1
|
Kolobarić N, Kozina N, Mihaljević Z, Drenjančević I. Angiotensin II Exposure In Vitro Reduces High Salt-Induced Reactive Oxygen Species Production and Modulates Cell Adhesion Molecules' Expression in Human Aortic Endothelial Cell Line. Biomedicines 2024; 12:2741. [PMID: 39767646 PMCID: PMC11726729 DOI: 10.3390/biomedicines12122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production. Methods: The fifth passage of human aortic endothelial cells (HAECs) was cultured for 24, 48, and 72 h with NaCl, namely, the control (270 mOsmol/kg), HS320 (320 mOsmol/kg), and HS350 (350 mOsmol/kg). AngII was administered at the half-time of the NaCl incubation (10-4-10-7 mol/L). Results: The cell viability was significantly reduced after 24 h in the HS350 group and in all groups after longer incubation. AngII partly preserved the viability in the HAECs with shorter exposure and lower concentrations of NaCl. Intracellular hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) significantly increased in the HS320 group following AngII exposure compared to the control, while it decreased in the HS350 group compared to the HS control. A significant decrease in superoxide anion (O2.-) formation was observed following AngII exposure at 10-5, 10-6, and 10-7 mol/L for both HS groups. There was a significant decrease in intracellular adhesion molecule 1 (ICAM-1) and endoglin expression in both groups following treatment with 10-4 and 10-5 mol/L of AngII. Conclusions: The results demonstrated that AngII significantly reduced ROS production at HS350 concentrations and modulated the viability, proliferation, and activation states in ECs.
Collapse
Affiliation(s)
| | | | | | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (N.K.); (N.K.); (Z.M.)
| |
Collapse
|
2
|
Jeong S, Hunter SD, Cook MD, Grosicki GJ, Robinson AT. Salty Subjects: Unpacking Racial Differences in Salt-Sensitive Hypertension. Curr Hypertens Rep 2024; 26:43-58. [PMID: 37878224 PMCID: PMC11414742 DOI: 10.1007/s11906-023-01275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE OF REVIEW To review underlying mechanisms and environmental factors that may influence racial disparities in the development of salt-sensitive blood pressure. RECENT FINDINGS Our group and others have observed racial differences in diet and hydration, which may influence salt sensitivity. Dietary salt elicits negative alterations to the gut microbiota and immune system, which may increase hypertension risk, but little is known regarding potential racial differences in these physiological responses. Antioxidant supplementation and exercise offset vascular dysfunction following dietary salt, including in Black adults. Furthermore, recent work proposes the role of racial differences in exposure to social determinants of health, and differences in health behaviors that may influence risk of salt sensitivity. Physiological and environmental factors contribute to the mechanisms that manifest in racial differences in salt-sensitive blood pressure. Using this information, additional work is needed to develop strategies that can attenuate racial disparities in salt-sensitive blood pressure.
Collapse
Affiliation(s)
- Soolim Jeong
- Neurovascular Physiology Laboratory (NVPL), School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | - Stacy D Hunter
- Department of Health & Human Performance, Texas State University, San Marcos, TX, 78666, USA
| | - Marc D Cook
- Department of Kinesiology, North Carolina Agriculture and Technology State University, Greensboro, NC, 27411, USA
| | - Gregory J Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA, 31419, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory (NVPL), School of Kinesiology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson AT. The damaging duo: Obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev 2023; 24:e13589. [PMID: 37336641 PMCID: PMC10406397 DOI: 10.1111/obr.13589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023]
Abstract
Hypertension is a primary risk factor for cardiovascular disease. Cardiovascular disease is the leading cause of death among adults worldwide. In this review, we focus on two of the most critical public health challenges that contribute to hypertension-obesity and excess dietary sodium from salt (i.e., sodium chloride). While the independent effects of these factors have been studied extensively, the interplay of obesity and excess salt overconsumption is not well understood. Here, we discuss both the independent and combined effects of excess obesity and dietary salt given their contributions to vascular dysfunction, autonomic cardiovascular dysregulation, kidney dysfunction, and insulin resistance. We discuss the role of ultra-processed foods-accounting for nearly 60% of energy intake in America-as a major contributor to both obesity and salt overconsumption. We highlight the influence of obesity on elevated blood pressure in the presence of a high-salt diet (i.e., salt sensitivity). Throughout the review, we highlight critical gaps in knowledge that should be filled to inform us of the prevention, management, treatment, and mitigation strategies for addressing these public health challenges.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Dulce H. Gomez
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Orlando M. Gutiérrez
- Division of Nephrology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
4
|
Lukaszewicz K, Falck JR, Lombard J. Effect of Chronically Suppressed Plasma Angiotensin II on Regulation of the CYP4A/20-HETE Pathway in the Dahl Salt-Sensitive Rat. Antioxidants (Basel) 2023; 12:antiox12040783. [PMID: 37107157 PMCID: PMC10135295 DOI: 10.3390/antiox12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In Dahl salt-sensitive (SS) rats, impaired vascular relaxation can be restored by: (1) minipump infusion of a low (sub-pressor) dose of angiotensin II (ANG II) to restore physiological levels of plasma ANG II, (2) inhibition of 20-HETE production, and (3) introgression of a normally functioning renin allele from the Brown Norway rat (SS-13BN consomic rat). Unlike SS rats, SS-13BN rats have normal levels of ANG II on a normal-salt diet and suppressed ANG II on a high-salt (HS) diet. This study tested whether chronically low ANG II levels in SS rats upregulate cytochrome P450-4A (CYP4A) increasing the production of the vasoconstrictor 20-HETE. Although salt-induced suppression of ANG II levels increased reactive oxygen species (ROS) in basilar arteries from SS-13BN rats in previous studies, this study showed no change in vascular 20-HETE levels in response to ANGII suppression. CYP4A inhibition significantly reduced vascular ROS levels and restored endothelium-dependent relaxation in response to acetylcholine in the middle cerebral artery (MCA) of SS rats and HS-fed SS-13BN rats. These data demonstrate that both the renin-angiotensin system and the CYP4A/20-HETE pathway play a direct role in the vascular dysfunction of the Dahl SS rat but are independent of each other, even though they may both contribute to vascular dysfunction through ROS production.
Collapse
Affiliation(s)
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Julian Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Ertuglu LA, Mutchler AP, Yu J, Kirabo A. Inflammation and oxidative stress in salt sensitive hypertension; The role of the NLRP3 inflammasome. Front Physiol 2022; 13:1096296. [PMID: 36620210 PMCID: PMC9814168 DOI: 10.3389/fphys.2022.1096296] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salt-sensitivity of blood pressure is an independent risk factor for cardiovascular disease and affects approximately half of the hypertensive population. While the precise mechanisms of salt-sensitivity remain unclear, recent findings on body sodium homeostasis and salt-induced immune cell activation provide new insights into the relationship between high salt intake, inflammation, and hypertension. The immune system, specifically antigen-presenting cells (APCs) and T cells, are directly implicated in salt-induced renal and vascular injury and hypertension. Emerging evidence suggests that oxidative stress and activation of the NLRP3 inflammasome drive high sodium-mediated activation of APCs and T cells and contribute to the development of renal and vascular inflammation and hypertension. In this review, we summarize the recent insights into our understanding of the mechanisms of salt-sensitive hypertension and discuss the role of inflammasome activation as a potential therapeutic target.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United Staes,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| | - Ashley Pitzer Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Justin Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo, ; Lale A. Ertuglu,
| |
Collapse
|
6
|
Krajina I, Stupin A, Šola M, Mihalj M. Oxidative Stress Induced by High Salt Diet—Possible Implications for Development and Clinical Manifestation of Cutaneous Inflammation and Endothelial Dysfunction in Psoriasis vulgaris. Antioxidants (Basel) 2022; 11:antiox11071269. [PMID: 35883760 PMCID: PMC9311978 DOI: 10.3390/antiox11071269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Although oxidative stress is recognized as an important effector mechanism of the immune system, uncontrolled formation of reactive oxygen and nitrogen species promotes excessive tissue damage and leads to disease development. In view of this, increased dietary salt intake has been found to damage redox systems in the vessel wall, resulting in endothelial dysfunction associated with NO uncoupling, inflammation, vascular wall remodeling and, eventually, atherosclerosis. Several studies have reported increased systemic oxidative stress accompanied by reduced antioxidant capacity following a high salt diet. In addition, vigorous ionic effects on the immune mechanisms, such as (trans)differentiation of T lymphocytes are emerging, which together with the evidence of NaCl accumulation in certain tissues warrants a re-examination of the data derived from in vitro research, in which the ionic influence was excluded. Psoriasis vulgaris (PV), as a primarily Th17-driven inflammatory skin disease with proven inflammation-induced accumulation of sodium chloride in the skin, merits our interest in the role of oxidative stress in the pathogenesis of PV, as well as in the possible beneficial effects that could be achieved through modulation of dietary salt intake and antioxidant supplementation.
Collapse
Affiliation(s)
- Ivana Krajina
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Ana Stupin
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Marija Šola
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| | - Martina Mihalj
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia;
- Institute and Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Correspondence: (M.Š.); (M.M.); Tel.: +385-31-512-800 (M.M.)
| |
Collapse
|
7
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
8
|
Migdal KU, Robinson AT, Watso JC, Babcock MC, Lennon SL, Martens CR, Serrador JM, Farquhar WB. A high salt meal does not impair cerebrovascular reactivity in healthy young adults. Physiol Rep 2021; 8:e14585. [PMID: 33038066 PMCID: PMC7547584 DOI: 10.14814/phy2.14585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
A high sodium (Na+) meal impairs peripheral vascular function. In rodents, chronic high dietary Na+ impairs cerebral vascular function, and in humans, habitual high dietary Na+ is associated with increased stroke risk. However, the effects of acute high dietary Na+ on the cerebral vasculature in humans are unknown. The purpose of this study was to determine if acute high dietary Na+ impairs cerebrovascular reactivity in healthy adults. Thirty‐seven participants (20F/17M; 25 ± 5 years; blood pressure [BP]: 107 ± 9/61 ± 6 mm Hg) participated in this randomized, cross‐over study. Participants were given a low Na+ meal (LSM; 138 mg Na+) and a high Na+ meal (HSM; 1,495 mg Na+) separated by ≥ one week. Serum Na+, beat‐to‐beat BP, middle cerebral artery velocity (transcranial Doppler), and end‐tidal carbon dioxide (PETCO2) were measured pre‐ (baseline) and 60 min post‐prandial. Cerebrovascular reactivity was assessed by determining the percent change in middle cerebral artery velocity to hypercapnia (via 8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Peripheral vascular function was measured using brachial artery flow‐mediated dilation (FMD). Changes in serum Na+ were greater following the HSM (HSM: Δ1.6 ± 1.2 mmol/L vs. LSM: Δ0.7 ± 1.2 mmol/L, p < .01). Cerebrovascular reactivity to hypercapnia (meal effect: p = .41) and to hypocapnia (meal effect: p = .65) were not affected by the HSM. Contrary with previous findings, FMD was not reduced following the HSM (meal effect: p = .74). These data suggest that a single high Na+ meal does not acutely impair cerebrovascular reactivity, and suggests that despite prior findings, a single high Na+ meal does not impair peripheral vascular function in healthy adults.
Collapse
Affiliation(s)
- Kamila U Migdal
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Austin T Robinson
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Joseph C Watso
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Matthew C Babcock
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Shannon L Lennon
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| | - Jorge M Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - William B Farquhar
- Department of Kinesiology & Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Mechanisms of Dietary Sodium-Induced Impairments in Endothelial Function and Potential Countermeasures. Nutrients 2021; 13:nu13010270. [PMID: 33477837 PMCID: PMC7832854 DOI: 10.3390/nu13010270] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/11/2023] Open
Abstract
Despite decades of efforts to reduce sodium intake, excess dietary sodium remains commonplace, and contributes to increased cardiovascular morbidity and mortality independent of its effects on blood pressure. An increasing amount of research suggests that high-sodium diets lead to reduced nitric oxide-mediated endothelial function, even in the absence of a change in blood pressure. As endothelial dysfunction is an early step in the progression of cardiovascular diseases, the endothelium presents a target for interventions aimed at reducing the impact of excess dietary sodium. In this review, we briefly define endothelial function and present the literature demonstrating that excess dietary sodium results in impaired endothelial function. We then discuss the mechanisms through which sodium impairs the endothelium, including increased reactive oxygen species, decreased intrinsic antioxidant defenses, endothelial cell stiffening, and damage to the endothelial glycocalyx. Finally, we present selected research findings suggesting that aerobic exercise or increased intake of dietary potassium may counteract the deleterious vascular effects of a high-sodium diet.
Collapse
|
10
|
Barić L, Drenjančević I, Mihalj M, Matić A, Stupin M, Kolar L, Mihaljević Z, Mrakovčić-Šutić I, Šerić V, Stupin A. Enhanced Antioxidative Defense by Vitamins C and E Consumption Prevents 7-Day High-Salt Diet-Induced Microvascular Endothelial Function Impairment in Young Healthy Individuals. J Clin Med 2020; 9:jcm9030843. [PMID: 32244956 PMCID: PMC7141509 DOI: 10.3390/jcm9030843] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/07/2023] Open
Abstract
This study aimed to examine whether the oral supplementation of vitamins C and E during a seven-day high salt diet (HS; ~14 g salt/day) prevents microvascular endothelial function impairment and changes oxidative status caused by HS diet in 51 (26 women and 25 men) young healthy individuals. Laser Doppler flowmetry measurements demonstrated that skin post-occlusive reactive hyperemia (PORH), and acetylcholine-induced dilation (AChID) were significantly impaired in the HS group, but not in HS+C+E group, while sodium nitroprusside-induced dilation remained unaffected by treatments. Serum oxidative stress markers: Thiobarbituric acid reactive substances (TBARS), 8-iso prostaglandin-F2α, and leukocytes’ intracellular hydrogen peroxide (H2O2) production were significantly increased, while ferric-reducing ability of plasma (FRAP) and catalase concentrations were decreased in the HS group. All these parameters remained unaffected by vitamins supplementation. Matrix metalloproteinase 9, antioxidant enzymes Cu/Zn SOD and glutathione peroxidase 1, and leukocytes’ intracellular superoxide production remained unchanged after the protocols in both HS and HS+C+E groups. Importantly, multiple regression analysis revealed that FRAP was the most powerful predictor of AChID, while PORH was strongly predicted by both FRAP and renin-angiotensin system activity. Hereby, we demonstrated that oxidative dis-balance has the pivotal role in HS diet-induced impairment of endothelial and microvascular function in healthy individuals which could be prevented by antioxidative vitamins consumption.
Collapse
Affiliation(s)
- Lidija Barić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department for Cardiovascular Disease, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
| | - Ines Mrakovčić-Šutić
- Department of Physiology and Immunology, Medical Faculty University of Rijeka, Ul. Braće Branchetta 20/1, HR-51000 Rijeka, Croatia;
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, Hr-31000 Osijek, Croatia; (L.B.); (I.D.); (M.M.); (A.M.); (M.S.); (L.K.); (Z.M.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, Hr-31000 Osijek, Croatia
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31-512-800
| |
Collapse
|
11
|
Kozina N, Mihaljević Z, Lončar MB, Mihalj M, Mišir M, Radmilović MD, Justić H, Gajović S, Šešelja K, Bazina I, Horvatić A, Matić A, Bijelić N, Rođak E, Jukić I, Drenjančević I. Impact of High Salt Diet on Cerebral Vascular Function and Stroke in Tff3-/-/C57BL/6N Knockout and WT (C57BL/6N) Control Mice. Int J Mol Sci 2019; 20:ijms20205188. [PMID: 31635131 PMCID: PMC6829871 DOI: 10.3390/ijms20205188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
High salt (HS) dietary intake leads to impaired vascular endothelium-dependent responses to various physiological stimuli, some of which are mediated by arachidonic acid (AA) metabolites. Transgenic Tff3−/− gene knockout mice (Tff3−/−/C57BL/6N) have changes in lipid metabolism which may affect vascular function and outcomes of stroke. We aimed to study the effects of one week of HS diet (4% NaCl) on vascular function and stroke induced by transient occlusion of middle cerebral artery in Tff3−/− and wild type (WT/C57BL/6N) mice. Flow-induced dilation (FID) of carotid artery was reduced in WT-HS mice, but not affected in Tff3−/−-HS mice. Nitric oxide (NO) mediated FID. NO production was decreased with HS diet. On the contrary, acetylcholine-induced dilation was significantly decreased in Tff3−/− mice on both diets and WT-HS mice. HS intake and Tff3 gene depletion affected the structural components of the vessels. Proteomic analysis revealed a significant effect of Tff3 gene deficiency on HS diet-induced changes in neuronal structural proteins and acute innate immune response proteins’ expression and Tff3 depletion, but HS diet did not increase the stroke volume, which is related to proteome modification and upregulation of genes involved mainly in cellular antioxidative defense. In conclusion, Tff3 depletion seems to partially impair vascular function and worsen the outcomes of stroke, which is moderately affected by HS diet.
Collapse
Affiliation(s)
- Nataša Kozina
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Zrinka Mihaljević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mirela Baus Lončar
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Martina Mihalj
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
- Clinical Hospital Center Osijek, Dept of Dermatology and Venerology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Marina Dobrivojević Radmilović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Helena Justić
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Srećko Gajović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Kate Šešelja
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Iva Bazina
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Anita Horvatić
- Proteomics laboratory, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 HR-10000 Zagreb, Croatia.
| | - Anita Matić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Nikola Bijelić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Edi Rođak
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ivana Jukić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ines Drenjančević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
12
|
Alba BK, Stanhewicz AE, Dey P, Bruno RS, Kenney WL, Alexander LM. Controlled Feeding of an 8-d, High-Dairy Cheese Diet Prevents Sodium-Induced Endothelial Dysfunction in the Cutaneous Microcirculation of Healthy, Older Adults through Reductions in Superoxide. J Nutr 2019; 150:55-63. [PMID: 31504721 PMCID: PMC8659358 DOI: 10.1093/jn/nxz205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND While excess dietary sodium impairs vascular function by increasing oxidative stress, the dietary incorporation of dairy foods improves vascular health. We demonstrated that single-meal cheese consumption ameliorates acute, sodium-induced endothelial dysfunction. However, controlled feeding studies examining the inclusion of cheese, a dairy product that contains both bioactive constituents and sodium, are lacking. OBJECTIVES We tested the hypothesis that microcirculatory endothelium-dependent dilation (EDD) would be impaired by a high-sodium diet, but a sodium-matched diet high in dairy cheese would preserve EDD through oxidant stress mechanisms. METHODS We gave 11 adults without salt-sensitive blood pressure (<10 mmHg Δ mean arterial pressure; 64 ± 2 y) 4 separate 8-d controlled dietary interventions in a randomized, crossover design: a low-sodium, no-dairy intervention (LNa; 1500 mg/d sodium); a low-sodium, high-cheese intervention (LNaC; 1500 mg/d sodium, 170 g/d cheese); a high-sodium, no-dairy intervention (HNa; 5500 mg/d sodium); and a high-sodium, high-cheese intervention (HNaC; 5500 mg/d sodium, 170 g/d cheese). On Day 8 of each diet, EDD was assessed through a localized infusion (intradermal microdialysis) of acetylcholine (ACh), both alone and during coinfusion of NG-nitro-L-arginine methyl ester (NO synthase inhibitor), L-ascorbate (nonspecific antioxidant), apocynin [NAD(P)H oxidase inhibitor], or tempol (superoxide scavenger). RESULTS Compared with LNa, microvascular responsiveness to ACh was attenuated during HNa (LNa: -4.82 ± 0.20 versus HNa: -3.21 ± 0.55 M logEC50; P = 0.03) but not LNaC (-5.44 ± 0.20 M logEC50) or HNaC (-4.46 ± 0.50 M logEC50). Further, ascorbate, apocynin, and tempol administration each increased ACh-induced vasodilation during HNa only (Ringer's: 38.9 ± 2.4; ascorbate: 48.0 ± 2.5; tempol: 45.3 ± 2.7; apocynin: 48.5 ± 2.6% maximum cutaneous vascular conductance; all P values < 0.01). CONCLUSIONS These results demonstrate that incorporating dairy cheese into a high-sodium diet preserves EDD by decreasing the concentration of superoxide radicals. Consuming sodium in cheese, rather than in nondairy sources of sodium, may be an effective strategy to reduce cardiovascular disease risk in salt-insensitive, older adults. This trial was registered at clinicaltrials.gov as NCT03376555.
Collapse
Affiliation(s)
- Billie K Alba
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA,Address correspondence to BKA (E-mail: )
| | - Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
13
|
Barić L, Drenjančević I, Matić A, Stupin M, Kolar L, Mihaljević Z, Lenasi H, Šerić V, Stupin A. Seven-Day Salt Loading Impairs Microvascular Endothelium-Dependent Vasodilation without Changes in Blood Pressure, Body Composition and Fluid Status in Healthy Young Humans. Kidney Blood Press Res 2019; 44:835-847. [PMID: 31430746 DOI: 10.1159/000501747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We aimed to assess whether a 7-day high-salt (HS) diet affects endothelium-dependent and/or endothelium-independent microvascular function in the absence of changes in arterial blood pressure (BP), and to determine whether such microvascular changes are associated with changes in body composition and fluid status in healthy young humans. MATERIALS AND METHODS Fifty-three young healthy individuals (28 women and 25 men) were assigned to a 7-day low-salt diet (<3.5 g salt/day) followed by a 7-day HS diet (∼14 g salt/day). Skin microvascular blood flow in response to iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) was assessed by laser Doppler flowmetry, and BP, heart rate (HR), plasma renin activity (PRA), serum aldosterone, serum and 24 h-urine sodium, potassium, urea and creatinine levels, together with body composition and fluid status measurement with a 4-terminal portable impedance analyzer were measured before and after diet protocols. RESULTS BP, HR, body composition and fluid status were unchanged, and PRA and serum aldosterone level were significantly suppressed after HS diet. ACh-induced dilation (AChID) was significantly impaired, while SNP-induced dilation was not affected by HS diet. Impaired AChID and increased salt intake, as well as impaired AChID and suppressed renin-angiotensin system were significantly positively correlated. Changes in body composition and fluid status parameters were not associated with impaired AChID. CONCLUSION 7-day HS diet impairs microvascular reactivity by affecting its endothelium-dependent vasodilation in young healthy individuals. Changes are independent of BP, body composition changes or fluid retention, but are the consequences of the unique effect of HS on endothelial function.
Collapse
Affiliation(s)
- Lidija Barić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department for Cardiovascular Disease, Osijek University Hospital, Osijek, Croatia
| | - Luka Kolar
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia, .,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia,
| |
Collapse
|
14
|
Ramick MG, Brian MS, Matthews EL, Patik JC, Seals DR, Lennon SL, Farquhar WB, Edwards DG. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans. Am J Physiol Heart Circ Physiol 2019; 317:H97-H103. [PMID: 31074652 PMCID: PMC6692730 DOI: 10.1152/ajpheart.00786.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
It has previously been shown that high dietary salt impairs vascular function independent of changes in blood pressure. Rodent studies suggest that NADPH-derived reactive oxygen species mediate the deleterious effect of high salt on the vasculature, and here we translate these findings to humans. Twenty-nine healthy adults (34 ± 2 yr) participated in a controlled feeding study. Participants completed 7 days of a low-sodium diet (LS; 20 mmol sodium/day) and 7 days of a high-sodium diet (HS; 300 mmol sodium/day) in random order. All participants were salt resistant, defined as a ≤5-mmHg change in 24-h mean BP determined while on the LS and HS diets. Laser Doppler flowmetry was used to assess cutaneous vasodilation in response to local heating (42°C) during local delivery of Ringer's (n = 29), 20 mM ascorbic acid (AA; n = 29), 10 µM Tempol (n = 22), and 100 µM apocynin (n = 22). Additionally, endothelial cells were obtained in a subset of participants from an antecubital vein and stained for nitrotyrosine (n = 14). Cutaneous vasodilation was attenuated by the HS diet compared with LS [LS 93.0 ± 2.2 vs. HS 86.8 ± 2.0 percentage of maximal cutaneous vascular conductance (%CVCmax); P < 0.05] and was restored by AA during the HS diet (AA 90.7 ± 1.2 %CVCmax; P < 0.05 vs. HS). Cutaneous vasodilation was also restored with the local infusion of both apocynin (P < 0.01) and Tempol (P < 0.05) on the HS diet. Nitrotyrosine expression was increased on the HS diet compared with LS (P < 0.05). These findings provide direct evidence of dietary sodium-induced endothelial cell oxidative stress and suggest that NADPH-derived reactive oxygen species contribute to sodium-induced declines in microvascular function. NEW & NOTEWORTHY High-sodium diets have deleterious effects on vascular function, likely mediating, in part, the increased cardiovascular risk associated with a high sodium intake. Local infusion of apocynin and Tempol improved microvascular function in salt-resistant adults on a high-salt diet, providing evidence that reactive oxygen species contribute to impairments in microvascular function from high salt. This study provides insight into the blood pressure-independent mechanisms by which dietary sodium impairs vascular function. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/dietary-sodium-oxidative-stress-and-microvascular-function/ .
Collapse
Affiliation(s)
- Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
- Department of Kinesiology, West Chester University , West Chester, Pennsylvania
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
- Department of Health and Human Performance, Plymouth State University , Plymouth, New Hampshire
| | - Evan L Matthews
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
- Department of Exercise Science and Physical Education, Montclair State University , Montclair, New Jersey
| | - Jordan C Patik
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder , Boulder, Colorado
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
15
|
Priestley JRC, Fink KE, McCord JM, Lombard JH. NRF2 activation with Protandim attenuates salt-induced vascular dysfunction and microvascular rarefaction. Microcirculation 2019; 26:e12575. [PMID: 31132190 DOI: 10.1111/micc.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
HYPOTHESIS This study tested the hypothesis that dietary activation of the master antioxidant and cell protective transcription factor nuclear factor, erythroid -2-like 2 (NRF2), protects against salt-induced vascular dysfunction by restoring redox homeostasis in the vasculature. METHODS Male Sprague-Dawley rats and Syrian hamsters were fed a HS (4.0% NaCl) diet containing ~60 mg/kg/day Protandim supplement for 2 weeks and compared to controls fed HS diet alone. RESULTS Protandim supplementation restoredendothelium-dependent vasodilation in response to acetylcholine (ACh) in middle cerebral arteries (MCA)of HS-fed rats and hamster cheek pouch arterioles, and increased microvessel density in the cremastermuscle of HS-fed rats. The restored dilation to ACh in MCA of Protandim-treated rats was prevented by inhibiting nitric oxide synthase (NOS) with L-NAME [100 μM] and was absent in MCA from Nrf2(-/-) knockout rats fed HS diet. Basilar arteries from HS-fed rats treated with Protandim exhibited significantly lower staining for mitochondrial oxidizing species than untreated animals fed HS diet alone; and Protandim treatment increased MnSOD (SOD2) protein expression in mesenteric arteries of HS-fed rats. CONCLUSIONS These results suggest that dietary activation of NRF2 protects against salt-induced vascular dysfunction, vascular oxidative stress, and microvascular rarefaction by upregulating antioxidant defenses and reducing mitochondrial ROS levels.
Collapse
Affiliation(s)
| | - Katie E Fink
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joe M McCord
- Division of Pulmonary Sciences and Critical Care Medicine Research, University of Colorado at Denver - Anschutz Medical Campus, Aurora, Colorado
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Excess sodium from dietary salt (NaCl) is linked to elevations in blood pressure (BP). However, salt sensitivity of BP varies widely between individuals and there are data suggesting that salt adversely affects target organs, irrespective of BP. RECENT FINDINGS High dietary salt has been shown to adversely affect the vasculature, heart, kidneys, skin, brain, and bone. Common mediators of the target organ dysfunction include heightened inflammation and oxidative stress. These physiological alterations may contribute to disease development over time. Despite the adverse effects of salt on BP and several organ systems, there is controversy surrounding lower salt intakes and cardiovascular outcomes. Our goal here is to review the physiology contributing to BP-independent effects of salt and address the controversy around lower salt intakes and cardiovascular outcomes. We will also address the importance of background diet in modulating the effects of dietary salt.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 South College Avenue, 201M, Newark, DE, 19713, USA.
| |
Collapse
|
17
|
Allen LA, Schmidt JR, Thompson CT, Carlson BE, Beard DA, Lombard JH. High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression. Microcirculation 2019; 26:e12518. [PMID: 30481399 DOI: 10.1111/micc.12518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/03/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES This study sought to determine whether salt-induced ANG II suppression contributes to impaired CBF autoregulation. METHODS Cerebral autoregulation was evaluated with LDF during graded reductions of blood pressure. Autoregulatory responses in rats fed HS (4% NaCl) diet vs LS (0.4% NaCl) diet were analyzed using linear regression analysis, model-free analysis, and a mechanistic theoretical model of blood flow through cerebral arterioles. RESULTS Autoregulation was intact in LS-fed animals as MAP was reduced via graded hemorrhage to approximately 50 mm Hg. Short-term (3 days) and chronic (4 weeks) HS diet impaired CBF autoregulation, as evidenced by progressive reductions of laser Doppler flux with arterial pressure reduction. Chronic low dose ANG II infusion (5 mg/kg/min, i.v.) restored CBF autoregulation between the pre-hemorrhage MAP and 50 mm Hg in rats fed short-term HS diet. Mechanistic-based model analysis showed a reduced myogenic response and reduced baseline VSM tone with short-term HS diet, which was restored by ANG II infusion. CONCLUSIONS Short-term and chronic HS diet lead to impaired autoregulation in the cerebral circulation, with salt-induced ANG II suppression as a major factor in the initiation of impaired CBF regulation.
Collapse
Affiliation(s)
- Linda A Allen
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James R Schmidt
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher T Thompson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Brian E Carlson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Daniel A Beard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Santisteban MM, Iadecola C. Hypertension, dietary salt and cognitive impairment. J Cereb Blood Flow Metab 2018; 38:2112-2128. [PMID: 30295560 PMCID: PMC6282225 DOI: 10.1177/0271678x18803374] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Dementia is growing at an alarming rate worldwide. Although Alzheimer disease is the leading cause, over 50% of individuals diagnosed with Alzheimer disease have vascular lesions at autopsy. There has been an increasing appreciation of the pathogenic role of vascular risk factors in cognitive impairment caused by neurodegeneration. Midlife hypertension is a leading risk factor for late-life dementia. Hypertension alters cerebrovascular structure, impairs the major factors regulating the cerebral microcirculation, and promotes Alzheimer pathology. Experimental studies have identified brain perivascular macrophages as the major free radical source mediating neurovascular dysfunction of hypertension. Recent evidence indicates that high dietary salt may also induce cognitive impairment. Contrary to previous belief, the effect is not necessarily associated with hypertension and is mediated by a deficit in endothelial nitric oxide. Collectively, the evidence suggests a remarkable cellular diversity of the impact of vascular risk factors on the cerebral vasculature and cognition. Whereas long-term longitudinal epidemiological studies are needed to resolve the temporal relationships between vascular risk factors and cognitive dysfunction, single-cell molecular studies of the vasculature in animal models will provide a fuller mechanistic understanding. This knowledge is critical for developing new preventive, diagnostic, and therapeutic approaches for these devastating diseases of the mind.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
19
|
Matic A, Jukic I, Stupin A, Baric L, Mihaljevic Z, Unfirer S, Tartaro Bujak I, Mihaljevic B, Lombard JH, Drenjancevic I. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. Am J Physiol Heart Circ Physiol 2018; 315:H718-H730. [DOI: 10.1152/ajpheart.00097.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to examine the effect of 1 wk of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries of male Sprague-Dawley rats ( n = 15–16 rats/group). Reduced FID in the HS group was restored by intake of the superoxide scavenger tempol (HS + tempol in vivo group). The nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester, cyclooxygenase inhibitor indomethacin, and selective inhibitor of microsomal cytochrome P-450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide significantly reduced FID in the low salt diet-fed group, whereas FID in the HS group was mediated by NO only. Cyclooxygenase-2 mRNA (but not protein) expression was decreased in the HS and HS + tempol in vivo groups. Hypoxia-inducible factor-1α and VEGF protein levels were increased in the HS group but decreased in the HS + tempol in vivo group. Assessment by direct fluorescence of middle cerebral arteries under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO dependent, in contrast to the low-salt diet-fed group, where FID is NO, prostanoid, and epoxyeicosatrienoic acid dependent. These changes were accompanied by increased lipid peroxidation products in the plasma of HS diet-fed rats, increased vascular superoxide/reactive oxygen species levels, and decreased NO levels, together with increased expression of hypoxia-inducible factor-1α and VEGF. NEW & NOTEWORTHY High-salt (HS) diet changes the mechanisms of flow-induced dilation in rat middle cerebral arteries from a combination of nitric oxide-, prostanoid-, and epoxyeicosatrienoic acid-dependent mechanisms to, albeit reduced, a solely nitric oxide-dependent dilation. In vivo reactive oxygen species scavenging restores flow-induced dilation in HS diet-fed rats and ameliorates HS-induced increases in the transcription factor hypoxia-inducible factor-1α and expression of its downstream target genes.
Collapse
Affiliation(s)
- Anita Matic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Lidija Baric
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Sanela Unfirer
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Branka Mihaljevic
- Radiation Chemistry and Dosimetry Laboratory, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Julian H. Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer of Osijek, Osijek, Croatia
| |
Collapse
|
20
|
Kumarasamy S, Waghulde H, Cheng X, Haller ST, Mell B, Abhijith B, Ashraf UM, Atari E, Joe B. Targeted disruption of regulated endocrine-specific protein ( Resp18) in Dahl SS/Mcw rats aggravates salt-induced hypertension and renal injury. Physiol Genomics 2018; 50:369-375. [PMID: 29570433 DOI: 10.1152/physiolgenomics.00008.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a classic example of a complex polygenic trait, impacted by quantitative trait loci (QTL) containing candidate genes thought to be responsible for blood pressure (BP) control in mammals. One such mapped locus is on rat chromosome 9, wherein the proof for a positional candidate gene, regulated endocrine-specific protein-18 ( Resp18) is currently inadequate. To ascertain the status of Resp18 as a BP QTL, a custom targeted gene disruption model of Resp18 was developed on the Dahl salt-sensitive (SS) background. As a result of this zinc-finger nuclease (ZFN)-mediated disruption, a 7 bp deletion occurred within exon 3 of the Resp18 locus. Targeted disruption of Resp18 gene locus in SS rats decreases its gene expression in both heart and kidney tissues regardless of their dietary salt level. Under a high-salt dietary regimen, both systolic and diastolic BP of Resp18mutant rats were significantly increased compared with SS rats. Resp18mutant rats demonstrated increased renal damage, as evidenced by higher proteinuria and increased renal fibrosis compared with SS rats. Furthermore, under a high-salt diet regimen, the mean survival time of Resp18mutant rats was significantly reduced compared with SS rats. These findings serve as evidence in support of Resp18 as a gene associated with the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Steven T Haller
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Medicine, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Basrur Abhijith
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Food, Agricultural and Biological Engineering, The Ohio State University , Columbus, Ohio
| | - Usman M Ashraf
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Ealla Atari
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| |
Collapse
|
21
|
Mazur A, Guernec A, Lautridou J, Dupas J, Dugrenot E, Belhomme M, Theron M, Guerrero F. Angiotensin Converting Enzyme Inhibitor Has a Protective Effect on Decompression Sickness in Rats. Front Physiol 2018; 9:64. [PMID: 29545754 PMCID: PMC5838564 DOI: 10.3389/fphys.2018.00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS), though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS) is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS. Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg), angiotensin-converting enzyme (ACE) inhibitor (enalapril; 10 mg/kg), and calcium-entry blocker (nifedipine; 20 mg/kg). The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6), angiotensin II (ANG II) and ACE. Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values. Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.
Collapse
Affiliation(s)
- Aleksandra Mazur
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Anthony Guernec
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Jacky Lautridou
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Julie Dupas
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Emmanuel Dugrenot
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - Michael Theron
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| | - François Guerrero
- EA4324 ORPHY, Institut Brestois Santé Agro Matière, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
22
|
Lukaszewicz KM, Paudyal MP, Falck JR, Lombard JH. Role of vascular reactive oxygen species in regulating cytochrome P450-4A enzyme expression in Dahl salt-sensitive rats. Microcirculation 2018; 23:540-548. [PMID: 27537772 DOI: 10.1111/micc.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The potential contribution of CYP4A enzymes to endothelial dysfunction in Dahl salt-sensitive rats was determined by comparison to SS-5BN consomic rats having chromosome 5 carrying CYP4A alleles from the BN rat introgressed into the SS genetic background. METHODS The following experiments were performed in cerebral arteries from HS-fed SS and SS-5BN rats ± the SOD inhibitor DETC and/or the superoxide scavenger Tempol: (i) endothelial function was determined via video microscopy ± acute addition of the CYP4A inhibitor DDMS or Tempol; (ii) vascular oxidative stress was assessed with DHE fluorescence ± acute addition of DDMS, l-NAME, or PEG-SOD; and (iii) CYP4A protein levels were compared by western blotting. RESULTS In DETC-treated SS-5BN and HS-fed SS rats, (i) DDMS or Tempol ameliorated vascular dysfunction, (ii) DDMS reduced vascular oxidative stress to control levels, (iii) chronic Tempol treatment reduced vascular CYP4A protein expression, and (iv) combined treatment with Tempol and l-NAME prevented the reduction in CYP4A protein expression in MCA of HS-fed SS rats. CONCLUSION The CYP4A pathway plays a role in vascular dysfunction in SS rats and there appears to be a direct role of reduced NO availability due to salt-induced oxidant stress in upregulating CYP4A enzyme expression.
Collapse
Affiliation(s)
| | - Mahesh P Paudyal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Robinson AT, Fancher IS, Sudhahar V, Bian JT, Cook MD, Mahmoud AM, Ali MM, Ushio-Fukai M, Brown MD, Fukai T, Phillips SA. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. Am J Physiol Heart Circ Physiol 2017; 312:H896-H906. [PMID: 28235790 DOI: 10.1152/ajpheart.00684.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/01/2017] [Accepted: 02/17/2017] [Indexed: 01/04/2023]
Abstract
High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm2) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H2O2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature.NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide dismutase (SOD) and demonstrate less sensitivity to ANG II. In microvascular endothelial cells, shear stress reduced NOX II but did not influence SOD expression.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois; .,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S Fancher
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Varadarajan Sudhahar
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Jing Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Marc D Cook
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Abeer M Mahmoud
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Mohamed M Ali
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Masuko Ushio-Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois.,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Tohru Fukai
- Departments of Medicine (Section of Cardiology) and Pharmacology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois; .,Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
24
|
Cosic A, Jukic I, Stupin A, Mihalj M, Mihaljevic Z, Novak S, Vukovic R, Drenjancevic I. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet. J Physiol 2016; 594:4917-31. [PMID: 27061200 DOI: 10.1113/jp272297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. ABSTRACT The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values.
Collapse
Affiliation(s)
- Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Rosemary Vukovic
- Department of Biology, J. J. Strossmayer University of Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
25
|
Boegehold MA, Drenjancevic I, Lombard JH. Salt, Angiotensin II, Superoxide, and Endothelial Function. Compr Physiol 2015; 6:215-54. [PMID: 26756632 DOI: 10.1002/cphy.c150008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proper function of the vascular endothelium is essential for cardiovascular health, in large part due to its antiproliferative, antihypertrophic, and anti-inflammatory properties. Crucial to the protective role of the endothelium is the production and liberation of nitric oxide (NO), which not only acts as a potent vasodilator, but also reduces levels of reactive oxygen species, including superoxide anion (O2•-). Superoxide anion is highly injurious to the vasculature because it not only scavenges NO molecules, but has other damaging effects, including direct oxidative disruption of normal signaling mechanisms in the endothelium and vascular smooth muscle cells. The renin-angiotensin system plays a crucial role in the maintenance of normal blood pressure. This function is mediated via the peptide hormone angiotensin II (ANG II), which maintains normal blood volume by regulating Na+ excretion. However, elevation of ANG II above normal levels increases O2•- production, promotes oxidative stress and endothelial dysfunction, and plays a major role in multiple disease conditions. Elevated dietary salt intake also leads to oxidant stress and endothelial dysfunction, but these occur in the face of salt-induced ANG II suppression and reduced levels of circulating ANG II. While the effects of abnormally high levels of ANG II have been extensively studied, far less is known regarding the mechanisms of oxidant stress and endothelial dysfunction occurring in response to chronic exposure to abnormally low levels of ANG II. The current article focuses on the mechanisms and consequences of this less well understood relationship among salt, superoxide, and endothelial function.
Collapse
Affiliation(s)
| | - Ines Drenjancevic
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Priestley JRC, Kautenburg KE, Casati MC, Endres BT, Geurts AM, Lombard JH. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. Am J Physiol Heart Circ Physiol 2015; 310:H478-87. [PMID: 26637559 DOI: 10.1152/ajpheart.00586.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/26/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like-2 (NRF2) is a master antioxidant and cell protective transcription factor that upregulates antioxidant defenses. In this study we developed a strain of Nrf2 null mutant rats to evaluate the role of reduced NRF2-regulated antioxidant defenses in contributing to endothelial dysfunction and impaired angiogenic responses during salt-induced ANG II suppression. Nrf2(-/-) mutant rats were developed using transcription activator-like effector nuclease technology in the Sprague-Dawley genetic background, and exhibited a 41-bp deletion that included the start codon for Nrf2 and an absence of immunohistochemically detectable NRF2 protein. Expression of mRNA for the NRF2-regulated indicator enzymes heme oxygenase-1, catalase, superoxide dismutase 1, superoxide dismutase 2, and glutathione reductase was significantly lower in livers of Nrf2(-/-) mutant rats fed high salt (HS; 4% NaCl) for 2 wk compared with wild-type controls. Endothelium-dependent dilation to acetylcholine was similar in isolated middle cerebral arteries (MCA) of Nrf2(-/-) mutant rats and wild-type littermates fed low-salt (0.4% NaCl) diet, and was eliminated by short-term (3 days) HS diet in both strains. Low-dose ANG II infusion (100 ng/kg sc) reversed salt-induced endothelial dysfunction in MCA and prevented microvessel rarefaction in wild-type rats fed HS diet, but not in Nrf2(-/-) mutant rats. The results of this study indicate that suppression of NRF2 antioxidant defenses plays an essential role in the development of salt-induced oxidant stress, endothelial dysfunction, and microvessel rarefaction in normotensive rats and emphasize the potential therapeutic benefits of directly upregulating NRF2-mediated antioxidant defenses to ameliorate vascular oxidant stress in humans.
Collapse
Affiliation(s)
| | - Katie E Kautenburg
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW High dietary salt intake is detrimental in hypertensive and salt-sensitive individuals; however, there are a large number of normotensive salt-resistant individuals for whom dietary salt may also be harmful as a result of the blood pressure-independent effects of salt. This review will focus on the growing evidence that salt has adverse effects on the vasculature, independent of blood pressure. RECENT FINDINGS Data from both animal and human studies provide evidence that salt impairs endothelial function and increases arterial stiffness, independent of blood pressure. High dietary salt results in oxidative stress and increased endothelial cell stiffness, which impair endothelial function, whereas transforming growth factor beta promotes increased arterial stiffness in the presence of endothelial dysfunction. SUMMARY Health policies and most clinical research are focused on the adverse effects of dietary salt on blood pressure; however, there is an increasing body of evidence to support a deleterious effect of dietary salt on endothelial function and arterial stiffness independent of blood pressure. Endothelial dysfunction and increased arterial stiffness are predictors of cardiovascular disease; therefore, reducing excess dietary salt should be considered important for overall vascular health in addition to blood pressure.
Collapse
|
28
|
Campeiro JD, Neshich IP, Sant’Anna OA, Lopes R, Ianzer D, Assakura MT, Neshich G, Hayashi MA. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain – Potential BPP-like precursor protein? Biochem Pharmacol 2015; 96:202-15. [DOI: 10.1016/j.bcp.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
29
|
FMRI and fcMRI phenotypes map the genomic effect of chromosome 13 in Brown Norway and Dahl salt-sensitive rats. Neuroimage 2014; 90:403-12. [DOI: 10.1016/j.neuroimage.2013.09.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023] Open
|
30
|
Zimnicka AM, Tang H, Guo Q, Kuhr FK, Oh MJ, Wan J, Chen J, Smith KA, Fraidenburg DR, Choudhury MSR, Levitan I, Machado RF, Kaplan JH, Yuan JXJ. Upregulated copper transporters in hypoxia-induced pulmonary hypertension. PLoS One 2014; 9:e90544. [PMID: 24614111 PMCID: PMC3948681 DOI: 10.1371/journal.pone.0090544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.
Collapse
Affiliation(s)
- Adriana M. Zimnicka
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Haiyang Tang
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Qiang Guo
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Frank K. Kuhr
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Myung-Jin Oh
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Wan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jiwang Chen
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kimberly A. Smith
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dustin R. Fraidenburg
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Moumita S. R. Choudhury
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Irena Levitan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roberto F. Machado
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jason X.-J. Yuan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Beyer AM, Fredrich K, Lombard JH. AT1 receptors prevent salt-induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney-1 clip hypertensive rats. Am J Hypertens 2013; 26:1398-404. [PMID: 23934707 DOI: 10.1093/ajh/hpt129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Elevated blood pressure, elevated angiotensin II (ANG II), and ANG II suppression with high salt (HS) diet all contribute to vascular dysfunction. This study investigated the interplay of HS diet and vascular function in a high renin model of hypertension. METHODS Male Sprague-Dawley rats were subjected to 2 kidney-1 clip (2K1C) Goldblatt hypertension for 4 weeks and compared with sham-operated controls. RESULTS Middle cerebral arteries (MCA) of 2K1C rats and sham-operated controls fed normal salt (NS; 0.4% NaCl) diet dilated in response to acetylcholine (ACh) and reduced partial pressure of oxygen (PO2). Switching to HS (4% NaCl) diet for 3 days to reduce plasma renin activity (PRA) eliminated vasodilation to ACh and reduced PO2 in sham-operated controls, with no effect on vasodilation in 2K1C rats. AT1 receptor blockade (losartan, 20 mg/kg/day; 1 week) eliminated vasodilator responses to ACh and reduced PO2 in 2K1C rats fed NS or HS diet. ANG II infusion (5 ng/kg/min, intravenous) for 3 days to prevent salt-induced reductions in plasma ANG II restored vascular relaxation in MCA of sham-operated controls fed HS diet. Copper/zinc superoxide dismutase expression and total superoxide dismutase activity were significantly higher in arteries of 2K1C rats fed HS diet vs. sham-operated controls. CONCLUSIONS These results suggest that the sustained effects of elevated ANG II levels in 2K1C hypertension maintain endothelium-dependent vasodilatation via AT1 receptor-mediated preservation of antioxidant defense mechanisms despite significant elevations in blood pressure and salt-induced suppression of PRA.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | |
Collapse
|
32
|
Boegehold MA. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension. J Vasc Res 2013; 50:458-67. [PMID: 24192502 DOI: 10.1159/000355270] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Within the last 25 years, it has become increasingly clear that high dietary salt intake represents a risk factor for the development of cardiovascular disease that is independent of its well-known ability to increase arterial pressure in some individuals. Studies in normotensive experimental animals and human subjects have revealed that a key feature of this pressure-independent effect of dietary salt is a profound reduction in vascular nitric oxide (NO) bioavailability that limits endothelium-dependent dilation. This reduction in NO is strongly associated with increased levels of reactive oxygen species (ROS) generated by NAD(P)H oxidase, xanthine oxidase or uncoupled endothelial NO synthase within the vascular wall, leading not only to scavenging of NO but also to disruption of some signaling pathways that mediate its production. The mechanistic link between high salt intake and elevated levels of enzymatically generated ROS in the peripheral vasculature is not clear, but a reduction in circulating angiotensin II may play a key role in this regard. Additional studies are needed to further elucidate the mechanisms, both at the systemic level and within the vascular wall, that trigger these salt-induced deficits in endothelial function, and to further clarify how the attendant loss of NO may disrupt tissue blood flow regulation and ultimately lead to adverse cardiovascular events.
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, W.Va., USA
| |
Collapse
|
33
|
Priestley JRC, Buelow MW, McEwen ST, Weinberg BD, Delaney M, Balus SF, Hoeppner C, Dondlinger L, Lombard JH. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. Microvasc Res 2013; 89:134-45. [PMID: 23628292 PMCID: PMC3758804 DOI: 10.1016/j.mvr.2013.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/19/2013] [Accepted: 04/18/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVES We investigated the effect of suppressing plasma angiotensin II (ANG II) levels on arteriolar relaxation in the hamster cheek pouch. METHODS Arteriolar diameters were measured via television microscopy during short-term (3-6days) high salt (HS; 4% NaCl) diet and angiotensin converting enzyme (ACE) inhibition with captopril (100mg/kg/day). RESULTS ACE inhibition and/or HS diet eliminated endothelium-dependent arteriolar dilation to acetylcholine, endothelium-independent dilation to the NO donor sodium nitroprusside, the prostacyclin analogs carbacyclin and iloprost, and the KATP channel opener cromakalim; and eliminated arteriolar constriction during KATP channel blockade with glibenclamide. Scavenging of superoxide radicals and low dose ANG II infusion (25ng/kg/min, subcutaneous) reduced oxidant stress and restored arteriolar dilation in arterioles of HS-fed hamsters. Vasoconstriction to topically-applied ANG II was unaffected by HS diet while arteriolar responses to elevation of superfusion solution PO2 were unaffected (5% O2, 10% O2) or reduced (21% O2) by HS diet. CONCLUSIONS These findings indicate that sustained exposure to low levels of circulating ANG II leads to widespread dysfunction in endothelium-dependent and independent vascular relaxation mechanisms in cheek pouch arterioles by increasing vascular oxidant stress, but does not potentiate O2- or ANG II-induced constriction of arterioles in the distal microcirculation of normotensive hamsters.
Collapse
|