1
|
Carullo N, Fabiano G, D'Agostino M, Zicarelli MT, Musolino M, Presta P, Michael A, Andreucci M, Bolignano D, Coppolino G. New Insights on the Role of Marinobufagenin from Bench to Bedside in Cardiovascular and Kidney Diseases. Int J Mol Sci 2023; 24:11186. [PMID: 37446363 DOI: 10.3390/ijms241311186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Marinobufagenin (MBG) is a member of the bufadienolide family of compounds, which are natural cardiac glycosides found in a variety of animal species, including man, which have different physiological and biochemical functions but have a common action on the inhibition of the adenosine triphosphatase sodium-potassium pump (Na+/K+-ATPase). MBG acts as an endogenous cardiotonic steroid, and in the last decade, its role as a pathogenic factor in various human diseases has emerged. In this paper, we have collated major evidence regarding the biological characteristics and functions of MBG and its implications in human pathology. This review focused on MBG involvement in chronic kidney disease, including end-stage renal disease, cardiovascular diseases, sex and gender medicine, and its actions on the nervous and immune systems. The role of MBG in pathogenesis and the development of a wide range of pathological conditions indicate that this endogenous peptide could be used in the future as a diagnostic biomarker and/or therapeutic target, opening important avenues of scientific research.
Collapse
Affiliation(s)
- Nazareno Carullo
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Fabiano
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario D'Agostino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Michela Musolino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierangela Presta
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Ashour Michael
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Renal Unit, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI. Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 2023; 24:ijms24031881. [PMID: 36768203 PMCID: PMC9915382 DOI: 10.3390/ijms24031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Being initially described as a factor of virally-induced leukemias, Fli1 (Friend leukemia integration 1) has attracted considerable interest lately due to its role in both healthy physiology and a variety of pathological conditions. Over the past few years, Fli1 has been found to be one of the crucial regulators of normal hematopoiesis, vasculogenesis, and immune response. However, abnormal expression of Fli1 due to genetic predisposition, epigenetic reprogramming (modifications), or environmental factors is associated with a few diseases of different etiology. Fli1 hyperexpression leads to malignant transformation of cells and progression of cancers such as Ewing's sarcoma. Deficiency in Fli1 is implicated in the development of systemic sclerosis and hypertensive disorders, which are often accompanied by pronounced fibrosis in different organs. This review summarizes the initial findings and the most recent advances in defining the role of Fli1 in diseases of different origin with emphasis on its pro-fibrotic potential.
Collapse
Affiliation(s)
- Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | | | - Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| |
Collapse
|
3
|
Chen X, Wu H, Huang S. Excessive Sodium Intake Leads to Cardiovascular Disease by Promoting Sex-Specific Dysfunction of Murine Heart. Front Nutr 2022; 9:830738. [PMID: 35845798 PMCID: PMC9285006 DOI: 10.3389/fnut.2022.830738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Globally, a high-salt diet (HSD) has become a threat to human health as it can lead to a high risk of cardiac damage. Although some studies investigating HSD have been carried out, the majority has been conducted in males, and there are few female-specific studies, thereby ignoring any effects of sex-specific damage on the heart. In this study, we determined how HSD induces different pathways of cardiovascular diseases through sex-specific effects on cardiac damage in mice. Methods An HSD murine model of male and female C57BL/6J mice was fed with sodium-rich chow (4% NaCl). After 8 weeks, cardiac tissues were collected, and the whole gene transcriptome of the hearts of male and female mice was characterized and analyzed using high-throughput RNA sequencing. Immunohistochemistry staining was used to further assess the harmful effects of HSD on protein expression of genes associated with immunity, fibrosis, and apoptosis in male and female mice. Results HSD drastically altered the cardiac transcriptome compared to that of the normal heart in both male and female mice and had a sex-specific effect on the cardiac composition in the transcriptome. HSD produced various differentially expressed genes and affected different KEGG pathways of the transcriptome in male and female mice. Furthermore, we found that HSD induced different pathways of cardiovascular disease in the male mice and female mice. The pathway of hypertrophic cardiomyopathy is significantly enriched in HSD-treated male mice, while the pathway of dilated cardiomyopathy is significantly enriched in HSD-treated female mice. Finally, metabolism, immunity, fibrosis, and apoptosis in the mouse heart showed sex-specific changes predicting cardiac damage. Conclusion Our results demonstrate that HSD adversely impacts cardiac structure and function by affecting the metabolism, immunity, fibrosis, and apoptosis in the murine heart and induces the mouse to suffer from sex-specific cardiovascular disease. This study provides a new perspective and basis for the differences in the pharmacology and interventional treatment of sex-specific cardiovascular diseases induced by HSD in men and women.
Collapse
Affiliation(s)
- Xiuli Chen
- Obstetrical Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiying Wu
- Obstetrical Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shenzhen Huang
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- Haiying Wu
| |
Collapse
|
4
|
Grigorova YN, Juhasz O, Long JM, Zernetkina VI, Hall ML, Wei W, Morrell CH, Petrashevskaya N, Morrow A, LaNasa KH, Bagrov AY, Rapp PR, Lakatta EG, Fedorova OV. Effect of Cardiotonic Steroid Marinobufagenin on Vascular Remodeling and Cognitive Impairment in Young Dahl-S Rats. Int J Mol Sci 2022; 23:4563. [PMID: 35562955 PMCID: PMC9101263 DOI: 10.3390/ijms23094563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.
Collapse
Affiliation(s)
- Yulia N. Grigorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Ondrej Juhasz
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Valentina I. Zernetkina
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Mikayla L. Hall
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Wen Wei
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Natalia Petrashevskaya
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Audrey Morrow
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Katherine H. LaNasa
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Olga V. Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| |
Collapse
|
5
|
Sankrityayan H, Kale A, Gaikwad AB. Inhibition of endoplasmic reticulum stress combined with activation of angiotensin-converting enzyme 2: novel approach for the prevention of endothelial dysfunction in type 1 diabetic rats. Can J Physiol Pharmacol 2022; 100:234-239. [PMID: 34587465 DOI: 10.1139/cjpp-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Persistent hyperglycemia in type 1 diabetes triggers numerous signaling pathways, which may prove deleterious to the endothelium. As hyperglycemia damages the endothelial layer via multiple signaling pathways, including enhanced oxidative stress, downregulation of angiotensin-converting enzyme 2 signaling, and exacerbation of endoplasmic reticulum (ER) stress, it becomes difficult to prevent injury using monotherapy. Thus, the present study was conceived to evaluate the combined effect of ER stress inhibition along with angiotensin-converting enzyme 2 activation, two major contributors to hyperglycemia-induced endothelial dysfunction, in preventing endothelial dysfunction associated with type 1 diabetes. Streptozotocin-induced diabetic animals were treated with either diminazene aceturate (5 mg·kg-1 per day, p.o.) or tauroursodeoxycholic acid, sodium salt (200 mg·kg-1 per day i.p.), or both for 4 weeks. Endothelial dysfunction was evaluated using vasoreactivity assay, where acetylcholine-induced relaxation was assessed in phenylephrine pre-contracted rings. Combination therapy significantly improved vascular relaxation when compared with diabetic control as well as monotherapy. Restoration of nitrite levels along with prevention of collagen led to improved vasodilatation. Moreover, there was an overall reduction in aortic oxidative stress. We conclude that by simultaneously inhibiting ER stress and activating angiotensin-converting enzyme 2 deleterious effects of hyperglycemia on endothelium were significantly alleviated. This could serve as a novel strategy for the prevention of endothelial dysfunction.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
6
|
Słabiak-Błaż N, Piecha G. Endogenous Mammalian Cardiotonic Steroids-A New Cardiovascular Risk Factor?-A Mini-Review. Life (Basel) 2021; 11:life11080727. [PMID: 34440471 PMCID: PMC8398695 DOI: 10.3390/life11080727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
The role of endogenous mammalian cardiotonic steroids (CTS) in the physiology and pathophysiology of the cardiovascular system and the kidneys has interested researchers for more than 20 years. Cardiotonic steroids extracted from toads or plants, such as digitalis, have been used to treat heart disease since ancient times. CTS, also called endogenous digitalis-like factors, take part in the regulation of blood pressure and sodium homeostasis through their effects on the transport enzyme called sodium–potassium adenosine triphosphatase (Na/K-ATPase) in renal and cardiovascular tissue. In recent years, there has been increasing evidence showing deleterious effects of CTS on the structure and function of the heart, vasculature and kidneys. Understanding the role of CTS may be useful in the development of potential new therapeutic strategies.
Collapse
|
7
|
Cardiotonic Steroids Induce Vascular Fibrosis Via Pressure-Independent Mechanism in NaCl-Loaded Diabetic Rats. J Cardiovasc Pharmacol 2020; 74:436-442. [PMID: 31415452 DOI: 10.1097/fjc.0000000000000730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endogenous cardiotonic steroid, marinobufagenin (MBG), induces Fli1-dependent tissue fibrosis. We hypothesized that an increase in MBG initiates the development of aortic fibrosis in salt-loaded rats with type 2 diabetes mellitus (DM2) via pressure-independent mechanism. DM2 was induced by a single intraperitoneal administration of 65 mg/kg streptozotocin to neonatal (4-5 days) male Wistar rats. Eight-week-old DM2 rats received water or 1.8% NaCl (DM-NaCl) solution for 4 weeks (n = 16); half of DM-NaCl rats were treated with anti-MBG monoclonal antibody (mAb) (DM-NaCl-AB) during week 4 of salt loading; control intact rats received water (n = 8/group). Blood pressure, MBG, erythrocyte Na/K-ATPase activity, aortic weights, levels of fibrosis markers (Fli1, protein kinase Cδ, transforming growth factor-β1, receptors of the transforming growth factor beta5, fibronectin, collagen-1), and sensitivity of the aortic explants to the vasorelaxant effect of sodium nitroprusside were assessed. No changes in systolic blood pressure were observed while erythrocyte Na/K-ATPase was inhibited by 30%, plasma MBG was doubled, and aortic markers of fibrosis became elevated in DM-NaCl rats versus control. Treatment of DM-NaCl rats with anti-MBG mAb activated Na/K-ATPase, prevented increases in aortic weights, and the levels of fibrosis markers returned to the control levels. The responsiveness of the aortic rings from DM-NaCl rats to the relaxant effect of sodium nitroprusside was reduced (half maximal effective concentration (EC50) = 29 nmol/L) versus control rings (EC50 = 7 nmol/L) and was restored by anti-MBG mAb (EC50 = 9 nmol/L). Our results suggest that in salt-loaded diabetic rats, MBG stimulates aortic collagen synthesis in a pressure-independent fashion and that 2 profibrotic mechanisms, Fli1 dependent and transforming growth factor-β dependent, underlie its effects.
Collapse
|
8
|
Mmopi KN, Norton GR, Bello H, Libhaber C, Masiu M, Da Silva Fernandes D, Sareli P, Peterson V, Woodiwiss AJ. Increased Aortic Characteristic Impedance Explains Relations Between Urinary Na
+
/K
+
and Pulse or Systolic Blood Pressure. Hypertension 2020; 75:1260-1270. [DOI: 10.1161/hypertensionaha.119.14563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in sodium (Na
+
) relative to potassium (K
+
) intake increase systolic blood pressure, effects in-part attributed to enhanced pulsatile loads (pulse pressure) beyond steady-state pressures (mean arterial pressure). Whether this effect is through reversible changes (increases in blood volume and hence aortic flow [Q] or wave reflection [Pb]), or potentially irreversible structural changes in the proximal aorta, is unknown. In 581 black South Africans, we determined 24-hour urinary Na
+
and K
+
excretion and aortic function from central aortic pressure (radial pulse wave analysis [SphygmoCor software]), velocity, and diameter measurements. Proximal aortic function was assessed from characteristic impedance (Zc). Beyond mean arterial pressure and additional confounders, urinary Na
+
/K
+
was independently associated with Zc (
P
<0.005) but not peak aortic Q (
P
=0.30) or alternative aspects of Q or ejection volume. Although age was strongly associated with proximal aortic diameter, no independent relations between urinary Na
+
/K
+
and aortic diameter were noted (
P
=0.17). Relations between urinary Na
+
/K
+
and Zc translated into independent relations with early systolic compression wave pressures (QxZc [P
QxZc
]) and aortic forward wave pressures but not Pb. Moreover, neither reflected wave magnitude (
P
=0.92) nor aortic pulse wave velocity were independently associated with urinary Na
+
/K
+
. In product of coefficient mediation analysis, the independent relations between urinary Na
+
/K
+
and peak aortic or brachial pulse pressure or systolic blood pressure were accounted for by Zc and P
QxZc
. In conclusion, abnormalities in Na
+
/K
+
intake determine pulse pressure or systolic blood pressure beyond mean arterial pressure mainly through potentially irreversible impacts on proximal aortic impedance rather than readily modifiable increases in aortic flow (blood volume) or wave reflection.
Collapse
Affiliation(s)
- Keneilwe N. Mmopi
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R. Norton
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hamza Bello
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carlos Libhaber
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohlabani Masiu
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Da Silva Fernandes
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pinhas Sareli
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vernice Peterson
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela J. Woodiwiss
- From the Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Zhang Y, Wei W, Shilova V, Petrashevskaya NN, Zernetkina VI, Grigorova YN, Marshall CA, Fenner RC, Lehrmann E, Wood WH, Becker KG, Lakatta EG, Bagrov AY, Fedorova OV. Monoclonal Antibody to Marinobufagenin Downregulates TGFβ Profibrotic Signaling in Left Ventricle and Kidney and Reduces Tissue Remodeling in Salt-Sensitive Hypertension. J Am Heart Assoc 2019; 8:e012138. [PMID: 31576777 PMCID: PMC6818028 DOI: 10.1161/jaha.119.012138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Elevated levels of an endogenous Na/K-ATPase inhibitor marinobufagenin accompany salt-sensitive hypertension and are implicated in cardiac fibrosis. Immunoneutralization of marinobufagenin reduces blood pressure in Dahl salt-sensitive (Dahl-S) rats. The effect of the anti-marinobufagenin monoclonal antibody on blood pressure, left ventricular (LV) and renal remodeling, and gene expression were investigated in hypertensive Dahl-S rats. Methods and Results Dahl-S rats were fed high NaCl (8%, HS; n=14) or low NaCl (0.1%, LS; n=14) diets for 8 weeks. Animals were administered control antibody (LS control antibody, LSC; HS control antibody, HSC; n=7 per group) or anti-marinobufagenin antibody once on week 7 of diet intervention (n=7 per group). Levels of marinobufagenin, LV, and kidney mRNAs and proteins implicated in profibrotic signaling were assessed. Systolic blood pressure was elevated (211±8 versus 133±3 mm Hg, P<0.01), marinobufagenin increased 2-fold in plasma (P<0.05) and 5-fold in urine (P<0.01), LV and kidney weights increased, and levels of LV collagen-1 rose 3.5-fold in HSC versus LSC. Anti-marinobufagenin antibody treatment decreased systolic blood pressure by 24 mm Hg (P<0.01) and reduced organ weights and level of LV collagen-1 (P<0.01) in hypertensive Dahl salt-sensitive rats with anti-marinobufagenin antibody versus HSC. The expression of genes related to transforming growth factor-β-dependent signaling was upregulated in the left ventricles and kidneys in HSC versus LSC groups and became downregulated following administration of anti-marinobufagenin antibody to hypertensive Dahl-S rats. Marinobufagenin also activated transforming growth factor-β signaling in cultured ventricular myocytes from Dahl-S rats. Conclusions Immunoneutralization of heightened marinobufagenin levels in hypertensive Dahl-S rats resulted in a downregulation of genes implicated in transforming growth factor-β pathway, which indicates that marinobufagenin is an activator of profibrotic transforming growth factor-β-dependent signaling in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yongqing Zhang
- Laboratory of Genetics and Genomics National Institute on Aging NIH Baltimore MD
| | - Wen Wei
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Victoria Shilova
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | | | | | - Yulia N Grigorova
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Courtney A Marshall
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Rachel C Fenner
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics National Institute on Aging NIH Baltimore MD
| | - William H Wood
- Laboratory of Genetics and Genomics National Institute on Aging NIH Baltimore MD
| | - Kevin G Becker
- Laboratory of Genetics and Genomics National Institute on Aging NIH Baltimore MD
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Alexei Y Bagrov
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science National Institute on Aging NIH Baltimore MD
| |
Collapse
|
10
|
Abstract
Myofibroblast activation is a critical process in the pathogenesis of tissue fibrosis accounting for 45% of all deaths. No effective therapies are available for the treatment of fibrotic diseases. We focus our mini-review on recent data showing that cardiotonic steroids (CTS) that are known as potent inhibitors of Na+,K+-ATPase affect myofibroblast differentiation in a cell type-specific manner. In cultured human lung fibroblasts (HLF), epithelial cells, and cancer-associated fibroblasts, CTS blocked myofibroblast differentiation triggered by profibrotic cytokine TGF-β. In contrast, in the absence of TGF-β, CTS augmented myofibroblast differentiation of cultured cardiac fibroblasts. The cell type-specific action of CTS in myofibroblast differentiation is consistent with data obtained in in vivo studies. Thus, infusion of ouabain via osmotic mini-pumps attenuated the development of lung fibrosis in bleomycintreated mice, whereas marinobufagenin stimulated renal and cardiac fibrosis in rats with experimental renal injury. In TGF-β-treated HLF, suppression of myofibroblast differentiation by ouabain is mediated by elevation of the [Na+]i/[K+]i ratio and is accompanied by upregulation of cyclooxygenase COX-2 and downregulation of TGF-β receptor TGFBR2. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger, suggesting a key role of [Ca2+]i-mediated signaling. What is the relative impact in tissue fibrosis of [Na+]i,[K+]iindependent signaling documented in several types of CTS-treated cells? Do the different conformational transitions of Na+,K+-ATPase α1 subunit in the presence of ouabain and marinobufagenin contribute to their distinct involvement in myofibroblast differentiation? Additional experiments should be done to answer these questions and to develop novel pharmacological approaches for the treatment of fibrosis-related disorders.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, Russian Federation
| | - Jennifer La
- Department of Medicine, The University of Chicago, IL, United States
| | | | - Nickolai O. Dulin
- Department of Medicine, The University of Chicago, IL, United States
| |
Collapse
|
11
|
Keppel MH, Piecha G, März W, Cadamuro J, Auer S, Felder TK, Mrazek C, Oberkofler H, Trummer C, Grübler MR, Schwetz V, Verheyen N, Pandis M, Borzan V, Haschke-Becher E, Tomaschitz A, Pilz S. The endogenous cardiotonic steroid Marinobufagenin and decline in estimated glomerular filtration rate at follow-up in patients with arterial hypertension. PLoS One 2019; 14:e0212973. [PMID: 30817774 PMCID: PMC6394930 DOI: 10.1371/journal.pone.0212973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/12/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Marinobufagenin (MBG) is an endogenous cardiotonic steroid (CTS) that inhibits the Na+/K+-ATPase. Human MBG is significantly increased in end-stage renal disease and immunization against MBG attenuates cardiovascular fibrosis in a rat model of uremic cardiomyopathy. Mineralocorticoid antagonists (MRA) block MBG binding sites and decrease proteinuria in chronic kidney disease (CKD) patients. We therefore aimed to investigate the association of MBG and albuminuria, as a marker of renal damage, as well as MBG and decline of glomerular filtration rate (GFR). METHODS The Graz endocrine causes of hypertension (GECOH) study is a single center study of adults routinely referred for screening of endocrine hypertension. Plasma MBG was measured by an enzyme-linked immunoassay, and in a post-hoc analysis, follow-up creatinine levels were obtained. Patients with proteinuria >3.5g/day at baseline were excluded from further evaluation. RESULTS We measured MBG concentrations in 40 hypertensive subjects and excluded one patient due to pre-existing proteinuria. Plasma MBG was significantly correlated with albuminuria (Spearman ρ = .357; p = .028) and proteinuria (ρ = .336; p = .039). In linear regression analysis, the association remained significant after adjustment for age, sex, and BMI (β = .306; p = .036), and for mean systolic blood pressure (β = .352; p = .034). In follow-up analyses (N = 30), MBG was significantly associated with decline in GFR after adjustment for time-to-follow-up (β = -.374; p = .042). CONCLUSION The findings suggest that MBG plasma concentrations were associated with albuminuria as well as decline in kidney function. Whether MBG predicts hard renal endpoints warrants further investigations.
Collapse
Affiliation(s)
- Martin H. Keppel
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Winfried März
- Synlab Academy, Mannheim, Germany
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical, University of Graz, Graz, Austria
| | - Janne Cadamuro
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Simon Auer
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Thomas K. Felder
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Mrazek
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Hannes Oberkofler
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | - Christian Trummer
- Department of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Martin R. Grübler
- Department of Cardiology, Swiss Cardiovascular Center Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Verena Schwetz
- Department of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Marlene Pandis
- Department of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Valentin Borzan
- Department of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Elisabeth Haschke-Becher
- University Institute for Medical and Chemical Laboratory Diagnostics, Paracelsus Medical University, Salzburg, Austria
| | | | - Stefan Pilz
- Department of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Paczula A, Wiecek A, Piecha G. Cardiotonic Steroids-A Possible Link Between High-Salt Diet and Organ Damage. Int J Mol Sci 2019; 20:ijms20030590. [PMID: 30704040 PMCID: PMC6386955 DOI: 10.3390/ijms20030590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
High dietary salt intake has been listed among the top ten risk factors for disability-adjusted life years. We discuss the role of endogenous cardiotonic steroids in mediating the dietary salt-induced hypertension and organ damage.
Collapse
Affiliation(s)
- Aneta Paczula
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| |
Collapse
|
13
|
Dietary Sodium Restriction Reduces Arterial Stiffness, Vascular TGF-β-Dependent Fibrosis and Marinobufagenin in Young Normotensive Rats. Int J Mol Sci 2018; 19:ijms19103168. [PMID: 30326586 PMCID: PMC6214093 DOI: 10.3390/ijms19103168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022] Open
Abstract
High salt (HS) intake stimulates the production of marinobufagenin (MBG), an endogenous steroidal Na/K-ATPase ligand, which activates profibrotic signaling. HS is accompanied by a blood pressure (BP) increase in salt-sensitive hypertension, but not in normotensive animals. Here, we investigated whether HS stimulates MBG production and activates transforming growth factor-beta (TGF-β) profibrotic signaling in young normotensive rats, and whether these changes can be reversed by reducing salt to a normal salt (NS) level. Three-month old male Sprague–Dawley rats received NS for 4 and 8 weeks (0.5% NaCl; NS4 and NS8), or HS for 4 and 8 weeks (4% NaCl; HS4 and HS8), or HS for 4 weeks followed by NS for 4 weeks (HS4/NS4), n = 8/group. Systolic BP (SBP), pulse wave velocity (PWV), MBG excretion, aortic collagen 1α2, collagen 4α1 and TGF-β, Smad2, Smad3, Fli-1 mRNA, and total collagen abundance were measured at baseline (BL), and on weeks 4 and 8. Statistical analysis was performed using one-way ANOVA. SBP was not affected by HS (125 ± 5 and 126 ± 6 vs. 128 ± 7 mmHg, HS4 and HS8 vs. BL, p > 0.05). HS increased MBG (164 ± 19 vs. 103 ± 19 pmol/24 h/kg, HS4 vs. BL, p < 0.05) and PWV (3.7 ± 0.2 vs. 2.7 ± 0.2 m/s, HS4 vs. NS4, p < 0.05). HS8 was associated with a further increase in MBG and PWV, with an increase in aortic Col1a2 80%), Col4a1 (50%), Tgfb1 (30%), Smad2 (30%) and Smad3 (45%) mRNAs, and aortic wall collagen (180%) vs. NS8 (all p < 0.05). NS following HS downregulated HS-induced factors: in HS4/NS4, the MBG level was 91 ± 12 pmol/24 h/kg (twofold lower than HS8, p < 0.01), PWV was 3.7 ± 0.3 vs. 4.7 ± 0.2 m/s (HS4/NS4 vs. HS8, p < 0.05), aortic wall Tgfb1, Col1a2, Col4a1, Smad2, Smad3 mRNAs, and collagen abundance were reversed by salt reduction to the BL levels (p < 0.05). HS was associated with an activation of TGF-β signaling, aortic fibrosis and aortic stiffness accompanied by an MBG increase in the absence of SBP changes in young normotensive rats. The reduction of dietary salt following HS decreased MBG, PWV, aortic wall collagen and TGF-β. Thus, HS-induced aortic stiffness in normotensive animals occurred in the context of elevated MBG, which may activate SMAD-dependent TGF-β pro-fibrotic signaling. This data suggests that a decrease in salt consumption could help to restore aortic elasticity and diminish the risk of cardiovascular disease by reducing the production of the pro-fibrotic factor MBG.
Collapse
|
14
|
Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ. Cardiotonic Steroids and the Sodium Trade Balance: New Insights into Trade-Off Mechanisms Mediated by the Na⁺/K⁺-ATPase. Int J Mol Sci 2018; 19:E2576. [PMID: 30200235 PMCID: PMC6165267 DOI: 10.3390/ijms19092576] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
In 1972 Neal Bricker presented the "trade-off" hypothesis in which he detailed the role of physiological adaptation processes in mediating some of the pathophysiology associated with declines in renal function. In the late 1990's Xie and Askari published seminal studies indicating that the Na⁺/K⁺-ATPase (NKA) was not only an ion pump, but also a signal transducer that interacts with several signaling partners. Since this discovery, numerous studies from multiple laboratories have shown that the NKA is a central player in mediating some of these long-term "trade-offs" of the physiological adaptation processes which Bricker originally proposed in the 1970's. In fact, NKA ligands such as cardiotonic steroids (CTS), have been shown to signal through NKA, and consequently been implicated in mediating both adaptive and maladaptive responses to volume overload such as fibrosis and oxidative stress. In this review we will emphasize the role the NKA plays in this "trade-off" with respect to CTS signaling and its implication in inflammation and fibrosis in target organs including the heart, kidney, and vasculature. As inflammation and fibrosis exhibit key roles in the pathogenesis of a number of clinical disorders such as chronic kidney disease, heart failure, atherosclerosis, obesity, preeclampsia, and aging, this review will also highlight the role of newly discovered NKA signaling partners in mediating some of these conditions.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Amal Mohamed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Health Education Building RM 205, 3000 Arlington Ave, Toledo, OH 43614, USA.
| |
Collapse
|
15
|
Fan X, Xie J, Tian J. Reducing Cardiac Fibrosis: Na/K-ATPase Signaling Complex as a Novel Target. ACTA ACUST UNITED AC 2017; 6. [PMID: 29034264 DOI: 10.4172/2329-6607.1000204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac fibrosis is a common pathological process in cardiac disease and may lead to heart failure. It can also cause sudden death even in those without cardiac symptoms. Tissue fibrosis can be categorized into two categories: replacement fibrosis (also called reparative fibrosis) and reactive fibrosis. In replacement fibrosis, infiltration of inflammatory cells and accumulation of Extracellular Matrix (ECM) proteins are the initial steps in forming scarlike fibrotic tissue after acute cardiac injury and cardiac cell necrosis. Reactive fibrosis can be formed in response to hormonal change and pressure or volume overload. Experimental studies in animals have identified important pathways such as the Renin-Angiotensin-Aldosterone System (RAAS) and the endothelin pathway that contribute to fibrosis formation. Despite the fact that clinical trials using RAAS inhibitors as therapies for reducing cardiac fibrosis and improving cardiac function have been promising, heart failure is still the leading cause of deaths in the United States. Intensive efforts have been made to find novel targets and to develop new treatments for cardiac fibrosis and heart failure in the past few decades. The Na/K-ATPase, a canonical ion transporter, has been shown to also function as a signal transducer and prolonged activation of Na/K-ATPase signaling has been found to promote the formation of cardiac fibrosis. Novel tools that block the activation of Na/K-ATPase signaling have been developed and have shown promise in reducing cardiac fibrosis. This review will discuss the recent development of novel molecular targets, focusing on the Na/K-ATPase signaling complex as a therapeutic target in treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- X Fan
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| | - J Xie
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| | - J Tian
- Department of Medicine, Center for Hypertension and Personalized Medicine, University of Toledo, Ohio 43614, USA
| |
Collapse
|
16
|
Abstract
Significant hemodynamic changes ensue with aging, leading to an ever-growing epidemic of hypertension. Alterations in central arterial properties play a major role in these hemodynamic changes. These alterations are characterized by an initial decline in aortic distensibility and an increase of diastolic blood pressure, followed by a sharp increase in pulse wave velocity (PWV), and an increase in pulse pressure (PP) beyond the sixth decade. However, the trajectories of PWV and PP diverge with advancing age. There is an increased prevalence of salt-sensitive hypertension with advancing age that is, in part, mediated by marinobufagenin, an endogenous sodium pump ligand.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA; Department of Medicine, Johns Hopkins Bayview Medical Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Alexei Y Bagrov
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, NIA, NIH, Baltimore, MD, USA.
| |
Collapse
|