1
|
Argyropoulos CD, Skoulou V, Efthimiou G, Michopoulos AK. Airborne transmission of biological agents within the indoor built environment: a multidisciplinary review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:477-533. [PMID: 36467894 PMCID: PMC9703444 DOI: 10.1007/s11869-022-01286-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The nature and airborne dispersion of the underestimated biological agents, monitoring, analysis and transmission among the human occupants into building environment is a major challenge of today. Those agents play a crucial role in ensuring comfortable, healthy and risk-free conditions into indoor working and leaving spaces. It is known that ventilation systems influence strongly the transmission of indoor air pollutants, with scarce information although to have been reported for biological agents until 2019. The biological agents' source release and the trajectory of airborne transmission are both important in terms of optimising the design of the heating, ventilation and air conditioning systems of the future. In addition, modelling via computational fluid dynamics (CFD) will become a more valuable tool in foreseeing risks and tackle hazards when pollutants and biological agents released into closed spaces. Promising results on the prediction of their dispersion routes and concentration levels, as well as the selection of the appropriate ventilation strategy, provide crucial information on risk minimisation of the airborne transmission among humans. Under this context, the present multidisciplinary review considers four interrelated aspects of the dispersion of biological agents in closed spaces, (a) the nature and airborne transmission route of the examined agents, (b) the biological origin and health effects of the major microbial pathogens on the human respiratory system, (c) the role of heating, ventilation and air-conditioning systems in the airborne transmission and (d) the associated computer modelling approaches. This adopted methodology allows the discussion of the existing findings, on-going research, identification of the main research gaps and future directions from a multidisciplinary point of view which will be helpful for substantial innovations in the field.
Collapse
Affiliation(s)
| | - Vasiliki Skoulou
- B3 Challenge Group, Chemical Engineering, School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Georgios Efthimiou
- Centre for Biomedicine, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Apostolos K. Michopoulos
- Energy & Environmental Design of Buildings Research Laboratory, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
2
|
Liu S, Koupriyanov M, Paskaruk D, Fediuk G, Chen Q. Investigation of airborne particle exposure in an office with mixing and displacement ventilation. SUSTAINABLE CITIES AND SOCIETY 2022; 79:103718. [PMID: 35127341 PMCID: PMC8799404 DOI: 10.1016/j.scs.2022.103718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Effective ventilation could reduce COVID-19 infection in buildings. By using a computational fluid dynamics technique and advanced experimental measurement methods, this investigation studied the air velocity, air temperature, and particle number concentration in an office under a mixing ventilation (MV) system and a displacement ventilation (DV) system with different ventilation rates. The results show reasonably good agreement between the computed results and measured data. The air temperature and particle number concentration under the MV system were uniform, while the DV system generated a vertical stratification of the air temperature and particle number concentration. Because of the vertical stratification of the particle number concentration, the DV system provided better indoor air quality than the MV system. An increase in ventilation rate can reduce the particle concentration under the two systems. However, the improvement was not proportional to the ventilation rate. The increase in ventilation rate from 2 ACH to 4 ACH and 6 ACH for MV system reduced the particle concentration by 20% and 60%, respectively. While for the DV system, increasing the ventilation rate from 2 ACH to 4 ACH and 6 ACH reduced the particle concentration by only 10% and 40%, respectively. The ventilation effectiveness of the MV system was close to 1.0, but it was much higher for the DV system. Therefore, the DV system was better than the MV system.
Collapse
Affiliation(s)
- Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mike Koupriyanov
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Dale Paskaruk
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Graham Fediuk
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|
3
|
Hou M, Pantelic J, Aviv D. Spatial analysis of the impact of UVGI technology in occupied rooms using ray-tracing simulation. INDOOR AIR 2021; 31:1625-1638. [PMID: 33772881 DOI: 10.1111/ina.12827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
The use of Ultraviolet Germicidal Irradiation (UVGI) devices in the upper zones of occupied buildings has gained increased attention as one of the most effective mitigation technologies for the transmission of COVID-19. To ensure safe and effective use of upper-room UVGI, it is necessary to devise a simulation technique that enables engineers, designers, and users to explore the impact of different design and operational parameters. We have developed a simulation technique for calculating UV-C fluence rate within the volume of the upper zone and planar irradiance in the lower occupied zone. Our method is based on established ray-tracing light simulation methods adapted to the UV-C wavelength range. We have included a case study of a typical hospital patient room. In it, we explored the impact of several design parameters: ceiling height, device location, room configuration, proportions, and surface materials. We present a spatially mapped parametric study of the UV-C irradiance distribution in three dimensions. We found that the ceiling height and mounting height of the UVGI fixtures combined can cause the largest variation (up to 22%) in upper zone fluence rate. One of the most important findings of this study is that it is crucial to consider interreflections in the room. This is because surface reflectance is the design parameter with the largest impact on the occupant exposure in the lower zone: Applying materials with high reflectance ratio in the upper portion of the room has the highest negative impact (over 700% variation) on increasing hot spots that may receive over 6 mJ/cm2 UV dose in the lower occupied zone.
Collapse
Affiliation(s)
- Miaomiao Hou
- University of Pennsylvania, Philadelphia, PA, USA
- Tongji University, Shanghai, China
| | - Jovan Pantelic
- University of California, Berkeley, CA, USA
- KU Leuven, Leuven, Belgium
| | - Dorit Aviv
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Wu J, Weng W. COVID-19 virus released from larynx might cause a higher exposure dose in indoor environment. ENVIRONMENTAL RESEARCH 2021; 199:111361. [PMID: 34029546 PMCID: PMC8139337 DOI: 10.1016/j.envres.2021.111361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 05/10/2023]
Abstract
COVID-19 virus can replicate in the infected individual's larynx independently, which is different from other viruses that replicate in lungs only, e.g. SARS. It might contribute to the fast spread of COVID-19. However, there are few scientific reports about quantitative comparison of COVID-19 exposure dose (inhalation dose and adhesion dose) for the susceptible individual when the viruses were released from the larynx or lungs. In this paper, a typical numerical model was built based on a breathing human model with real respiratory tract. By using a computational fluid dynamics (CFD) method, two kinds of virus released sites in the infected individual's respiratory tract (larynx, lungs), seven kinds of particle sizes between 1 and 50 μm, three kinds of expiratory flow rates: calm (10 L/min), moderate (30 L/min) and intense (90 L/min) were used to compare the particle deposition proportion and escape proportion. The inhalation dose and the adhesion dose of the susceptible individual were quantified. The results showed that COVID-19 virus-containing droplets and aerosols might be released into the environment at higher proportions (39.1%-44.2%) than viruses that replicate in lungs only (15.3%-37.1%). The exposure doses (inhalation dose and adhesion dose) of the susceptible individual in different situations were discussed. The susceptible individual suffered a higher exposure dose when the viruses were released from the larynx rather than lungs (the difference for 1 μm particles was 1.2-2.2 times). This study provides a possible explanation for the higher transmission risk of COVID-19 virus compared to other viruses and some control advice of COVID-19 in typical indoor environments were also discussed.
Collapse
Affiliation(s)
- Jialin Wu
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, 100084, China
| | - Wenguo Weng
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Mousavi ES, Kananizadeh N, Martinello RA, Sherman JD. COVID-19 Outbreak and Hospital Air Quality: A Systematic Review of Evidence on Air Filtration and Recirculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4134-4147. [PMID: 32845618 PMCID: PMC7489049 DOI: 10.1021/acs.est.0c03247] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
The outbreak of SARS-CoV-2 has made us all think critically about hospital indoor air quality and the approaches to remove, dilute, and disinfect pathogenic organisms from the hospital environment. While specific aspects of the coronavirus infectivity, spread, and routes of transmission are still under rigorous investigation, it seems that a recollection of knowledge from the literature can provide useful lessons to cope with this new situation. As a result, a systematic literature review was conducted on the safety of air filtration and air recirculation in healthcare premises. This review targeted a wide range of evidence from codes and regulations, to peer-reviewed publications, and best practice standards. The literature search resulted in 394 publications, of which 109 documents were included in the final review. Overall, even though solid evidence to support current practice is very scarce, proper filtration remains one important approach to maintain the cleanliness of indoor air in hospitals. Given the rather large physical footprint of the filtration system, a range of short-term and long-term solutions from the literature are collected. Nonetheless, there is a need for a rigorous and feasible line of research in the area of air filtration and recirculation in healthcare facilities. Such efforts can enhance the performance of healthcare facilities under normal conditions or during a pandemic. Past innovations can be adopted for the new outbreak at low-to-minimal cost.
Collapse
Affiliation(s)
- Ehsan S. Mousavi
- Department of Construction Science and
Management, Clemson University, 2-132 Lee
Hall, Clemson, South Carolina 29634, United
States
| | | | - Richard A. Martinello
- Departments of Internal Medicine and
Pediatrics, Yale School of Medicine and Department of Infection
Prevention, Yale New Haven Health, New
Haven, Connecticut 06510, United States
| | - Jodi D. Sherman
- Departments of Anesthesiology,
Environmental Health Sciences, Yale School of Medicine, Yale School of
Public Health, Yale University, New Haven,
Connecticut 06520, United States
| |
Collapse
|
6
|
Ren YF, Huang Q, Marzouk T, Richard R, Pembroke K, Martone P, Venner T, Malmstrom H, Eliav E. Effects of mechanical ventilation and portable air cleaner on aerosol removal from dental treatment rooms. J Dent 2020; 105:103576. [PMID: 33388387 PMCID: PMC7834919 DOI: 10.1016/j.jdent.2020.103576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 01/10/2023] Open
Abstract
Objectives To evaluate the mechanical ventilation rates of dental treatment rooms and assess the effectiveness of aerosol removal by mechanical ventilation and a portable air cleaner (PAC) with a high-efficiency particulate air (HEPA) filter. Methods Volumetric airflow were measured to assess air change rate per hour by ventilation (ACHvent). Equivalent ventilation provided by the PAC (ACHpac) was calculated based on its clean air delivery rate. Concentrations of 0.3, 0.5 and 1.0 μm aerosol particles were measured in 10 dental treatment rooms with various ventilation rates at baseline, after 5-min of incense burn, and after 30-min of observation with and without the PAC or ventilation system in operation. Velocities of aerosol removal were assessed by concentration decay constants for the 0.3 μm particles with ventilation alone (Kn) and with ventilation and PAC (Kn+pac), and by times needed to reach 95 % and 100 % removal of accumulated aerosol particles. Results ACHvent varied from 3 to 45. Kn and Kn+pac were correlated with ACHvent (r = 0.90) and combined ACHtotal (r = 0.81), respectively. Accumulated aerosol particles could not be removed by ventilation alone within 30-min in rooms with ACHvent<15. PAC reduced aerosol accumulation and accelerated aerosol removal, and accumulated aerosols could be completely removed in 4 to 12-min by ventilation combined with PAC. Effectiveness of the PAC was especially prominent in rooms with poor ventilation. Added benefit of PAC in aerosol removal was inversely correlated with ACHvent. Conclusions Aerosol accumulation may occur in dental treatment rooms with poor ventilation. Addition of PAC with a HEPA filter significantly reduced aerosol accumulation and accelerated aerosol removal. Clinical significance Addition of PAC with a HEPA filter improves aerosol removal in rooms with low ventilation rates.
Collapse
Affiliation(s)
- Yan-Fang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA.
| | - Qirong Huang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Tamer Marzouk
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Ray Richard
- Facility Operations, University of Rochester Medical Center, Rochester, New York, USA
| | - Karen Pembroke
- Facility Operations, University of Rochester Medical Center, Rochester, New York, USA
| | - Pat Martone
- Facility Operations, University of Rochester Medical Center, Rochester, New York, USA
| | - Tom Venner
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Hans Malmstrom
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
7
|
Shajahan A, Culp CH, Williamson B. Effects of indoor environmental parameters related to building heating, ventilation, and air conditioning systems on patients' medical outcomes: A review of scientific research on hospital buildings. INDOOR AIR 2019; 29:161-176. [PMID: 30588679 PMCID: PMC7165615 DOI: 10.1111/ina.12531] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
The indoor environment of a mechanically ventilated hospital building controls infection rates as well as influences patients' healing processes and overall medical outcomes. This review covers the scientific research that has assessed patients' medical outcomes concerning at least one indoor environmental parameter related to building heating, ventilation, and air conditioning (HVAC) systems, such as indoor air temperature, relative humidity, and indoor air ventilation parameters. Research related to the naturally ventilated hospital buildings was outside the scope of this review article. After 1998, a total of 899 papers were identified that fit the inclusion criteria of this study. Of these, 176 papers have been included in this review to understand the relationship between the health outcomes of a patient and the indoor environment of a mechanically ventilated hospital building. The purpose of this literature review was to summarize how indoor environmental parameters related to mechanical ventilation systems of a hospital building are impacting patients. This review suggests that there is a need for future interdisciplinary collaborative research to quantify the optimum range for HVAC parameters considering airborne exposures and patients' positive medical outcomes.
Collapse
Affiliation(s)
- Amreen Shajahan
- Energy Systems LaboratoryTexas A&M UniversityCollege StationTexas
- Department of ArchitectureTexas A&M UniversityCollege StationTexas
| | - Charles H. Culp
- Energy Systems LaboratoryTexas A&M UniversityCollege StationTexas
- Department of ArchitectureTexas A&M UniversityCollege StationTexas
| | | |
Collapse
|
8
|
Küsel RR, Craig IK, Stoltz AC. Modeling the Airborne Infection Risk of Tuberculosis for a Research Facility in eMalahleni, South Africa. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:630-646. [PMID: 30229975 DOI: 10.1111/risa.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/30/2017] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
A detailed mathematical modeling framework for the risk of airborne infectious disease transmission in indoor spaces was developed to enable mathematical analysis of experiments conducted at the Airborne Infections Research (AIR) facility, eMalahleni, South Africa. A model was built using this framework to explore possible causes of why an experiment at the AIR facility did not produce expected results. The experiment was conducted at the AIR facility from August 31, 2015 to December 4, 2015, in which the efficacy of upper room germicidal ultraviolet (GUV) irradiation as an environmental control was tested. However, the experiment did not produce the expected outcome of having fewer infections in the test animal room than the control room. The simulation results indicate that dynamic effects, caused by switching the GUV lights, power outages, or introduction of new patients, did not result in the unexpected outcomes. However, a sensitivity analysis highlights that significant uncertainty exists with risk of transmission predictions based on current measurement practices, due to the reliance on large viable literature ranges for parameters.
Collapse
Affiliation(s)
- Ralf R Küsel
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa
| | - Ian K Craig
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria, South Africa
| | - Anton C Stoltz
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Design and Simulation of Isolation Room for a Hospital. LECTURE NOTES IN MECHANICAL ENGINEERING 2019. [PMCID: PMC7123169 DOI: 10.1007/978-981-13-6416-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Heating, ventilation and air conditioning (HVAC) of hospitals is a highly specialized field and critical care units like isolation rooms and operation theatres deserve special attention, as infected patients must be isolated from ambient environment in order to prevent the infection from spreading and to save the life of the patient. This manuscript aims to optimize the ventilation strategy towards contaminant suppression in the isolation room. 3D Navier-Stokes and energy equation using finite volume method (FVM) with a domain of isolation room is solved for appropriate boundary conditions. The patient’s body is approximated as a semi-cylindrical shape resting on a bed and is treated as a constant heat source. Velocity and temperature profile inside the isolation room for various configurations are simulated. Our results suggest that immune-suppressed patients should be kept near the air supply and infectious patients near the exhaust.
Collapse
|
10
|
Jayjock M, Havics AA. Residential inter-zonal ventilation rates for exposure modeling. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:376-388. [PMID: 29420141 DOI: 10.1080/15459624.2018.1438615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Residential inter-zonal (e.g., between rooms) ventilation is comprised of fresh air infiltration in and exfiltration out of the whole house plus the "fresh" air that is entering (and exiting) the room of interest from other rooms or areas within the house. Clearly, the inter-zone ventilation rate in any room of interest will be greater than the infiltration/exfiltration ventilation rate of outdoor air for the whole house. The purpose of this study is to determine how much greater the inter-zonal ventilation rate is in typical U.S. residences compared to the whole house ventilation rate from outdoor air. The data for this statistical analysis came from HouseDB, a 1995 EPA database of residential ventilation rates. Analytical results indicate that a lognormal distribution provides the best fit to the data. Lognormal probability distribution functions (PDFs) are provided for various inter-zonal ventilation rates for comparison to the PDF for the whole house ventilation rates. All ventilation rates are expressed as air change rates per hour (ACH). These PDFs can be used as inputs to exposure models. This analysis suggests that if one were performing a deterministic analysis for unknown housing stocks in the U.S., a default mean and median ACH values of 0.4/hr and 0.3/hr, respectively, for whole house ventilation would be appropriate; and 0.7/hr and 0.6/hr, respectively, for inter-zonal ventilation.
Collapse
|
11
|
Offermann FJ, Eagan A, Offermann AC, Subhash SS, Miller SL, Radonovich LJ. Potential airborne pathogen transmission in a hospital with and without surge control ventilation system modifications. BUILDING AND ENVIRONMENT 2016; 106:175-180. [PMID: 32287965 PMCID: PMC7116960 DOI: 10.1016/j.buildenv.2016.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/26/2016] [Accepted: 06/24/2016] [Indexed: 05/07/2023]
Abstract
To better understand the transport of airborne particulate matter (PM) in hospital environments when surge control strategies are implemented, tests were conducted in a recently decommissioned hospital during a one-week period. An aerosol was released within a patient room and concentrations measured in the room and hallway with and without surge control ventilation system modifications. The average hallway protection efficiencies were high (>98%) both for the baseline ventilation configuration and when the ventilation system was modified for whole floor negative pressure, indicating very little PM reached the hallway. During entry/exit events through the patient room door into the hallway, the average minimum hallway protection efficiencies were lower during the modified ventilation operation (93-94%) than for the baseline operation (98-99%). These lower hallway protection efficiencies may be explained by the 52% reduction in the outdoor air ventilation being supplied to the hallway during the modified operation mode. This suggests that patient room doors should remain closed to control PM movement into the hallway. In addition, if there is concern about airborne infection transmission, an anteroom may be used to further reduce the transport of particles from the patient rooms to the hallways of the ward.
Collapse
Affiliation(s)
| | - Aaron Eagan
- National Center for Occupational Health and Infection Control, US Department of Veterans Affairs, USA
| | | | - Shobha S. Subhash
- National Center for Occupational Health and Infection Control, US Department of Veterans Affairs, USA
| | - Shelly L. Miller
- Mechanical Engineering, University of Colorado, Boulder, CO, USA
- Corresponding author.
| | - Lewis J. Radonovich
- National Center for Occupational Health and Infection Control, US Department of Veterans Affairs, USA
| |
Collapse
|