL-60 cells. Reactive oxygen species (ROS) scavengers were used to elucidate the mechanism of DNA damage. DNA damage was not inhibited by typical free hydroxyl radical (•OH) scavengers such as ethanol, mannitol, or sodium formate. However, methional, catalase, and bathocuproine inhibited DNA damage induced by MYR+Cu. These results suggest that H2O2, Cu(I), and ROS other than •OH are involved in MYR+Cu-induced DNA damage. We conclude that the Cu(I)/Cu(II) redox cycle and concomitant H2O2 production via autoxidation of MYR generate a complex of H2O2 and Cu(I), probably Cu(I)-hydroperoxide, which induces oxidative DNA damage.
Collapse
Affiliation(s)
- Yuichiro Hirao
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan; Department of Home Care Nursing, Mie Prefectural College of Nursing, Tsu, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Tsu, Mie, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
6
|
Mirto BF, Scafuri L, Sicignano E, Luca CD, Angellotto P, Lorenzo GD, Terracciano D, Buonerba C, Falcone A. Nature's hidden gem: quercitrin's promising role in preventing prostate and bladder cancer. Future Sci OA 2023; 9:FSO867. [PMID: 37228856 PMCID: PMC10203909 DOI: 10.2144/fsoa-2023-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Luca Scafuri
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
| | - Enrico Sicignano
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Ciro De Luca
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Pasquale Angellotto
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Giuseppe Di Lorenzo
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
- Department of Medicine & Health Science, University of Molise, Campobasso, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University ‘Federico II’, Naples, Italy
| | - Carlo Buonerba
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
| | - Alfonso Falcone
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, Mańdziuk S. Phytochemicals in Cancer Treatment and Cancer Prevention-Review on Epidemiological Data and Clinical Trials. Nutrients 2023; 15:nu15081896. [PMID: 37111115 PMCID: PMC10144429 DOI: 10.3390/nu15081896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are a non-nutritive substances that are present in plants and contribute significantly to their flavor and color. These biologically active compounds are classified into five major groups, namely phenolics, carotenoids, organosulfur compounds, nitrogen-containing compounds, and alkaloids, and are known for their potential health benefits in the prevention of various diseases, including cancer. The purpose of this review article is to explore the potential therapeutic benefits of the dietary phytochemicals, such as flavonoids, phenolic acids, phytosterols, carotenoids, and stilbenes, in cancer treatment and prevention based on the epidemiological studies and clinical trials. Although the majority of epidemiological studies report a significant advantage of the heightened phytochemical consumption and increased serum levels of these compounds, linking increased exposure with a lower cancer risk across most cancer types, these effects could not be replicated in the most available clinical trials. In fact, many of these trials were withdrawn early due to a lack of evidence and/or risk of harm. Despite the strong anticancer effect of phytochemicals, as well as their proven efficacy in multiple epidemiological studies, there is still a great need for human studies and clinical trials, with great caution regarding the safety measures. This review article provides an overview of the epidemiological and clinical evidence supporting the potential chemopreventive and anticancer properties of phytochemicals, with a focus on the need for further research in this area.
Collapse
Affiliation(s)
- Anna Rudzińska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Pola Juchaniuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Oberda
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jolanta Wiśniewska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Witold Wojdan
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
8
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
9
|
Maszczyk M, Banach K, Rok J, Rzepka Z, Beberok A, Wrześniok D. Evaluation of Possible Neobavaisoflavone Chemosensitizing Properties towards Doxorubicin and Etoposide in SW1783 Anaplastic Astrocytoma Cells. Cells 2023; 12:593. [PMID: 36831260 PMCID: PMC9953891 DOI: 10.3390/cells12040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Flavonoids exert many beneficial properties, such as anticancer activity. They were found to have chemopreventive effects hindering carcinogenesis, and also being able to affect processes important for cancer cell pathophysiology inhibiting its growth or promoting cell death. There are also reports on the chemosensitizing properties of flavonoids, which indicate that they could be used as a support of anticancer therapy. It gives promise for a novel therapeutic approach in tumors characterized by ineffective treatment, such as high-grade gliomas. The research was conducted on the in vitro culture of human SW1783 anaplastic astrocytoma cells incubated with neobavaisoflavone (NEO), doxorubicin, etoposide, and their combinations with NEO. The analyses involved the WST-1 cell viability assay and image cytometry techniques including cell count assay, Annexin V assay, the evaluation of mitochondrial membrane potential, and the cell-cycle phase distribution. We found that NEO affects the activity of doxorubicin and etoposide by reducing the viability of SW1783 cells. The combination of NEO and etoposide caused an increase in the apoptotic and low mitochondrial membrane potential subpopulations of SW1783 cells. Changes in the cell cycle were observed in all combined treatments. These findings indicate a potential chemosensitizing effect exerted by NEO.
Collapse
Affiliation(s)
| | | | | | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
10
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- grid.441783.d0000 0004 0487 9411Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- grid.412163.30000 0001 2287 9552Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- grid.32566.340000 0000 8571 0482Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- grid.513947.d0000 0005 0262 5685Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- grid.412967.f0000 0004 0609 0799Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- grid.440526.10000 0004 0609 3164Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- grid.512552.40000 0004 5376 6253Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- grid.412956.d0000 0004 0609 0537Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- grid.413055.60000 0004 0384 6757Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - William C. Cho
- grid.415499.40000 0004 1771 451XDepartment of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
12
|
Frum A, Dobrea CM, Rus LL, Virchea LI, Morgovan C, Chis AA, Arseniu AM, Butuca A, Gligor FG, Vicas LG, Tita O, Georgescu C. Valorization of Grape Pomace and Berries as a New and Sustainable Dietary Supplement: Development, Characterization, and Antioxidant Activity Testing. Nutrients 2022; 14:nu14153065. [PMID: 35893915 PMCID: PMC9370125 DOI: 10.3390/nu14153065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Grape pomace and berries represent natural sources of phytochemicals that can increase the quality of life of consumers by contributing to the prevention of chronic diseases; thus, the development of a dietary supplement was necessary. The raw material (r.m.) used for the development of the dietary supplement consisted of dried and powdered bilberries (Vaccinium myrtillus L.), red currants (Ribes rubrum L.), and red fermented pomaces (Vitis vinifera L.) from Feteasca Neagra and Cabernet Sauvignon cultivars. The particle size distribution, powder flow, total phenolic content (TPC), HPLC-DAD phenolic profile assessment, and radical scavenging assay (RSA) were employed for the analysis of the raw material. After encapsulation, the average mass and uniformity of mass, the disintegration, and the uniformity of content for the obtained capsules were performed to obtain a high-quality dietary supplement. All the assays performed complied to the compendial requirements and the TPC was determined at 9.07 ± 0.25 mg gallic acid equivalents/g r.m. and RSA at 48.32 ± 0.74%. The highest quantities of phenolic compounds determined were 333.7 ± 0.50 µg/g r.m. for chlorogenic acid, followed by rutin, ferulic acid, and (+)-catechin with 198.9 ± 1.60 µg/g r.m., 179.8 ± 0.90 µg/g r.m. and 118.7 ± 0.75 µg/g r.m., respectively. The results of this study can be used for the manufacturing and assessing of pilot scale-up capsule batches and thinking of quality assurance, we recommend that the industrial batch extracts should be standardized in polyphenols, and the manufacturing process should be validated.
Collapse
Affiliation(s)
- Adina Frum
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Carmen Maximiliana Dobrea
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
- Correspondence: (C.M.D.); (L.L.R.)
| | - Luca Liviu Rus
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
- Correspondence: (C.M.D.); (L.L.R.)
| | - Lidia-Ioana Virchea
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Claudiu Morgovan
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Adriana Aurelia Chis
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Anca Maria Arseniu
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Anca Butuca
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.F.); (L.-I.V.); (C.M.); (A.A.C.); (A.M.A.); (A.B.); (F.G.G.)
| | | | - Ovidiu Tita
- Faculty of Agriculture Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (O.T.); (C.G.)
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 550012 Sibiu, Romania; (O.T.); (C.G.)
| |
Collapse
|
13
|
Liu F, Peng Y, Qiao Y, Huang Y, Song F, Zhang M, Song F. Consumption of flavonoids and risk of hormone-related cancers: a systematic review and meta-analysis of observational studies. Nutr J 2022; 21:27. [PMID: 35545772 PMCID: PMC9092883 DOI: 10.1186/s12937-022-00778-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Flavonoids seem to have hormone-like and anti-hormone properties so that the consumption of flavonoids may have potential effects on hormone-related cancers (HRCs), but the findings have been inconsistent so far. This meta-analysis was aimed to explore the association between flavonoids intake and HRCs risk among observational studies. METHODS Qualified articles, published on PubMed, EMBASE, and China National Knowledge Infrastructure (CNKI) from January 1999 to March 2022 and focused on relationships between flavonoids (total, subclass of and individual flavonoids) and HRCs (breast, ovarian, endometrial, thyroid, prostate and testicular cancer), were retrieved for pooled analysis. Random effects models were performed to calculate the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Funnel plots and Begg's/Egger's test were used to evaluate the publication bias. Subgroup analyses and sensitivity analyses were conducted to explore the origins of heterogeneity. RESULTS All included studies were rated as medium or high quality. Higher consumption of flavonols (OR = 0.85, 95% CI: 0.76-0.94), flavones (OR = 0.85, 95% CI: 0.77-0.95) and isoflavones (OR = 0.87, 95% CI: 0.82-0.92) was associated with a decreased risk of women-specific cancers (breast, ovarian and endometrial cancer), while the higher intake of total flavonoids was linked to a significantly elevated risk of prostate cancer (OR = 1.11, 95% CI: 1.02-1.21). A little evidence implied that thyroid cancer risk was augmented with the higher intake of flavones (OR = 1.24, 95% CI: 1.03-1.50) and flavanones (OR = 1.31, 95% CI: 1.09-1.57). CONCLUSIONS The present study suggests evidence that intake of total flavonoids, flavonols, flavones, flavanones, flavan-3-ols and isoflavones would be associated with a lower or higher risk of HRCs, which perhaps provides guidance for diet guidelines to a certain extent. TRIAL REGISTRATION This protocol has been registered on PROSPERO with registration number CRD42020200720 .
Collapse
Affiliation(s)
- Fubin Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Peng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yating Qiao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, Guangdong, China.
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
14
|
Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021; 13:nu13113750. [PMID: 34836005 PMCID: PMC8621729 DOI: 10.3390/nu13113750] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions.
Collapse
|
15
|
Galván-Portillo M, Vázquez-Salas RA, Hernández-Pérez JG, Blanco-Muñoz J, López-Carrillo L, Torres-Sánchez L. Dietary flavonoid patterns and prostate cancer: evidence from a Mexican population-based case-control study. Br J Nutr 2021; 127:1-9. [PMID: 34256878 DOI: 10.1017/s0007114521002646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flavonoids are a broad group of bioactive compounds with anticarcinogenic effects on the prostate that have been scarcely evaluated in Latin American populations. Our objective was to evaluate the association between dietary patterns of flavonoid intake and prostate cancer (PC) in a population-based case-control study carried out in Mexico City. Based on a semi-quantitative FFQ with a frame reference of 3 years before diagnosis or interview, we used an updated database for estimating the daily intake (mg/d) of flavones, flavonols and flavanols for 395 confirmed incident PC cases and 797 population controls matched by age (± 5 years). Histological PC differentiation was evaluated using the Gleason score at diagnosis. Flavonoid dietary intake patterns (FDIP) were determined through principal component analysis, and their association with PC was estimated using logistic regression models. Three FDIP were identified: gallate pattern (GP) characterised by (-)-epicatechin-3-O-gallate, (-)-epigallocatechin-3-O-gallate and (+)-gallocatechin; luteolin pattern (LP) characterised by luteolin and (-)-epigallocatechin-3-O-gallate; and a mixed pattern (MP) that included (+)-catechin, (-)-epicatechin and quercetin. A higher GP (ORT3 v.T1 = 0·47; 95 % CI 0·33, 0·66) and LP intake (ORT3 v. T1 = 0·39; 95 % CI 0·27, 0·59) were associated with a decreased PC likelihood. In contrast, a higher MP intake (ORT3 v. T1 = 2·32; 95 % CI 1·67, 3·23) increased PC likelihood. The possible differential and synergistic anticarcinogenic role of flavonoid compounds in PC deserves further study.
Collapse
Affiliation(s)
- Marcia Galván-Portillo
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Ruth Argelia Vázquez-Salas
- National Council for Science and Technology (CONACYT), National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera. CP 62100Cuernavaca, Morelos, Mexico
| | - Jesús Gibran Hernández-Pérez
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Julia Blanco-Muñoz
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Lizbeth López-Carrillo
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| | - Luisa Torres-Sánchez
- Center for Population Health Research, National Institute of Public Health of Mexico, Av. Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100Cuernavaca, Morelos, Mexico
| |
Collapse
|
16
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Lotfizadeh R, Sepehri H, Attari F, Delphi L. Flavonoid Calycopterin Induces Apoptosis in Human Prostate Cancer Cells In-vitro. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:391-401. [PMID: 33680039 PMCID: PMC7758012 DOI: 10.22037/ijpr.2020.113410.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostate cancer is enumerated as one of the most prevalent cancers in men, with a mortality rate of 18%. Chemotherapy is considered as a common strategy for cancer treatment; however, toxic side effects and drug resistance associated with chemotherapy are major drawbacks with this approach. It is well known that a diet rich in flavonoids can reduce the incidence of many types of cancer in a significant manner, and it was proved that methoxy flavones have greater bioavailability compared to the nonmethylated ones. Calycopterin is a tetramethoxy flavone which was demonstrated to have anti-proliferative effects on colon, gastric, and osteosarcoma cancer cells. Therefore, in the current study, we have evaluated the apoptotic effects of this flavonoid on two prostate cancer cell lines in-vitro. The MTT assay revealed that after 48 h treatment with this flavonoid, cell viability reduced to 50% compared to the control group. However, calycopterin treatment of healthy HUVEC did not cause any significant reduction in cell viability. Moreover, the clonogenic assay demonstrated that after 14 days, colony size and numbers reduced significantly in calycopterin treated cells. In addition, the percentage of the sub-G1 population in calycopterin-treated cells augmented significantly compared to untreated group. Also, calycopterin-treated cells demonstrated shiny condensed nuclei with fragmented DNA indicative of apoptosis. Finally, a significant reduction in the migration ability was observed in both lines subjected to calycopterin after 48 h. To conclude, our results demonstrated the apoptotic and anti-metastatic effects of calycopterin in both hormone-dependent and independent prostate cancer cell lines.
Collapse
Affiliation(s)
- Reza Lotfizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2021; 11:2805-2825. [PMID: 32134090 DOI: 10.1039/d0fo00216j] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.
Collapse
Affiliation(s)
- Javier Quero
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| |
Collapse
|
19
|
Baldion PA, Cortes CC, Castellanos JE, Betancourt DE. Effect of myricetin on odontoblast-like cells and its potential to preserve resin-dentin Bonds. J Mech Behav Biomed Mater 2021; 117:104392. [PMID: 33601300 DOI: 10.1016/j.jmbbm.2021.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Stabilization of the resin-dentin interface to increase the durability of adhesive dental restorations is a challenging task. The use of naturally occurring collagen crosslinking agents has been proposed to prevent degradation of the hybrid layer. Myricetin (MYR) is a flavonoid with a wide variety of beneficial effects and it has been used for the treatment of different systemic pathologies. The chemical structure of MYR makes it a powerful antioxidant, an inhibitor of matrix metalloproteinase (MMP) activity, and a collagen cross-linker. This study presents MYR as a novel treatment in operative dentistry to stabilize the resin-dentin interface by inhibiting MMPs and crosslinking the collagen. Viability tests carried out using a resazurin assay showed that MYR had no cytotoxic effects on human odontoblast-like cells and the phenotype was preserved. Fluorometric MMP activity assay and fluorescence microscopy revealed that the MMPs in the demineralized dentin were effectively inhibited by the application of MYR (600 μM for 120 s). A microtensile bond strength test was performed immediately and after six months of storage. The bond strength to dentin was not affected by MYR and was preserved over time. Demineralized dentin beams were evaluated to determine the dentin biomodification using microtensile strength and elastic modulus assays. MYR improved the biomechanical behavior of the demineralized dentin similarly to glutaraldehyde, a recognized crosslinking agent. These findings indicated that MYR acts as an MMP inhibitor, collagen cross-linker, and preserver of the bond strength. Furthermore, MYR is an ethanol-soluble molecule with a lower molecular weight than the other polyphenols; hence, it can be applied for a short time and diffuses deeply through the dentin without any associated cytotoxicity. This molecule has beneficial effects on the biological and mechanical behavior of the resin-dentin interface and may be used to effectively stabilize the hybrid layer in a clinical setting.
Collapse
Affiliation(s)
- Paula A Baldion
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| | - Cristhian C Cortes
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| | - Jaime E Castellanos
- Departamento de Medicina Oral y Ciencias Basicas, Facultad de Odontologia, Universidad Nacional de Colombia, Av. Cra 30 No. 45-03, Edificio 210, Bogotá, Colombia.
| | - Diego E Betancourt
- Departamento de Salud Oral, Facultad de Odontologia, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
20
|
Karthika C, Sureshkumar R. Incorporation of natural assumption to deal with cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4902-4917. [PMID: 33230796 DOI: 10.1007/s11356-020-11479-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The current state of the art for the use of natural ingredients for cancer therapy is by reviewing the publications and findings associated with cancer research with the employment of flavonoids. Cancer is the most furious disease making fear in the eyes of mankind. Though various treatment methods are prevalent, the patient's choices are shifting from synthetic treatment strategy to the natural ones. The plant-based metabolites are used very often in our life as a food additive and also as a medicine for primary health care. The safety profile and its efficacy add on advantage for the incorporation of the natural products separately or in combination as a remedy for cancer. Flavonoids, the plant-based metabolites are proven for their anti-inflammatory, anti-oxidant, and anti-cancer properties. Their chemotherapeutic and chemosensitizing power had made it interesting for the researchers to dig more on the health benefits of the flavonoids and incorporating it in a holistic approach, with its natural benefits to relieve the pain and the symptoms of the patient suffering from various medical conditions. The predominant approach for the management of cancer is by following safe and effective treatment modality. In this review, we mentioned the benefits of the flavonoids for the management of various cancers and its potency as a chemotherapeutic agent and as the chemosensitizer. Our mother nature had given remedies to cure various diseases in both human beings and animals by it; we just need to find out the sources and access to them.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
21
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
22
|
Li G, Ding K, Qiao Y, Zhang L, Zheng L, Pan T, Zhang L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020; 25:E5628. [PMID: 33265939 PMCID: PMC7729519 DOI: 10.3390/molecules25235628] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally. Millions of persons die due to cancer each year. In the last two decades, the anticancer effects of natural flavonoids have become a hot topic in many laboratories. Meanwhile, flavonoids, of which over 8000 molecules are known to date, are potential candidates for the discovery of anticancer drugs. The current review summarizes the major flavonoid classes of anticancer efficacy and discusses the potential anti-cancer mechanisms through inflammation and oxidative stress action, which were based on database and clinical studies within the past years. The results showed that flavonoids could regulate the inflammatory response and oxidative stress of tumor through some anti-inflammatory mechanisms such as NF-κB, so as to realize the anti-tumor effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China; (G.L.); (K.D.); (Y.Q.); (L.Z.); (L.Z.); (T.P.)
| |
Collapse
|
23
|
Therapeutic Potential of Gnetin C in Prostate Cancer: A Pre-Clinical Study. Nutrients 2020; 12:nu12123631. [PMID: 33255879 PMCID: PMC7760540 DOI: 10.3390/nu12123631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Natural stilbenes have gained significant attention in the scientific community owing to their potential anticancer effects against prostate cancer. We recently reported that Gnetin C, a resveratrol (Res) dimer, demonstrated more potent inhibition of metastasis-associated protein 1/v-ets avian erythroblastosis virus E26 oncogene homolog 2 (MTA1/ETS2) axis in prostate cancer cell lines than other stilbenes. In this study, we investigated in vivo antitumor effects of Gnetin C in two doses (50 and 25 mg/kg, i.p.) using PC3M-Luc subcutaneous xenografts and compared these to Res and pterostilbene (Pter). We found that while vehicle-treated mice revealed rapid tumor progression, compounds-treated mice showed noticeable delay in tumor growth. Gnetin C in 50 mg/kg dose demonstrated the most potent tumor inhibitory effects. Gnetin C in 25 mg/kg dose exhibited tumor inhibitory effects comparable with Pter in 50 mg/kg dose. Consistent with the effective antitumor effects, Gnetin C-treated tumors showed reduced mitotic activity and angiogenesis and a significant increase in apoptosis compared to all the other groups. The data suggest that Gnetin C is more potent in slowing tumor progression in prostate cancer xenografts than Res or Pter. Taken together, we demonstrated, for the first time, that Gnetin C is a lead compound among stilbenes for effectively blocking prostate cancer progression in vivo.
Collapse
|
24
|
Ghanavati M, Clark CCT, Bahrami A, Teymoori F, Movahed M, Sohrab G, Hejazi E. Dietary intake of polyphenols and total antioxidant capacity and risk of prostate cancer: A case-control study in Iranian men. Eur J Cancer Care (Engl) 2020; 30:e13364. [PMID: 33174661 DOI: 10.1111/ecc.13364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the leading causes, globally, of cancer-related mortality. Previous studies have reported an inverse relationship between some food items or dietary patterns and prostate cancer risk. Polyphenols, as antioxidant and anti-inflammatory dietary components, have been associated with a reduced risk of PCa, whilst dietary indices such as total antioxidant capacity are good predictors of PCa risk. OBJECTIVE The purpose of this study was to conduct a case-control study on the association between polyphenol intake and DTAC (dietary total antioxidant capacity) and PCa risk in men. METHOD 205 hospital-based controls and 97 newly diagnosed PCa patients were asked about their dietary intakes using a validated questionnaire. The polyphenol contents (flavonoids, lignans, stilbenes and phenolic acids) of foods and beverages were calculated. TAC was obtained using a comprehensive database consisting of the total antioxidant content of more than 3000 food and beverages. Logistic regression was used to determine the odds ratios (OR), with 95% confidence intervals (CI), of PCa according to categories of polyphenol intake and TAC. RESULTS When comparing the highest and the lowest tertile of total polyphenol (OR: 0.12; 95% CI: 0.03-0.41), lignans (OR: 0.14; 95% CI: 0.04-0.41), phenolic acids (OR: 0.18; 95% CI: 0.05-0.57) and some flavonoid subgroups intake including flavan-3-ols (OR: 0.24; 95% CI: 0.08-0.67), flavanones (OR: 0.10; 95% CI: 0.03-0.31) and flavones (OR: 0.33; 95% CI: 0.12-0.87), we observed a significant decreasing trend in the risk of PCa (p for trend<0.05). CONCLUSION The results suggest that the consumption of some polyphenols can significantly reduce the risk of PCa.
Collapse
Affiliation(s)
- Matin Ghanavati
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV15FB, UK
| | - Alireza Bahrami
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Movahed
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Harrison S, Tilling K, Turner EL, Martin RM, Lennon R, Lane JA, Donovan JL, Hamdy FC, Neal DE, Bosch JLHR, Jones HE. Systematic review and meta-analysis of the associations between body mass index, prostate cancer, advanced prostate cancer, and prostate-specific antigen. Cancer Causes Control 2020; 31:431-449. [PMID: 32162172 PMCID: PMC7105428 DOI: 10.1007/s10552-020-01291-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE The relationship between body mass index (BMI) and prostate cancer remains unclear. However, there is an inverse association between BMI and prostate-specific antigen (PSA), used for prostate cancer screening. We conducted this review to estimate the associations between BMI and (1) prostate cancer, (2) advanced prostate cancer, and (3) PSA. METHODS We searched PubMed and Embase for studies until 02 October 2017 and obtained individual participant data from four studies. In total, 78 studies were identified for the association between BMI and prostate cancer, 21 for BMI and advanced prostate cancer, and 35 for BMI and PSA. We performed random-effects meta-analysis of linear associations of log-PSA and prostate cancer with BMI and, to examine potential non-linearity, of associations between categories of BMI and each outcome. RESULTS In the meta-analyses with continuous BMI, a 5 kg/m2 increase in BMI was associated with a percentage change in PSA of - 5.88% (95% CI - 6.87 to - 4.87). Using BMI categories, compared to normal weight men the PSA levels of overweight men were 3.43% lower (95% CI - 5.57 to - 1.23), and obese men were 12.9% lower (95% CI - 15.2 to - 10.7). Prostate cancer and advanced prostate cancer analyses showed little or no evidence associations. CONCLUSION There is little or no evidence of an association between BMI and risk of prostate cancer or advanced prostate cancer, and strong evidence of an inverse and non-linear association between BMI and PSA. The association between BMI and prostate cancer is likely biased if missed diagnoses are not considered.
Collapse
Affiliation(s)
- Sean Harrison
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England.
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England.
| | - Kate Tilling
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England
| | - Emma L Turner
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, England
| | - Rosie Lennon
- Department of Environment and Geography, University of York, York, England
| | - J Athene Lane
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, England
| | - Jenny L Donovan
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West, University Hospitals Bristol NHS Trust, Bristol, England
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, England
| | - J L H Ruud Bosch
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hayley E Jones
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| |
Collapse
|
26
|
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr Cancer 2020; 72:386-397. [PMID: 31287738 DOI: 10.1080/01635581.2019.1637006] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains a second leading cause of deaths and major public health problem. It occurs due to extensive DNA damage caused by ultraviolet radiations, ionizing radiations, environmental agents, therapeutic agents, etc. Among all cancers, the most frequently diagnosed cancers are lung (12.7%), breast (10.9%), colorectal (9.7%), and gastric cancer (7.81%). Natural compounds are most favorable against cancer on the count of their anti-cancerous ability, easy to avail and efficient. Among natural compounds, polyphenols (flavonoids, catechin, hesperetin, flavones, quercetin, phenolic acids, ellagic acid, lignans, stilbenes, etc.) represent a large and diverse group used in the prevention and treatment of cancer. Natural flavonoids are derived from different plant sources and from various medicinal plants including Petroselinum crispum, Apium graveolens, Flemingia vestita, Phyllanthus emblica, etc. Natural flavonoids possess antioxidant, anti-inflammation, as well as anti-cancerous activities through multiple pathways, they induce apoptosis in breast, colorectal, and prostate cancers, lower the nucleoside diphosphate kinase-B activity in lung, bladder and colon cancers, inhibit cell-proliferation and cell cycle arrest by suppressing the NF-kB pathway in various cancers, etc. The current review summarized the anticancer activities of natural polyphenols and their mechanisms of action.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur- Rehman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
27
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
28
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
29
|
|
30
|
Rajaram P, Jiang Z, Chen G, Rivera A, Phasakda A, Zhang Q, Zheng S, Wang G, Chen QH. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg Chem 2019; 87:227-239. [PMID: 30904813 DOI: 10.1016/j.bioorg.2019.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/03/2019] [Accepted: 03/15/2019] [Indexed: 01/06/2023]
Abstract
Forty-eight nitrogen-containing quercetin derivatives were synthesized from readily available rutin or quercetin for the in vitro evaluation of their biological profiles. The WST-1 cell proliferation assay data indicate that thirty-nine out of the forty-eight derivatives possess significantly improved antiproliferative potency as compared with quercetin and fisetin, as well as the parent 3,3',4',7-O-tetramethylquercetin toward both androgen-sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) human prostate cancer cell lines. 5-O-Aminoalkyl-3,3',4',7-O-tetramethylquercetins were established as a better scaffold for further development as anti-prostate cancer agents. Among them, 5-O-(N,N-dibutylamino)propyl-3,3',4',7-O-tetramethylquercetin (44) was identified as the optimal derivative with IC50 values of 0.55-2.82 µM, being over 35-182 times more potent than quercetin. The flow cytometry-based assays further demonstrate that 44 effectively activates PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Pravien Rajaram
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Ziran Jiang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Alyssa Rivera
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Alison Phasakda
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
31
|
Boudewijns EA, Nieuwenhuis L, Geybels MS, van den Brandt PA. Total nut, tree nut, peanut, and peanut butter intake and the risk of prostate cancer in the Netherlands Cohort Study. Prostate Cancer Prostatic Dis 2019; 22:467-474. [PMID: 30692586 DOI: 10.1038/s41391-019-0131-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The consumption of nuts has been associated with a reduction of cancer risk, but only a few studies have examined the effects of nuts on prostate cancer risk. The current study prospectively investigated the association between the consumption of total nuts, tree nuts, peanuts, and peanut butter and the risk of total, advanced, and non-advanced prostate cancer. METHODS The association between nuts and prostate cancer was evaluated in the Netherlands Cohort Study, which was conducted among 58,279 men aged 55-69 year at baseline. A case-cohort approach was used for data processing and analyses. After 20.3 years of follow-up, 3868 incident prostate cancer cases and 1979 subcohort members were available for multivariable Cox regression analyses. RESULTS For total, advanced, and non-advanced prostate cancer, no significant associations were found for total nuts (total prostate cancer: hazard ratio (HR) (95%CI) for 10+ g/day vs. non-consumers = 1.09 (0.92-1.29), Ptrend = 0.409). No significant associations were observed for tree nuts and peanuts for total, advanced, and non-advanced prostate cancer risk. Peanut butter consumption was associated with a significantly increased risk of non-advanced prostate cancer (HR (95%CI) for 5+ g/day vs. non-consumers = 1.33 (1.08-1.63), Ptrend = 0.008), but not with total or advanced prostate cancer. CONCLUSIONS No significant associations were found between total nut, tree nut, and peanut consumption and total, advanced, and non-advanced prostate cancer. Peanut butter might be associated with an increased non-advanced prostate cancer risk.
Collapse
Affiliation(s)
- Esther A Boudewijns
- Care and Public Health Research Institute (CAPHRI), Department of Epidemiology, Maastricht University Medical Center+, Maastricht, The Netherlands.,Care and Public Health Research Institute (CAPHRI), Department of Family Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lisette Nieuwenhuis
- Care and Public Health Research Institute (CAPHRI), Department of Epidemiology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Milan S Geybels
- GROW - School for Oncology and Developmental Biology, Department of Epidemiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Piet A van den Brandt
- Care and Public Health Research Institute (CAPHRI), Department of Epidemiology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Department of Epidemiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
32
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Li X, Zhang C, Guo S, Rajaram P, Lee M, Chen G, Fong R, Gonzalez A, Zhang Q, Zheng S, Wang G, Chen QH. Structure-activity relationship and pharmacokinetic studies of 3-O-substitutedflavonols as anti-prostate cancer agents. Eur J Med Chem 2018; 157:978-993. [PMID: 30165345 DOI: 10.1016/j.ejmech.2018.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022]
Abstract
Thirty-eight 3-O-substituted-3',4'-dimethoxyflavonols and twenty-five 3-O-substituted-3',4',7-trimethoxyflavonols have been synthesized for systematic investigation on the structure-activity relationships of 3-O-substituted-3',4'-dimethoxyflavonols in three human prostate cancer cell models. Our findings indicate that incorporation of an appropriate amino group to 3-OH of 3',4'-dimethoxyflavonol and 3',4',7-trimethoxyflavonol through a 3- to 5-carbon linker can substantially improve the in vitro antiproliferative potency in three human prostate cancer cell models, but not in two non-neoplastic human epithelial cell models (MCF 10A and PWR-1E). 1-Methylpiperazine, pyrrolidine, and dibutylamine are optimal terminal amine groups that, in combination with a 3- to 5-carbon linker, are notably beneficial to the anti-proliferative potency of 3-O-substituted-3',4'-dimethoxyflavonols. It is worth noting that 3-O-(4-methylpiperazin-1-yl)propyl-3',4',7-trimethoxyflavonol (76) induces PC-3 cell death in a completely different way from 3-O-pyrrolidinopentyl-3',4',7-trimethoxyflavonol (81) even though they belong to 3-O-substituted-3',4',7-trimethoxyflavonols and exhibit similar potency in inhibiting PC-3 cell proliferation, suggesting that the mechanism of action for each specific 3-O-substitutedflavonol varies with different amino moiety. 3-O-(N,N-Dibutylamino)propyl-3',4'-dimethoxyflavonol (42) emerged as the most promising derivative due to its substantially improved potency in cell models, superior bioavailability in rats, and good selectivity of inhibiting prostate cancer cell proliferation over non-neoplastic human epithelial cell proliferation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Changde Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Shanchun Guo
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Pravien Rajaram
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Maizie Lee
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Ryan Fong
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Aaron Gonzalez
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Shilong Zheng
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA, 93740, USA.
| |
Collapse
|
34
|
Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact 2018; 288:12-23. [PMID: 29654773 DOI: 10.1016/j.cbi.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 04/10/2018] [Indexed: 01/27/2023]
Abstract
In this study, the antiproliferative activity of peanut skin procyanidins (PSP) and six fractions (PSP-1∼6) isolated from PSP by several chromatographic steps on the human prostate cancer DU145 cells were evaluated. The results showed that PSP and PSP-1∼6 significantly inhibited the proliferation of DU145 cells. PSP-2 was the most effective fraction, which was identified as procyanidin B3 mainly and procyanidin dimer [(E)C-luteolin or keampferol] secondarily. Moreover, the mechanism of antiproliferative activity of PSP-2 was investigated. It was observed that PSP-2 induced apoptotic cell death and cell cycle arrest at S phase in DU145 cells. PSP-2 caused the increase of intracellular ROS level and the decrease of Bcl-2/Bax ratio, and triggered the activation of p53 and caspases-3 in DU145 cells. Our findings demonstrated that procyanidins from peanut skin have the potential to be developed as an anti-prostate cancer agent.
Collapse
|
35
|
Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2018; 7:73573-73592. [PMID: 27634884 PMCID: PMC5342000 DOI: 10.18632/oncotarget.12017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023] Open
Abstract
Although numerous in vitro studies and animal model data have suggested that flavan-3-ols, the most common subclass of flavonoids in the diet, may exert protective effects against cancer, epidemiologic studies have reported inconclusive results for the association between flavan-3-ols intake and cancer risk. Therefore, we conducted this meta-analysis of epidemiologic studies to investigate the preventive effects of flavan-3-ols on various types of cancers. A total of 43 epidemiologic studies, consisting of 25 case-control and 18 prospective cohort studies, were included. A significant inverse association was shown between flavan-3-ols intake and the risk of overall cancer (relative risk (RR) 0.935, 95%CI: 0.891-0.981). When cancer types were separately analyzed, a statistically significant protective effect of flavan-3-ols consumption was observed in rectal cancer (RR 0.838, 95%CI: 0.733-0.958), oropharyngeal and laryngeal cancer (RR 0.759, 95%CI: 0.581-0.993), breast (RR 0.885, 95%CI: 0.790-0.991) in case-control studies and stomach cancer in women (RR 0.633, 95%CI: 0.468-0.858). Our analysis indicates the potential benefits of flavan-3-ols in cancer prevention.
Collapse
|
36
|
Praud D, Parpinel M, Guercio V, Bosetti C, Serraino D, Facchini G, Montella M, La Vecchia C, Rossi M. Proanthocyanidins and the risk of prostate cancer in Italy. Cancer Causes Control 2018; 29:261-268. [DOI: 10.1007/s10552-018-1002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022]
|
37
|
Sak K. Intake of Individual Flavonoids and Risk of Carcinogenesis: Overview of Epidemiological Evidence. Nutr Cancer 2017; 69:1119-1150. [PMID: 29083244 DOI: 10.1080/01635581.2017.1367934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several epidemiological findings have demonstrated that specific flavonoids can be responsible for reduction of the risk of certain cancer types. However, these results are still rather limited, inconclusive and controversial. Therefore, in this comprehensive review article the findings reported to date about the associations between dietary intake of individual flavonoid compounds and cancer incidence are compiled and analyzed. Also, the possible reasons for inconsistencies are brought forth and discussed. As diet is a potentially modifiable factor in our behavioral choices, further large-scale prospective studies with longer follow-up times, different populations, various doses and exposure timing as well as diverse well-controlled confounders are highly needed to confirm or disprove the current epidemiological knowledge about the role of flavonoids on cancer risk. Regarding the promising data to date, more research on bioavailability, metabolism and biological action mechanisms of these plant secondary metabolites is also encouraged.
Collapse
Affiliation(s)
- Katrin Sak
- a NGO Praeventio , Näituse 22-3, Tartu , Estonia
| |
Collapse
|
38
|
Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Shivappa N, Miao Q, Walker M, Hébert JR, Aronson KJ. Association Between a Dietary Inflammatory Index and Prostate Cancer Risk in Ontario, Canada. Nutr Cancer 2017; 69:825-832. [PMID: 28718711 PMCID: PMC6093856 DOI: 10.1080/01635581.2017.1339095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Evidence exists showing that various aspects of diet are implicated in the etiology of prostate cancer, although results across studies remain inconsistent. METHODS We examined the ability of the dietary inflammatory index (DII) to predict prostate cancer in a case-control study conducted in Kingston, Ontario, Canada, between 1997 and 1999. The study included 72 cases of incident primary prostate cancer patients and 302 controls of urology clinic patients who had prostate conditions other than prostate cancer. The DII was computed based on intake of 18 nutrients assessed using a 67-item food frequency questionnaire. Univariate and multivariate logistic regression models were used to estimate odds ratios (ORs). RESULTS Men with higher DII scores were at increased risk of prostate cancer using DII score fit both as a continuous [OR = 1.58, 95% confidence interval (CI) 1.05-2.38] and categorical variable [compared to men in the lowest DII quartile, men in the highest quartile were at elevated risk (OR = 3.50, 95% CI 1.25-9.80; ptrend = 0.02)]. There was no significant heterogeneity by weight status, but stronger association was observed in men with body mass index >25 kg/m2 versus <25 kg/m2. CONCLUSION These findings suggest that a proinflammatory diet, as indicated by increasing DII score, is a risk factor for prostate cancer.
Collapse
Affiliation(s)
- Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
- Connecting Health Innovations LLC, Columbia, SC USA
| | - Qun Miao
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Melanie Walker
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - James R. Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
- Connecting Health Innovations LLC, Columbia, SC USA
- Department of Family and Preventive Medicine, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kristan J. Aronson
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
40
|
Bawaked RA, Schröder H, Ribas-Barba L, Cárdenas G, Peña-Quintana L, Pérez-Rodrigo C, Fíto M, Serra-Majem L. Dietary flavonoids of Spanish youth: intakes, sources, and association with the Mediterranean diet. PeerJ 2017; 5:e3304. [PMID: 28533962 PMCID: PMC5437861 DOI: 10.7717/peerj.3304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/12/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Plant-based diets have been linked to high diet quality and reduced risk of cardiovascular diseases. The health impact of plant-based diets might be partially explained by the concomitant intake of flavonoids. Estimation of flavonoids intake in adults has been important for the development of dietary recommendations and interventions for the prevention of weight gain and its consequences. However, estimation of flavonoids intake in children and adolescents is limited. METHODS Average daily intake and sources of flavonoids were estimated for a representative national sample of 3,534 children and young people in Spain, aged 2-24 years. The data was collected between 1998 and 2000 by 24-h recalls. The Phenol-Explorer database and the USDA database on flavonoids content were used. Adherence to the Mediterranean diet was measured by the KIDMED index. RESULTS The mean and median intakes of total flavonoids were 70.7 and 48.1 mg/day, respectively. The most abundant flavonoid class was flavan-3-ols (35.7%), with fruit being the top food source of flavonoids intake (42.8%). Total flavonoids intake was positively associated with the KIDMED index (p < 0.001). CONCLUSION The results of this study provide primary information about flavonoids intake and main food sources in Spanish children, adolescents and young adults. Participants with high daily mean intake of flavonoids have higher adherence to the Mediterranean diet.
Collapse
Affiliation(s)
- Rowaedh Ahmed Bawaked
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University of Pompeu Fabra, Barcelona, Spain
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Ribas-Barba
- Fundación para la Investigación Nutricional (Nutrition Research Foundation), Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Gabriela Cárdenas
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University of Pompeu Fabra, Barcelona, Spain
| | - Luis Peña-Quintana
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Reseach Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Carmen Pérez-Rodrigo
- FIDEC Foundation, University of the Basque Country (UPV/EHU) Bilbao, Bilbao, Spain
| | - Montserrat Fíto
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Reseach Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
41
|
Vernarelli JA, Lambert JD. Flavonoid intake is inversely associated with obesity and C-reactive protein, a marker for inflammation, in US adults. Nutr Diabetes 2017; 7:e276. [PMID: 28504712 PMCID: PMC5518804 DOI: 10.1038/nutd.2017.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 11/17/2022] Open
Abstract
Recent studies have demonstrated the importance of flavonoid intake and disease risk, however the association between flavonoid intake and obesity has not been evaluated in a nationally representative sample of US adults. The objective of the study was to evaluate the association between flavonoid consumption and established risk factors for obesity and obesity-related inflammation. Data from a nationally representative sample of 9551 adults who participated in the 2005–2008 National Health and Nutrition Examination Survey (NHANES) were analyzed. Flavonoid consumption was inversely associated with obesity in both men and women in multivariate models. Adults in the highest quartile of flavonoid intake had significantly lower body mass index and waist circumference than those in the lowest quartile of flavonoid intake (P<0.03 and P<0.04, respectively), and flavonoid intake was inversely related to C-reactive protein levels in women (p-trend, 0.01). These findings support a growing body of laboratory evidence that flavonoid consumption may be beneficial for disease prevention.
Collapse
Affiliation(s)
- J A Vernarelli
- Department of Biology, Fairfield University, Fairfield, CT, USA.,Marion Egan Peckham School of Nursing and Health Studies, Fairfield University, Fairfield, CT, USA.,Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - J D Lambert
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
42
|
Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods 2017; 30:203-219. [PMID: 32288791 PMCID: PMC7104980 DOI: 10.1016/j.jff.2017.01.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/01/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
The consumption of diet-based naturally bioactive metabolites is preferred to synthetic material in order to avert health-associated disorders. Among the plant-derived polyphenols, kaempferol (KMF) is considered as a valuable functional food ingredient with a broad range of therapeutic applications such as anti-cancer, antioxidant and anti-inflammatory uses. KMF acts on a range of intracellular as well as extracellular targets involved in the cell signaling pathways that in turn are known to regulate the hallmarks of cancer growth progressions like apoptosis, cell cycle, invasion or metastasis, angiogenesis and inflammation. Importantly, the understanding of mechanisms of action of KMF-mediated therapeutic effects may help the scientific community to design novel strategies for the treatment of dreadful diseases. The current review summarizes the various types of molecular targets of KMF in cancer cells as well as other health-associated disorders. In addition, this review also highlights the absorption, metabolism and epidemiological findings.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | | | - Sandeep Punia
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | - Tapan K. Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| |
Collapse
|
43
|
Li X, Chen G, Zhang X, Zhang Q, Zheng S, Wang G, Chen QH. A new class of flavonol-based anti-prostate cancer agents: Design, synthesis, and evaluation in cell models. Bioorg Med Chem Lett 2016; 26:4241-5. [PMID: 27476422 PMCID: PMC4987241 DOI: 10.1016/j.bmcl.2016.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
Flavonoids are a large class of polyphenolic compounds ubiquitously distributed in dietary plants with an array of biological activities. Flavonols are a major sub-class of flavonoids featuring a hydroxyl group at C-3. Certain natural flavonols, such as quercetin and fisetin, have been shown by in vitro cell-based and in vivo animal experiments to be potential anti-prostate cancer agents. However, the Achilles' heel of flavonols as drug candidates is their moderate potency and poor pharmacokinetic profiles. This study aims to explore the substitution effect of 3-OH in flavonols on the in vitro anti-proliferative potency against both androgen-sensitive and androgen-insensitive human prostate cancer cell lines. Our first lead flavonol (3',4'-dimethoxyflavonol), eight 3-O-alkyl-3',4'-dimethoxyflavonols, and six 3-O-aminoalkyl-3',4'-dimethoxyflavonols have been synthesized through aldol condensation and the Algar-Flynn-Oyamada (AFO) reaction. The WST-1 cell proliferation assay indicates (i) that all synthesized 3-O-alkyl-3',4'-dimethoxyflavonols and 3-O-aminoalkyl-3',4'-dimethoxyflavonols are more potent than the parent 3',4'-dimethoxyflavonol and the natural flavonol quercetin in suppressing prostate cancer cell proliferation; and (ii) that incorporation of a dibutylamino group to the 3-OH group through a three- to five-carbon linker leads to the optimal derivatives with up to 292-fold enhanced potency as compared with the parent flavonol. Flow cytometry analysis showed that the most potent derivative 22 can activate PC-3 cell cycle arrest at the G2/M phase and induce PC-3 cell apoptosis. No inhibitory ability of 22 up to 50μM concentration was observed against PWR-1E normal human epithelial prostate cells, suggesting its in vitro safety profile. The results indicate that chemical modulation at 3-OH is a vital strategy to optimize flavonols as anti-prostate cancer agents.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
44
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
45
|
Guo K, Liang Z, Liu L, Li F, Wang H. Flavonoids intake and risk of prostate cancer: a meta-analysis of observational studies. Andrologia 2016; 48:1175-1182. [PMID: 26992118 DOI: 10.1111/and.12556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the study was to assess the association between total flavonoids/flavonoid subclasses intake and prostate cancer risk. Several databases were searched to select eligible studies with predefined criteria. Risk ratios (RRs) with 95% confidence intervals (CIs) were used as the effect size. Publication bias and sensitivity analysis were performed. A total of five studies including four prospective cohort studies and one case-control study were included in the meta-analysis. The pooled result demonstrated a significantly increased risk of prostate cancer with higher intake of total flavonoids (RR = 1.12, 95% CI: 1.02-1.23, P = 0.013). However, sensitivity analysis indicated that there lacked a significant association after removing the study of Wang et al. (RR = 1.17, 95% CI: 0.94-1.46). Subgroup analysis stratified by flavonoids subclasses found that higher intake of anthocyanidins and flavan-3-ols were significantly associated with increased prostate cancer risk (RR = 1.12, 95% CI: 1.03-1.21, P = 0.011; RR = 1.21, 95% CI: 1.10-1.32, P < 0.001). Sensitivity analysis also indicated that after removing Wang's study, no significant association between anthocyanidins intake and prostate cancer risk was detected (RR = 1.22, 95% CI: 0.97-1.54). In conclusion, higher intake of flavonoids may not be associated with prostate cancer risk.
Collapse
Affiliation(s)
- K Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Z Liang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - L Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - F Li
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - H Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Kim HJ, Park C, Han MH, Hong SH, Kim GY, Hoon Hong S, Deuk Kim N, Choi YH. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells. Drug Dev Res 2016; 77:73-86. [DOI: 10.1002/ddr.21298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Hong Jae Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology; Dongeui University; Busan 614-714 South Korea
| | - Min-Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea; Seocheon 325-902 South Korea
| | - Su-Hyun Hong
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences; Jeju National University; Jeju 690-756 South Korea
| | - Sang Hoon Hong
- Department of Internal Medicine; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| |
Collapse
|
47
|
He Z, Tao Y, Zeng M, Zhang S, Tao G, Qin F, Chen J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem 2016; 200:107-16. [PMID: 26830567 DOI: 10.1016/j.foodchem.2016.01.045] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/28/2015] [Accepted: 01/10/2016] [Indexed: 11/16/2022]
Abstract
The effects of high pressure homogenization processing (HPHP), thermal treatment (TT) and milk matrix (soy, skimmed and whole milk) on the phenolic bioaccessibility and the ABTS scavenging activity of apple, grape and orange juice (AJ, GJ and OJ) were investigated. HPHP and soy milk diminished AJ's total phenolic bioaccessibility 29.3%, 26.3%, respectively, whereas TT and bovine milk hardly affected it. HPHP had little effect on GJ's and OJ's total phenolic bioaccessibility, while TT enhanced them 27.3-33.9%, 19.0-29.2%, respectively, and milk matrix increased them 26.6-31.1%, 13.3-43.4%, respectively. Furthermore, TT (80 °C/30 min) and TT (90 °C/30 s) presented the similar influences on GJ's and OJ's phenolic bioaccessibility. Skimmed milk showed a better enhancing effect on OJ's total phenolic bioaccessibility than soy and whole milk, but had a similar effect on GJ's as whole milk. These results contribute to promoting the health benefits of fruit juices by optimizing the processing and formulas in the food industry.
Collapse
Affiliation(s)
- Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yadan Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
48
|
Rabassa M, Zamora-Ros R, Andres-Lacueva C, Urpi-Sarda M, Bandinelli S, Ferrucci L, Cherubini A. Association between Both Total Baseline Urinary and Dietary Polyphenols and Substantial Physical Performance Decline Risk in Older Adults: A 9-year Follow-up of the InCHIANTI Study. J Nutr Health Aging 2016; 20:478-85. [PMID: 27102783 PMCID: PMC5155507 DOI: 10.1007/s12603-015-0600-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
IMPORTANCE The decline in physical performance that occurs in many older subjects is a strong predictor of falls, hospitalization, institutionalization and mortality. Polyphenols are bioactive compounds that may play a preventive role against physical performance decline due to their antioxidant and anti-inflammatory properties. OBJECTIVE To investigate the association between total urinary polyphenols (TUP) and total dietary polyphenols (TDP) and substantial physical performance decline over a nine-year period among older subjects. METHODS This longitudinal study included 368 participants aged 65 years or older from the InCHIANTI (Invecchiare in Chianti) study, an Italian population-based cohort. TUP and TDP concentrations were assessed at baseline using the Folin-Ciocalteau (F-C) assay and a validated food frequency questionnaire, respectively. Physical performance was objectively measured at baseline and at nine-year follow-up using the Short Physical Performance Battery (SPPB). A substantial decline in physical performance was considered as a decrease of three or more points in the SPPB score. RESULTS At the nine-year follow-up assessment, 71 participants had suffered a substantial decline in physical performance. In the fully adjusted logistic regression model, participants in the highest TUP tertile had a lower risk of substantial decline in physical performance than those in the lowest tertile (OR, 0.40; 95% CI, 0.17-0.93; P trend=0.033). However, no significant association between TDP intake and physical performance decline was observed. CONCLUSION This study shows that high TUP concentrations, a biomarker of polyphenol-rich exposure, were associated with lower risk of substantial decline in physical performance in community-dwelling older subjects over a nine-year period. These results suggest that a polyphenol-rich diet may play a role in protecting against physical performance decline in older people.
Collapse
Affiliation(s)
- M Rabassa
- C. Andres-Lacueva, Biomarkers and Nutrimetabolomic Laboratory, Nutrition and Food Science Department, Campus Torribera, Pharmacy and Food Sciences Faculty, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain. E-mail:
| | | | | | | | | | | | | |
Collapse
|
49
|
Urpi-Sarda M, Andres-Lacueva C, Rabassa M, Ruggiero C, Zamora-Ros R, Bandinelli S, Ferrucci L, Cherubini A. The Relationship Between Urinary Total Polyphenols and the Frailty Phenotype in a Community-Dwelling Older Population: The InCHIANTI Study. J Gerontol A Biol Sci Med Sci 2015; 70:1141-7. [PMID: 25838546 PMCID: PMC4817083 DOI: 10.1093/gerona/glv026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/20/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Frailty, an age-related state of increased vulnerability, is associated with a higher risk of multiple adverse events. Studies have suggested that the quality of dietary intake may affect the development of frailty. We hypothesized that frailty in older subjects would be associated with dietary total polyphenols (DTP) intake and its biomarker, urinary total polyphenols (UTP). METHODS The Invecchiare in Chianti (InCHIANTI) Study is a prospective cohort study set in the Chianti area (Italy). We used data at baseline from 811 participants aged 65 years and older. UTP was determined using the Folin-Ciocalteu assay after solid-phase extraction. DTP was estimated using a validated Food Frequency Questionnaire and our own polyphenol database. The frailty, prefrailty, and nonfrailty states were defined according to the Fried and colleagues' criteria. Multinomial logistic regressions adjusted for potential confounders were used to assess the relationship between polyphenols and frailty. RESULTS Both DTP and UTP concentrations progressively decrease from nonfrail to frail participants. Participants in the highest UTP tertile compared to those in the lowest tertile were significantly less likely to be both frail (odds ratio [OR] = 0.36 [0.14-0.88], p = .025) and prefrail (OR = 0.64 [0.42-0.98], p = .038). Exhaustion and slowness were the only individual frailty criteria significantly associated with UTP tertiles. No significant association was observed between frailty and DTP, after adjustment for covariates. CONCLUSIONS High concentrations of UTP were associated with lower prevalence of frailty and prefrailty in an older community-dwelling population. A polyphenol-rich diet may protect against frailty in older persons. Our findings should be confirmed in longitudinal studies.
Collapse
Affiliation(s)
- Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomic Lab., Nutrition and Food Science Department, XaRTA, INSA, Pharmacy School, University of Barcelona, Spain. Ingenio-CONSOLIDER Program, FUN-C-FOOD, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomic Lab., Nutrition and Food Science Department, XaRTA, INSA, Pharmacy School, University of Barcelona, Spain. Ingenio-CONSOLIDER Program, FUN-C-FOOD, Barcelona, Spain.
| | - Montserrat Rabassa
- Biomarkers and Nutrimetabolomic Lab., Nutrition and Food Science Department, XaRTA, INSA, Pharmacy School, University of Barcelona, Spain. Ingenio-CONSOLIDER Program, FUN-C-FOOD, Barcelona, Spain
| | - Carmelinda Ruggiero
- Department of Medicine, Institute of Gerontology and Geriatrics, Perugia University, Italy
| | - Raul Zamora-Ros
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Luigi Ferrucci
- Intramural Program, National Institute on Aging, Baltimore, Maryland
| | | |
Collapse
|
50
|
Kim K, Vance TM, Chun OK. Estimated intake and major food sources of flavonoids among US adults: changes between 1999-2002 and 2007-2010 in NHANES. Eur J Nutr 2015; 55:833-843. [PMID: 26026481 DOI: 10.1007/s00394-015-0942-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE This study was conducted to: (1) demonstrate an updated method for estimating flavonoid intake of US adults by combining USDA flavonoid databases and NHANES food consumption data; (2) document the intake and major food sources of flavonoids among US adults; and (3) determine whether the intake and major sources of dietary flavonoids have changed during the past decade in the USA. METHODS A cross-sectional population-based study. Differences over time in the average daily intake and food sources of flavonoids were estimated using food consumption data from NHANES 1999-2002 (n = 8833) and 2007-2010 (n = 9801). RESULTS The total flavonoid intake of US adults aged 19 years and older remained unchanged between 1999-2002 (201.9 mg/d) and 2007-2010 (200.1 mg/d), with tea being the top food source of flavonoids. However, intake of anthocyanidins increased during this period, mainly due to greater consumption of berries and wine, which was consistent with the increase in per capita consumption of these foods based on USDA food availability data. CONCLUSIONS The results of this study provide updated information on flavonoid intake and food contributors and warrant further studies on the health implications of flavonoid intake.
Collapse
Affiliation(s)
- Kijoon Kim
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Extension Unit 4017, Storrs, CT, 06269-4017, USA.,BOM Research Institute, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Terrence M Vance
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Extension Unit 4017, Storrs, CT, 06269-4017, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Extension Unit 4017, Storrs, CT, 06269-4017, USA.
| |
Collapse
|