1
|
Ur Rahman M, Hussain HR, Akram H, Sarfraz M, Nouman M, Khan JA, Ishtiaq M. Niosomes as a targeted drug delivery system in the treatment of breast cancer: preparation, classification and mechanisms of cellular uptake. J Drug Target 2025; 33:916-932. [PMID: 39964023 DOI: 10.1080/1061186x.2025.2468750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) remains one of the significant health issues across the globe, being diagnosed in millions of women worldwide annually. Conventional therapeutic options have substantial adverse effects due to their non-specificity and limited drug bioavailability. Niosomes, being novel drug delivery systems formed from non-ionic surfactants, with or without cholesterol and charge-inducing agents, are used as therapeutic options in treating BC. Their formulation by various methods enhances the therapeutic efficacy and bioavailability and minimises side effects. Niosomal formulation of tamoxifen exhibits target drug delivery with enhanced stability, whereas docetaxel and methotrexate show sustained and controlled drug release, respectively. 5-Fluorouracil, doxorubicin, paclitaxel, cyclophosphamide and epirubicin show improved cytotoxic effects against BC when combined with other agents. Furthermore, repurposed niosomal formulations of anti-cancer drugs show improved penetration, reduced tumour volume and significantly enhanced anti-tumour effect. This review article focuses on the composition of niosomes and their application in BC treatment and then examines how niosomes could contribute to BC research.
Collapse
Affiliation(s)
| | | | - Habiba Akram
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Muhammad Nouman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Jawad Akbar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Memona Ishtiaq
- Department of Pharmacy, Lahore Institute of Professional Studies, Lahore, Pakistan
| |
Collapse
|
2
|
Xiong G, Schätzlein AG, Uchegbu IF. Acetyl-lysine human serum albumin nanoparticles activate CD44 receptors, with preferential uptake by cancer stem cells, leading to tumor eradication. J Control Release 2025; 382:113632. [PMID: 40139395 DOI: 10.1016/j.jconrel.2025.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
CD44 receptors in cancer stem cells (CSCs) are a key biomarker associated with cancer recurrence, progression, and metastasis. Acetylation is a post-translational modification used to regulate protein function at the end of protein synthesis. In this study, we found that acetylated human serum albumin (Ac-HSA) acts an uptake ligand on CD44 receptors. This promising finding motivated us to develop an Ac-HSA-based nanocarrier for cancer chemotherapy. By conjugating maleimide-polylactic acid (MAL-PLA) with Ac-HSA, the resulting amphiphile formed nanoparticles (Ac-HSA-PLA NPs) which were shown to rapidly enter CD44+ cancer cells and cancer stem cells via CD44-mediated endocytosis. This contrasts with the comparatively slow uptake of CD44 antibodies. Abraxane®, an approved human serum albumin (HSA) nanoparticle formulation of paclitaxel (PTX) demonstrates that PTX may be delivered by HSA nanoparticles. However, Abraxane® is not clinically superior to solvent-based PTX formulations. In a CD44+ tumor model, PTX-loaded Ac-HSA-PLA NPs outperformed Abraxane®, achieving complete tumor elimination without recurrence, two months post-treatment, while Abraxane treated tumors continued to grow (tumor volume increased five fold). The Ac-HSA-PLA (PTX) NPs also demonstrated minimal systemic toxicity, suggesting that Ac-HSA could be a promising alternative for targeted cancer therapy in CD44-expressing cancers.
Collapse
Affiliation(s)
- Guojun Xiong
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Nanomerics Ltd., 6(th) Floor, 2 London Wall Place, London EC2Y 5AU, United Kingdom
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; Nanomerics Ltd., 6(th) Floor, 2 London Wall Place, London EC2Y 5AU, United Kingdom; Wolfson College, University of Cambridge, Cambridge CB3 9BB, United Kingdom.
| |
Collapse
|
3
|
Gabizon AA. Cancer nanomedicine from a clinician-scientist perspective: Lessons and prospects. J Control Release 2025; 382:113731. [PMID: 40228664 DOI: 10.1016/j.jconrel.2025.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
The nanomedicine field has progressed enormously in the last couple of decades. From a loose group of liposomologists, polymer scientists, chemical engineers, and experts in metal nanoparticles, mesoporous silica, and other nanomaterials, the field has gradually consolidated and has generated vast amounts of research and clinical data, but, until the development of lipid nanoparticle (LNP)-based vaccinations for Covid-19, has remained with low visibility in the clinic. Applications in the cancer field are the most frequently sought projects in nanomedicine. For the last 45 years, my clinical career has mingled with my research career focusing on ways to formulate drugs in liposomes to improve their safety and efficacy in cancer therapy. In this review, I will discuss my contribution to the development of pegylated liposomal doxorubicin and other cancer nanomedicines from my privileged position as a clinician and scientist.
Collapse
Affiliation(s)
- Alberto A Gabizon
- The Leah and Jakub Susskind Nano-Oncology Research Laboratory at the Helmsley Cancer Center, Shaare Zedek Medical Center and the Hebrew University-Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
4
|
Qi M, Zhang K, Zhang X, Zhu Y, Cai B, Wang C, Zhao G, Zhang D, Zhang J. Arginine tagged liposomal carrier for the delivery of celastrol for ferroptosis-induced hepatocellular carcinoma therapy. Colloids Surf B Biointerfaces 2025; 250:114546. [PMID: 39919344 DOI: 10.1016/j.colsurfb.2025.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Hepatocellular carcinoma (HCC) is a predominant malignant liver tumor that cannot be efficiently treated because of poor response, toxicity, and drug resistance. Ferroptosis is an iron-dependent way of cell death associated with abnormal intracellular lipid metabolism. Celastrol (Cel) has the ability to inhibit the progression of HCC by regulating multiple signaling pathways and induce ferroptosis. However, Cel exists the limitations of low water solubility, low oral bioavailability, and high organ toxicity. Cel was encapsulated in polyethylene glycol-based liposomes modified with L-arginine (Cel@Lip-Arg). Cel@Lip-Arg has a uniform size distribution (∼100 nm), high drug loading (80 %), and excellent ability to target liver cancer cells. In vitro experiments demonstrated that Cel@Lip-Arg considerably suppressed the activity of HuH7 (hepatoma) cells but had a negligible effect on L02 (normal) cells. Cel@Lip-Arg induced ferroptosis in hepatoma cells by promoting transferrin receptor expression, inhibiting system xc- and glutathione peroxidase 4, and favoring intracellular peroxide accumulation. In vivo experiments revealed that Cel@Lip-Arg plays a therapeutic role by inducing ferroptosis. Compared to Cel, Cel@Lip-Arg had a higher anti-hepatoma activity and effectively reduced the toxicity of Cel in mice. Cel@Lip-Arg-induced ferroptosis was concluded to be an attractive strategy for the precise treatment of HCC.
Collapse
Affiliation(s)
- Manman Qi
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Kai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Xue Zhang
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Yuzhao Zhu
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Banglan Cai
- School of Basic Medicine, Ningxia Medical University, Ningxia 750004, PR China
| | - Chao Wang
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China
| | - Gang Zhao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Denghai Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jian Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Shanghai University, Shanghai 200233, PR China.
| |
Collapse
|
5
|
Chen W, Zhang Z, Han Y, Li X, Liu C, Sun Y, Ren Y, Guan X. Remodeling tumor microenvironment by versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy to synergistically enhance anticancer efficiency. Biomaterials 2025; 317:123104. [PMID: 39813969 DOI: 10.1016/j.biomaterials.2025.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs). The CD@PB NPs exhibited multifunctionality: (1) Long in vivo circulation and acidic TME-responsive PEG deshielding for being efficiently internalized into cells. (2) Endosomal-pH triggered drug release and PEI-facilitated drug-escaping from endosome into cytoplasm. (3) DMS down-regulated thick stroma and weakened mechanical barriers for facilitating NP penetration. (4) DMS mediated nuclear pore dilation to promote more DOX entering nucleus and enhance treatment effects. (5) DOX induced potent immunogenic cell death (ICD), activated antitumor immunity and exerted chemoimmunotherapy. The versatile CD@PB NPs displayed excellent antitumor efficacy against 4T1 mouse breast cancer, which effectively remodeled immunosuppressive TME and orchestrated mechanotherapy with chemoimmunotherapy to synergistically enhance antitumor efficiency. The study provided an illuminating paradigm for multidimensional cancer therapy.
Collapse
Affiliation(s)
- Wenqiang Chen
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Zhe Zhang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yunfei Han
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Li
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunhui Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Yanju Sun
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Yanyan Ren
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Xiuwen Guan
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
6
|
Venturini J, Chakraborty A, Baysal MA, Tsimberidou AM. Developments in nanotechnology approaches for the treatment of solid tumors. Exp Hematol Oncol 2025; 14:76. [PMID: 40390104 PMCID: PMC12090476 DOI: 10.1186/s40164-025-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
Nanotechnology has revolutionized cancer therapy by introducing advanced drug delivery systems that enhance therapeutic efficacy while reducing adverse effects. By leveraging various nanoparticle platforms-including liposomes, polymeric nanoparticles, and inorganic nanoparticles-researchers have improved drug solubility, stability, and bioavailability. Additionally, new nanodevices are being engineered to respond to specific physiological conditions like temperature and pH variations, enabling controlled drug release and optimizing therapeutic outcomes. Beyond drug delivery, nanotechnology plays a crucial role in the theranostic field due to the functionalization of specific materials that combine tumor detection and targeted treatment features. This review analyzes the clinical impact of nanotechnology, spanning from early-phase trials to pivotal phase 3 studies that have obtained regulatory approval, while also offering a critical perspective on the preclinical domain and its translational potential for future human applications. Despite significant progress, greater attention must be placed on key challenges, such as biocompatibility barriers and the lack of regulatory standardization, to ensure the successful translation of nanomedicine into routine clinical practice.
Collapse
Affiliation(s)
- Jacopo Venturini
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
- Current Affiliation: Department of Medical Oncology, Careggi University Hospital, Florence, Italy
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Alvarez-Malmagro J, Ruano L, Cuartero-González M, Nogueira JJ, Prieto-Dapena F. Unveiling the Interactions of Doxorubicin with the Lipid Components of Liposomes for Its Delivery. J Phys Chem B 2025; 129:4715-4727. [PMID: 40326662 DOI: 10.1021/acs.jpcb.5c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The characterization of drug/lipid interactions is key to developing novel and more efficient drug delivery systems. In this work, we combine electrochemical measurements, attenuated total reflection (ATR) spectroscopy, and molecular dynamics simulations to unveil the interacting mechanisms of doxorubicin (DOX) with lipid monolayers and bilayers containing a cytidine derivative nucleolipid, which serve as a model system of previously developed liposomes for DOX delivery. The nucleolipid was included in the liposome formulation to take advantage of its molecular recognition capabilities and its capacity to anchor gold nanoparticles. The compression isotherms of the Langmuir monolayers and interfacial capacitance measurements on a gold electrode modified with hybrid bilayers in the presence of DOX demonstrate the interaction of the drug with the nucleolipid polar heads. This is confirmed by computational simulations of a solvated DOX/bilayer complex, which show that the adsorption process is driven by stacking and electrostatic interactions involving the aromatic and nonaromatic moieties of DOX, respectively. Moreover, both ATR spectra of supported bilayers on silicon and simulations show that the presence of DOX does not significantly affect the tilt angles of the lipids. The system studied in this work is a promising therapeutic option for cancer treatment. The combined methodology applied to this study can serve as a reference for other studies of drug-carrier interactions.
Collapse
Affiliation(s)
- Julia Alvarez-Malmagro
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Lorena Ruano
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Cuartero-González
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Juan J Nogueira
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco Prieto-Dapena
- Departamento de Química Física, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Izadiyan Z, Webster TJ, Kia P, Kalantari K, Misran M, Rasouli E, Maghareh Esfahan Z, Shameli K. Nanoemulsions Based Therapeutic Strategies: Enhancing Targeted Drug Delivery against Breast Cancer Cells. Int J Nanomedicine 2025; 20:6133-6162. [PMID: 40385492 PMCID: PMC12085896 DOI: 10.2147/ijn.s488545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/28/2025] [Indexed: 05/20/2025] Open
Abstract
Nanoemulsions (NEs), colloidal systems of nanoscale droplets (~100 nm), have emerged as transformative tools in oncology due to their high surface area-to-volume ratio, tunable physicochemical properties, and capacity for targeted drug delivery. While NEs find applications across diverse fields, their urgency in breast cancer therapy stems from critical limitations of conventional treatments, including systemic toxicity, poor bioavailability, and multidrug resistance. Unlike traditional chemotherapeutics, NEs enable precise tumor targeting via passive mechanisms (eg, enhanced permeability and retention effect) and active strategies (eg, ligand-functionalized surfaces), significantly reducing off-target effects. Their ability to encapsulate hydrophobic drugs, improve solubility, and sustain controlled release enhances therapeutic efficacy while overcoming resistance mechanisms prevalent in aggressive breast cancer subtypes, such as triple-negative and HER2-positive tumors. This review comprehensively analyzes NE formulation techniques (eg, ultrasonication, phase inversion temperature, bubble bursting), stability optimization through surfactant dynamics, and predictive modeling of droplet behavior. A focal point is their role in modulating tumor microenvironments, inducing apoptosis, and inhibiting angiogenesis in preclinical breast cancer models. By spotlighting NE-driven advancements in drug accumulation, reduced relapse rates, and adaptable combination therapies, this article underscores their potential to revolutionize oncology. Future research must prioritize clinical translation, scalability, and multifunctional NE designs to address unmet needs in precision breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thomas J Webster
- School of Biomedical Engineering and Health Sciences, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, USA
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Singapore
| | - Zahra Maghareh Esfahan
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Nonaka M, Hirakata M, Sakai C, Tomikawa E, Izawa A, Nishi T, Koga Y, Takahashi K, Shimozono R, Ohshima K, Narumi H, Miyoshi T, Oshida K, Uchida M, Uezono Y. TXB-001, A Newly-Developed Polymer-Conjugated Anthracycline, Alleviates Anthracycline-Induced Cardiotoxicity. Cardiovasc Toxicol 2025:10.1007/s12012-025-09994-2. [PMID: 40327285 DOI: 10.1007/s12012-025-09994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/05/2025] [Indexed: 05/07/2025]
Abstract
Anthracycline anti-cancer drugs, which are used in cancer chemotherapy, frequently cause cardiotoxicity, the incidence of which depends on cumulative doses. TXB-001 is a new candidate polymer-conjugated pirarubicin (THP) with higher THP purity and content compared to previous P-THP (polymerized THP) and is expected to exhibit lower cardiotoxicity and higher efficacy against cancer cells. We examined the effects of TXB-001 on cardiac function and the pharmacokinetics after its intravenous administration compared with those of existing anthracyclines (doxorubicin (DOX), DOXIL (liposomal formulation of DOX), THP) in mice. Echocardiography and electrocardiography showed that DOX caused cardiac dysfunction in mice, with associated changes in organ weights, blood chemical parameters, and mRNA/protein expressions. DOXIL and THP induced similar, but weaker changes than DOX. TXB-001 did not significantly affect cardiac function or associated changes under the conditions of this study. The results of the pharmacokinetic evaluation revealed that the distributions of DOXIL and TXB-001 from plasma to heart tissue were lower than those of DOX and THP, while the distribution of TXB-001 was lower than that of DOXIL. Furthermore, TXB-001 did not show cardiac accumulation in contrast to DOXIL. In addition, the anthracycline exposure level of TXB-001 in the heart was lower than those of DOX, DOXIL, and THP, with less exposure being regarded as one reason for the low or no cardiotoxicity of TXB-001 in mice. Collectively, these results suggest the potential of TXB-001 as an anti-cancer drug with fewer side effects than anthracyclines, particularly cardiotoxicity. Novel TXB-001 may become an effective anti-cancer drug with fewer cardiotoxicity.
Collapse
Affiliation(s)
- Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Mikito Hirakata
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Chizuka Sakai
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Emi Tomikawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Akiko Izawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Tatsuya Nishi
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Yoko Koga
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Kei Takahashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Rieko Shimozono
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Department of Pathology, Immunology, and Microbiology Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hideki Narumi
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Tomoya Miyoshi
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Keiyu Oshida
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan
| | - Masashi Uchida
- Pharmaceutical Research Laboratories, Toray Industries, Inc, 6-10-1 Tebiro, Kamakura-City, Kanagawa, 248-8555, Japan.
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Supportive and Palliative Care Research Support Office, National Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa-City, Chiba, 277-8577, Japan
| |
Collapse
|
10
|
Karam TS, Sarkar M, Zuckerman JE. Acute Kidney Injury Secondary to Pegylated Liposomal Doxorubicin-Associated Renal-limited Thrombotic Microangiopathy. Kidney Med 2025; 7:100998. [PMID: 40321978 PMCID: PMC12049883 DOI: 10.1016/j.xkme.2025.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
The emergence of pegylated liposomal doxorubicin (PLD) as a preferred treatment for various malignancies, because of its reduced cardiotoxicity compared with conventional doxorubicin, has raised significant interest. However, the association between PLD and thrombotic microangiopathy (TMA) remains a concerning and relatively rare complication. Here, we present the case of an 80-year-old man with metastatic Kaposi sarcoma who underwent extended PLD monotherapy, subsequently developing kidney-limited TMA demonstrated on kidney biopsy. This led to acute kidney injury necessitating hemodialysis. The patient's clinical history, laboratory, and kidney biopsy data supported PLD chemotherapy as the primary etiologic factor for the observed kidney-limited TMA, an insidious condition with poor prognosis. This report highlights the need for vigilance and early kidney biopsy in patients with rising serum creatinine concentrations or worsening proteinuria/hematuria during PLD therapy. Understanding the mechanisms underlying PLD-induced TMA, likely involving reactive oxygen species-mediated endothelial dysfunction and platelet aggregation, remains a crucial area for future research to optimize monitoring and management strategies for this rare yet severe complication associated with PLD therapy.
Collapse
Affiliation(s)
- Tarek S. Karam
- Department of Nephrology, University of California, Los Angeles Medical Center, Los Angeles, CA
| | - Mrinalini Sarkar
- Department of Nephrology, University of California, Los Angeles Medical Center, Los Angeles, CA
| | - Jonathan E. Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles Medical Center, Los Angeles, CA
| |
Collapse
|
11
|
Jin J, Meng DD, Wen Y, Zhang QL, Lv FF, Chen GL, Ma XJ, Yu BH, Zhang SJ, Liu C, Xia ZG. PBVD regimen (pegylated liposomal doxorubicin, bleomycin, vincristine, dacarbazine) in classical Hodgkin lymphoma patients with cardiovascular risk factors: a retrospective study. Leuk Lymphoma 2025; 66:888-897. [PMID: 39756044 DOI: 10.1080/10428194.2024.2447888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
This retrospective study aimed to evaluate the efficacy and safety of PBVD (pegylated liposomal doxorubicin [PLD], bleomycin, vinblastine, and dacarbazine) in the first-line treatment of classical Hodgkin lymphoma (cHL) patients with cardiovascular risk factors. Overall, 84 patients (53 had stage I-II and 31 had stage III-IV disease) received PBVD. The median PLD treatment duration was 16 weeks (interquartile range [IQR]: 8-24) for stage I-II and 24 weeks (IQR: 12-24) for stage III-IV. Among them, 56 (66.7%) received radiotherapy (45 with stage I-II and 11 with stage III-IV disease). Seventy-four (88.1%) patients achieved complete response. At a median follow-up of 49.7 months, 2- and 5-year progression-free survival were both 83.2%, and overall survival was 98.7% and 94.9%. Adverse events occurred in 73.8% of patients, including 7.1% cardiac events. No treatment-related deaths were observed. This approach showed a favorable benefit-to-risk profile in this population.
Collapse
Affiliation(s)
- Jia Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan-Dan Meng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Kaifeng Central Hospital, Kaifeng, China
| | - Yu Wen
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Qun-Ling Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Fang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang-Liang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue-Jun Ma
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bao-Hua Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Sheng-Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zu-Guang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025; 42:266-299. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
13
|
Gautam S, Joshi S, Jindal P, Patel P, Pal RR, Kumar M, Gupta GD, Kurmi BD. Recent doxorubicin-conjugates in cancer drug delivery: Exploring conjugation strategies for enhanced efficacy and reduced toxicity. Int J Pharm 2025; 675:125556. [PMID: 40187698 DOI: 10.1016/j.ijpharm.2025.125556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Doxorubicin is a first-line treatment of cancer that works on the mechanism of DNA intercalation and topoisomerase II poisoning. Since the 20th century, Doxorubicin has been used as a promising drug to treat several types of cancer, both solid or metastatic, including breast, thyroid, bladder, ovarian, or gastric cancer, etc. Even though it shows promising effects on cancer cells, it also shows its effects on healthy cells with cancerous cells, which leads to several severe side effects, such as cardiomyopathy, phlebitis, congestive heart failure (CHF), etc., which limits its usage in chemotherapy. Several research has focused on the targeted delivery of doxorubicin to cancerous cells to reduce side effects and improve efficacy. To optimize its anticancer potential, scientists have recently been developing nano-formulations and investigating various conjugations. The structure of doxorubicin consists of two primary functional groups that can be employed for conjugation with a variety of biomolecules, The first is the primary amine group in a sugar moiety, and the other one is the primary hydroxyl group in the aliphatic chain ring. In this paper, we have mentioned several conjugations of doxorubicin such as antibodies, nanoparticles, polymers, and phytochemical conjugations. Different studies regarding these conjugations are also mentioned, which represent promising strategies to optimize cancer treatment by minimizing side effects.
Collapse
Affiliation(s)
- Shreastha Gautam
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sachin Joshi
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Priya Jindal
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road Moga-142001, Punjab, India.
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India.
| |
Collapse
|
14
|
Pham T, Krogh Rose H, Rossen P, Aggerholm Pedersen N. The use of pegylated liposomal doxorubicin in metastatic soft tissue sarcoma. Acta Oncol 2025; 64:558-563. [PMID: 40269485 PMCID: PMC12041797 DOI: 10.2340/1651-226x.2025.43263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Soft tissue sarcoma (STS) is a heterogeneous group of rare malignancies with limited response to conventional chemotherapy. Among these, epithelioid haemangioendothelioma (EHE) and angiosarcoma represent rare vascular sarcomas with distinct clinical behaviours, challenging treatment approaches, and poor prognoses. Doxorubicin remains the standard first-line therapy for metastatic STS, but its use is constrained by dose-dependent cardiotoxicity. Pegylated liposomal doxorubicin (PLD) has been proposed as an alternative. MATERIAL AND METHOD This retrospective, registry-based cohort study investigates the efficacy of PLD in patients with locally advanced or metastatic STS treated at Aarhus University Hospital, Denmark, between 2008 and 2023. Patients were identified from a regional database, and progression-free survival (PFS) and overall survival (OS) were analysed. RESULTS A total of 38 patients were included, with 6 diagnosed with EHE and 16 with angiosarcoma. Among EHE patients, all had metastatic disease at diagnosis, with a median PFS of 7.8 months and OS of 1.5 years from the start of PLD treatment. Two patients remained progression-free for over 5 years. In angiosarcoma patients, the median PFS was 7.4 months, and the median OS was 2.4 years. Other STS subtype including solitary fibrous tumours (SFT), showed minimal benefit from PLD, with a median PFS of 2.8 months. INTERPRETATION Pegylated liposomal doxorubicin demonstrated clinically relevant activity in angiosarcoma and EHE. It may be considered a therapeutic option for patients with these aggressive vascular sarcomas. Further prospective studies are warranted to confirm its efficacy and optimised treatment strategies.
Collapse
Affiliation(s)
- Trang Pham
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Krogh Rose
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Philip Rossen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ninna Aggerholm Pedersen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
15
|
Solomon AD, Dabral S, Brajesh RG, Day BW, Juric M, Zielonka J, Bosnjak ZJ, Pant T. Understanding the Mechanisms of Chemotherapy-Related Cardiotoxicity Employing hiPSC-Derived Cardiomyocyte Models for Drug Screening and the Identification of Genetic and Epigenetic Variants. Int J Mol Sci 2025; 26:3966. [PMID: 40362211 PMCID: PMC12071959 DOI: 10.3390/ijms26093966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Chemotherapy-related cardiotoxicity (CTRTOX) is a profound and common side effect of cancer-based therapy in a subset of patients. The underlying factors and the associated mechanisms contributing to severe toxicity of the heart among these patients remain unknown. While challenges remain in accessing human subjects and their ventricular cardiomyocytes (CMs), advancements in human induced pluripotent stem cell (hiPSC)-technology-based CM differentiation protocols over the past few decades have paved the path for iPSC-based models of human cardiac diseases. Here, we offer a detailed analysis of the underlying mechanisms of CTRTOX. We also discuss the recent advances in therapeutic strategies in different animal models and clinical trials. Furthermore, we explore the prospects of iPSC-based models for identifying novel functional targets and developing safer chemotherapy regimens for cancer patients that may be beneficial for developing personalized cardioprotectants and their application in clinical practice.
Collapse
Affiliation(s)
- Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Swarna Dabral
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Raman Gulab Brajesh
- Department of Biomedical Engineering and Bioinformatics, Swami Vivekanand Technical University, Durg 491107, India;
| | | | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (M.J.); (J.Z.)
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (M.J.); (J.Z.)
| | - Zeljko J. Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Anderson E, Choi Y, Buchsbaum RJ, Klein A, Ky B, Landsburg D, Durani U, Ruddy KJ, Yu AF, Leong D, Asnani A, Neilan TG, Ganatra S, Bloom M, Barac A, Yang EH, Deswal A, Cheng RK, Weiss M, Evens AM, Kahl B, Friedberg JW, Parsons SK, Upshaw JN. Hematology-oncology provider perspectives regarding lymphoma treatment and cardioprotective strategies in patients with lymphoma at high risk for heart failure. Leuk Lymphoma 2025:1-10. [PMID: 40195874 DOI: 10.1080/10428194.2025.2484367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
The optimal treatment of patients with diffuse large B-cell lymphoma (DLBCL) or Hodgkin lymphoma (HL) with preexisting cardiomyopathy is uncertain. An anonymous, electronic survey was distributed by e-mail to three US lymphoma cooperative groups, two community hospitals, and twelve academic medical systems, and distributed at one international lymphoma meeting. Fifty hematology-oncology providers caring for patients with lymphoma were included. In response to a vignette of a 67-yo with Stage III DLBCL with LVEF of 40-45%, 15 (30%) would use non-anthracycline regimens, 13 (26%) R-CHOP with liposomal doxorubicin instead of doxorubicin, 11 (22%) R-CHOP without modification and 6 (12%) R-CHOP with a continuous doxorubicin infusion. In a second vignette of a patient with HL in remission after frontline treatment with doxorubicin cumulative dose 300 mg/m2, 16 (32%) would order an echocardiogram after treatment. There was substantial variability in preferred treatment regimens with preexisting cardiomyopathy and in cardiac monitoring after anthracycline.
Collapse
Affiliation(s)
- Emily Anderson
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Yun Choi
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | | | - Andreas Klein
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Landsburg
- Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kathryn J Ruddy
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Anthony F Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darryl Leong
- Department of Medicine and the Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tomas G Neilan
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sarju Ganatra
- Division of Cardiology, Lahey Clinic, Burlington, MA, USA
| | - Michelle Bloom
- Division of Cardiology, NYU Langone Health, New York, NY, USA
| | - Ana Barac
- Division of Cardiology, Inova Schar Heart and Vascular, Fairfax, VA, USA
| | - Eric H Yang
- Division of Cardiology, UCLA Cardio-Oncology Program, University of California, Los Angeles Medical Center, Los Angeles, CA, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington Medical Center, Seattle, WA, USA
| | | | | | - Brad Kahl
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Susan K Parsons
- Division of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
- Tufts Medical Center, Institute for Clinical Research and Health Policy Studies, Boston, MA, USA
| | - Jenica N Upshaw
- Tufts Medical Center, Institute for Clinical Research and Health Policy Studies, Boston, MA, USA
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
17
|
Liao S, Zhang X, Chen L, Zhang J, Lu W, Rao M, Zhang Y, Ye Z, Ivanova D, Li F, Chen X, Wang Y, Song A, Xie B, Wang M. KRT14 is a promising prognostic biomarker of breast cancer related to immune infiltration. Mol Immunol 2025; 180:55-73. [PMID: 40014952 DOI: 10.1016/j.molimm.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/12/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Breast cancer (BC) is the leading cancer among women globally, which has the highest incidence and mortality rate in over a hundred countries. This study was intended to discover a new prognostic biomarker, facilitating personalized treatment approaches. METHODS RNA sequencing data from The Cancer Genome Atlas database and Gene Expression Omnibus database were utilized to download to evaluate expression levels and prognostic significance of Keratin 14 (KRT14). Methylation of KRT14 was also assessed. The CIBERSORT and single-sample gene set enrichment analysis algorithms were applied to explore the connection between KRT14 and the tumor microenvironment. Primary drugs' sensitivity and potential small molecule therapeutic compounds were analyzed through the "pRRophetic" R package and the Connectivity Map. The prognostic value of KRT14 was additionally corroborated through a comparison of protein levels in peritumoral and cancerous tissues via immunohistochemistry. Moreover, an immune-related prognostic model based on KRT14 was designed to enhance the prediction accuracy for the prognosis of BC patients. RESULTS The study found that KRT14 expression was generally downregulated in BC, correlating strongly with poor prognosis. Compared to normal tissues, the methylation level of KRT14 was higher in BC tissues. Lower expression of KRT14 was linked to decreased anti-tumoral immune cells infiltration and increased immunosuppressive cells infiltration. Sensitivity to various key therapeutic drugs was lower in groups with diminished KRT14 expression. In addition, several potential anti-BC small molecule compounds were identified. The model designed in this study significantly enhanced the predictive capability for BC patients compared to predictions based solely on KRT14 expression levels. CONCLUSION Overall, KRT14 was closely correlated with the prognosis in BC, making it a reliable biomarker.
Collapse
Affiliation(s)
- Siqi Liao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lanhui Chen
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianning Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiyu Lu
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Mengou Rao
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yifan Zhang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zijian Ye
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Deyana Ivanova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston MA02115, USA
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Meijiao Wang
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction, Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
19
|
Mei X, Uribe Estrada MF, Rizwan M, Lukin I, Sanchez Gonzalez B, Marin Canchola JG, Velarde Jarquín V, Salazar Parraguez X, Del Valle Rodríguez F, Garciamendez-Mijares CE, Lin Z, Guo J, Wang Z, Maharjan S, Orive G, Zhang YS. A bioprinted animal patient-derived breast cancer model for anti-cancer drug screening. Mater Today Bio 2025; 31:101449. [PMID: 39896287 PMCID: PMC11782996 DOI: 10.1016/j.mtbio.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Animal models are commonly used for drug screening before clinical trials. However, developing these models is time-consuming, and the results obtained from these models may differ from clinical outcomes due to the differences between animals and humans. To this end, 3D bioprinting offers several advantages for drug screening, such as high reproducibility and improved throughput, in addition to the human cells that can be used to generate these models. Here, we report the development of an animal patient-derived in vitro breast cancer model for drug screening using digital light processing (DLP) bioprinting. These bioprinted models demonstrated good cytocompatibility and preserved phenotypes of the cells. DLP enabled rapid fabrication with blood vessel-like channels to replicate, to a good extent, the tumor microenvironment. Our findings suggested that the improved microenvironment, provided by vascular structures within the bioprinted models, played a crucial role in reducing the chemoresistance of drugs. In addition, the correlation of the in vitro and in vivo drug-screening results was preliminarily performed to evaluate the predictive feasibility of this bioprinted model, suggesting a potential strategy for the design of future drug-testing platforms.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Maria Fernanda Uribe Estrada
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Muhammad Rizwan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad 45550, Pakistan
| | - Izeia Lukin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01009, Spain
| | - Begoña Sanchez Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Jose Gerardo Marin Canchola
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Valeria Velarde Jarquín
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Francisco Del Valle Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| |
Collapse
|
20
|
Levytska K, Naumann RW, Benfield MJ, Brown J, Casablanca Y, Lees B, Puechl AM, Crane EK. Pegylated liposomal doxorubicin does not affect cardiac function in patients treated for gynecologic malignancies. Gynecol Oncol Rep 2025; 58:101727. [PMID: 40201899 PMCID: PMC11978316 DOI: 10.1016/j.gore.2025.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
Objective Although pegylated liposomal doxorubicin (PLD) has a more favorable side-effect profile compared to doxorubicin, the FDA label for PLD includes a warning listing cardiotoxicity. Our objective was to evaluate predictors of pre- and post-treatment cardiac testing and quantify the effect of PLD on cardiac function in patients treated for gynecologic malignancies. Methods Retrospective chart review of gynecologic oncology patients who received PLD over a 10-year period at a single institution. Cardiac studies were aligned to PLD treatment and ejection fractions (EF) were compared pre- and post-treatment. Results A total of 453 patients who had received PLD were identified; 216 (48 %) had pre-PLD treatment cardiac function testing. Predictors of pre-chemotherapy testing were diabetes (p = 0.015), higher ECOG score (p = 0.004), and cardiac disease (p = 0.032). Eighty-three (18.3 %) patients had pre- and post-PLD treatment cardiac function testing. Predictors of pre- and post- testing were number of cycles of PLD (p < 0.0001) and total dose of PLD (p < 0.0001). Seventy-five (90 %) patients had no change in EF (defined as < 10 %), while 2 (2.4 %) had improvement in EF > 10 %, and 6 (7.2 %) had a decrease in EF > 10 %. Initial EF in patients with > 10 % decrease was higher than in those without change or improvement (p = 0.0004). One (1.2 %) patient had a clinically significant decrease in EF (32.5 %) resulting in interruption of treatment. Conclusion Risk of cardiac toxicity from administration of PLD for patients undergoing treatment for gynecologic cancers appears to be low. Selective screening of cardiac function should be employed for these patients.
Collapse
Affiliation(s)
- Khrystyna Levytska
- Division of Gynecologic Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - R. Wendel Naumann
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Miranda J. Benfield
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jubilee Brown
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Yovanni Casablanca
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Brittany Lees
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Allison M. Puechl
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Erin K. Crane
- Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
21
|
Gaumond SI, Lee KJ, Warp PV, Kamholtz I, Dreifus EM, Jimenez JJ. Parallel Toxicities: A Comparative Analysis of Chemotherapy-Induced Neutropenia and Alopecia. Cancers (Basel) 2025; 17:1163. [PMID: 40227705 PMCID: PMC11987909 DOI: 10.3390/cancers17071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Chemotherapy-induced neutropenia (CIN) and chemotherapy-induced alopecia (CIA) are significant toxicities affecting cancer patients. CIN is a potentially fatal complication of chemotherapy caused by myelosuppression and increased infection susceptibility, while CIA, although not fatal, severely affects treatment adherence and mental health. This study provides a comprehensive comparative analysis of CIN and CIA, focusing on patient, disease, treatment, and genetic risk factors. Key risk factors for CIN and CIA include age, poor performance status, body mass index (BMI), laboratory abnormalities, and pre-existing comorbidities. Both toxicities were significantly associated with breast cancer patients, although CIN patients were more likely to have hematological cancer, and CIA patients were more likely to have solid tumors. Notably, anthracyclines, alkylators, and taxanes frequently induce both toxicities, although their timelines and clinical implications differed. There was no clear overlap between genetic predispositions and toxicities beyond single-nucleotide polymorphisms (SNPs) in the ABCB1 gene. This is the first study to directly compare CIN and CIA, offering insights into personalized oncology care. Understanding the risk factors implicated in the development of CIN and CIA will enable physicians to manage patient outcomes.
Collapse
Affiliation(s)
- Simonetta I. Gaumond
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Karen J. Lee
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Peyton V. Warp
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Isabella Kamholtz
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Emilee M. Dreifus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Joaquin J. Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| |
Collapse
|
22
|
Wan Z, Wang C, Luo S, Zhu J, He H, Hao K. Bridging the Gap Between hiPSC-CMs Cardiotoxicity Assessment and Clinical LVEF Decline Risk: A Case Study of 21 Tyrosine Kinase Inhibitors. Pharmaceuticals (Basel) 2025; 18:450. [PMID: 40283889 PMCID: PMC12030206 DOI: 10.3390/ph18040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Objectives: There is growing concern over tyrosine kinase inhibitor (TKI)-induced cardiotoxicity, particularly regarding left ventricular dysfunction and heart failure in clinical treatment. These adverse effects often lead to treatment discontinuation, severely impacting patient outcomes. Therefore, there is an urgent need for more precise risk assessment methods. This study aimed to assess the cardiotoxicity of TKIs, refine in vitro to in vivo extrapolation (IVIVE) methodologies to improve predictive accuracy, and identify critical in vitro parameters for assessment. Methods: By leveraging high-throughput cardiotoxicity screening with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a mechanism-based toxicodynamic (TD) model for TKIs was constructed. A QSP-PK-TD model was developed by integrating pharmacokinetic (PK) and quantitative systems pharmacology (QSP) models. This model incorporates critical drug exposure factors, such as plasma protein binding, tissue-plasma partitioning, and drug distribution heterogeneity to enhance extrapolation accuracy. Results: The QSP-PK-TD model validated the reliability of IVIVE and identified the area under the curve of drug effects on mitochondrial membrane potential (AEMMP) and cardiomyocyte contractility (AEAAC) as key in vitro parameters for assessing TKI-induced cardiotoxicity. Incorporating critical drug exposure factors obviously improved qualitative and quantitative extrapolation accuracy. Conclusions: This study established a framework for predicting in vivo cardiotoxicity from in vitro parameters, enabling efficient translation of preclinical data into clinical risk assessment. These findings provide valuable insights for drug development and regulatory decision-making, offering a powerful tool for evaluating TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhijie Wan
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenyu Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinwei Zhu
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Kun Hao
- State Key Laboratory of Natural Medicine, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Ghahremanloo A, Erfani B, Asgharzadeh F, Mansoori S, Gheybi F, Hashemy SI. Reducing toxicity and enhancing efficacy of doxorubicin by liposomal doxorubicin and aprepitant in breast cancer. Sci Rep 2025; 15:9798. [PMID: 40118925 PMCID: PMC11928494 DOI: 10.1038/s41598-025-94291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
This study investigates the efficacy and toxicity profiles of pegylated liposomal doxorubicin (Doxil) compared to conventional doxorubicin. Additionally, it evaluates the potential of combination therapy involving Doxil and doxorubicin with aprepitant, an FDA-approved agent for the management of chemotherapy-induced nausea and vomiting. Using a mouse model induced with 4T1 breast cancer cells, tumor size, and weight were assessed following treatment with either single doses or combination therapies. The study also examined oxidative and antioxidant stress markers in tumor, liver, and cardiac tissues, complemented by histopathological analysis of these tissues using hematoxylin and eosin staining. Results indicated that prepared liposomal doxorubicin significantly enhanced antitumor efficacy, as evidenced by decreased tumor size and weight. Moreover, it positively influenced oxidative stress markers, promoting apoptosis in tumor tissues. Notably, Doxil also reduced adverse effects compared to standard doxorubicin, as indicated by lower oxidative stress levels and increased antioxidant activity in both cardiac and liver tissues. The combined administration of doxorubicin and aprepitant further improved therapeutic efficacy and reduced side effects. Consequently, the formulation of doxorubicin in liposomes and aprepitant-based combination therapy represents a promising strategy for enhancing treatment effectiveness while minimizing adverse effects in breast cancer management.
Collapse
Affiliation(s)
- Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeide Mansoori
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Chen Y, Liu F, Jin Q. Polymer-Mediated Delivery of Amphotericin B for Fungal Infections. Macromol Rapid Commun 2025:e2500013. [PMID: 40107872 DOI: 10.1002/marc.202500013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Invasive fungal infections have been an increasingly global issue with high mortality. Amphotericin B (AmB), as the "gold standard" antifungal drug, has broad-spectrum antifungal activity and low clinical resistance. Therefore, AmB is the most commonly used polyene antibiotic for the treatment of invasive fungal infections. However, the serious side effects as well as the low bioavailability of AmB strongly restrict its clinical applications. Polymer, with its diversified molecular design, is widely used in drug delivery in the form of polymeric prodrugs, nanoparticles, hydrogels, etc. Therefore, polymers hold great promise for the delivery of AmB in treating fungal infections. This review summarizes recent advances in polymer-based delivery systems of AmB for the treatment of fungal infections, including polymer-AmB conjugates, nanotechnology-based polymeric delivery systems, hydrogels, and polymeric microneedles. Taking advantage of polymer-based delivery strategies, special attention is paid to reducing the side effects and improving the bioavailability of AmB for safe and effective antifungal therapy. Finally, the limitations and possible future directions of polymer-based AmB delivery systems are discussed.
Collapse
Affiliation(s)
- Yongnan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
25
|
Wang X, Allen C. Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study. Drug Deliv Transl Res 2025; 15:1011-1022. [PMID: 38977541 DOI: 10.1007/s13346-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.
Collapse
Affiliation(s)
- Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413367. [PMID: 39854126 PMCID: PMC11905078 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Min Gu
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | | | - Jun Liao
- Institute of Systems BiomedicineBeijing Key Laboratory of Tumor Systems BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Dan Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Jingwu Li
- The First Hospital of China Medical UniversityLiaoning110001China
| |
Collapse
|
27
|
Du R, Cao C, Fan D, Li G, Pu S, Xu X, Liu M, Shi G, Wu Y, Hao Q, Gao Y, Zhang J, Zhao H, Zhang C. NK cell immunopotentiators-loaded nanoliposomes enhance ADCC effect for targeted therapy against HER2-positive breast cancer. Cell Commun Signal 2025; 23:106. [PMID: 39987140 PMCID: PMC11846243 DOI: 10.1186/s12964-024-02023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/30/2024] [Indexed: 02/24/2025] Open
Abstract
Trastuzumab serves as a cornerstone of first-line therapy for HER2-positive (HER2+) breast cancer; however, a significant challenge arises due to the emergence of resistance within approximately one year of commencement of treatment, particularly in advanced cases with metastatic disease where its efficacy is limited. Our investigation into the tumor tissue from HER2+ breast cancer patients, employing single-cell sequencing and bioinformatics analysis, has elucidated a crucial mechanism underlying the reduced responsiveness of tumors to trastuzumab: the diminished infiltration and activity of natural killer (NK) cells within the tumor microenvironment (TME). To counteract this impediment, we meticulously selected two potent immune-modulating peptides TKD and IP-10p, which are known to recruit and enhance the activity of NK cells. Through in vitro experiments, we substantiated that bolstering the tumor infiltration and activity of NK cells can lead to an enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) effect, thereby amplifying the anti-tumor activity of trastuzumab. Building upon this foundational discovery, we further designed HER2-targeted pH-sensitive nanoliposomes to encapsulate TKD and IP-10p peptides. The novel designed nanoliposomes were strategically employed in conjunction with NK cell supplement therapy within a HER2+ breast cancer model undergoing trastuzumab treatment, yielding a striking anti-tumor response and indicating that the combination strategy effectively reinvigorated the anti-tumor immune response. In essence, this study not only underscores a critical link between the diminished ADCC effect mediated by trastuzumab and the development of resistance in HER2+ breast cancer but also demonstrates leveraging HER2-targeted nanoliposomes to deliver NK cell immunopotentiators can significantly enhance the functional activity of NK cells and their infiltration within the TME, culminating in improved antitumor efficacy of trastuzumab through the augmentation of the ADCC effect.
Collapse
Affiliation(s)
- Ruoxin Du
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, P. R. China
| | - Changqing Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, P. R. China
- Department of General Surgery, The Second Affiliated Hospital of The Fourth Military Medical University, 710038, Xi'an, P. R. China
| | - Dong Fan
- Department of General Surgery, The Second Affiliated Hospital of The Fourth Military Medical University, 710038, Xi'an, P. R. China
| | - Guodong Li
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Shuangpeng Pu
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xinyao Xu
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Mengmeng Liu
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Gege Shi
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yuxin Wu
- College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Qiang Hao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, P. R. China
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, P. R. China
| | - Juliang Zhang
- Department of Vascular and Endocrine Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710000, China.
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of The Fourth Military Medical University, 710038, Xi'an, P. R. China.
| | - Cun Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 710032, Xi'an, P. R. China.
| |
Collapse
|
28
|
Balough E, Ariza A, Asnani A, Hoeger CW. Cardiotoxicity of Anthracyclines. Cardiol Clin 2025; 43:111-127. [PMID: 39551553 DOI: 10.1016/j.ccl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Anthracycline chemotherapy is associated with cardiotoxicity, predominantly manifesting as left ventricular systolic dysfunction within the first year of treatment. Early detection is possible through biomarkers and cardiovascular imaging before clinical symptoms develop. Comprehensive cardiovascular risk assessment is essential for all patients prior to anthracycline therapy to stratify their risk of cardiotoxicity. Preventive measures, including cardiovascular risk optimization, as well as anthracycline dose adjustments, the use of liposomal anthracyclines, and dexrazoxane in high-risk patients, are crucial to mitigate the risk of cardiotoxicity. Long-term follow-up and cardiovascular risk optimization are critical for cancer survivors to optimize cardiovascular outcomes.
Collapse
Affiliation(s)
- Elizabeth Balough
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Baker 4, Boston, MA 02215, USA. https://twitter.com/ElizabethBaloug
| | - Abul Ariza
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; 3 Blackfan Circle, CLS-911, Boston, MA 02115, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; 3 Blackfan Circle, CLS-911, Boston, MA 02115, USA. https://twitter.com/AartiAsnaniMD
| | - Christopher W Hoeger
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, 185 Pilgrim Road, Baker 4, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Lopetegui-Lia N, Varma R, Abraham J, Roesch E. Current and Novel Treatment Options in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. JCO Oncol Pract 2025; 21:145-154. [PMID: 39167745 DOI: 10.1200/op.23.00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Metastatic breast cancer (mBC) remains an incurable disease, and most patients will experience disease progression during their treatment course. Although endocrine therapy remains the mainstay of treatment for hormone receptor-positive/human epidermal growth factor receptor 2-negative mBC, significant progress has been and continues to be made in the treatment of this BC subtype. The discovery of molecular markers, mutations in key cellular pathways, and genomic signatures have led to the development of novel and targeted agents, such as antibody-drug conjugates, oral selective estrogen receptor downregulators, and inhibitors of the PI3K/AKT/mTOR pathway. This has resulted in significant improvements in the survival and quality of life of patients. With the increasing number of treatment options for patients, appropriate drug sequencing remains a challenge. Treatment discussions should involve patient-physician shared decision making, with consideration of genomic data, previous lines of therapy, side effect profiles, and clinical trial enrollment.
Collapse
|
30
|
Salmasi Z, Kamali H, Rezaee H, Nazeran F, Jafari Z, Eisvand F, Teymouri M, Khordad E, Mosafer J. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Deliv Transl Res 2025; 15:770-785. [PMID: 39215953 DOI: 10.1007/s13346-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, DOX (Doxorubicin) and Fe3O4 magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g. The NPs showed faster DOX release at pH 5.5 compared to pH 7.4. Also, the cytotoxicity effect of NPs increased compared to Free-DOX alone in C6 glioma cancer cells. For in vivo investigations, the 2.2 Kg rabbits were injected with NPs formulations via a central articular anterior vein in their ears. Furthermore, the images of rabbit organs were depicted via MR (Magnetic resonance) and fluorescent imaging techniques. A negative contrast (dark signal) was observed in T2 (Relaxation Time) weighted MR images of IV (Intravenously)-injected rabbits with NPs compared to the control ones. The organ's florescent images of NPs-injected rabbits showed a high density of red color related to the accumulation of DOX in liver and kidney organs. These data showed that the NPs have no cytotoxicity effect on the heart. Also, the results of histopathological tests of different organs showed that the groups receiving NPs and Free-DOX were almost similar and no significant difference was seen, except for the cardiac tissue in which the pathological effects of NPs were significantly less than the Free-DOX. Additionally, pharmacokinetic studies were also conducted at the sera and whole bloods of IV-injected rabbits with NPs and Free-DOX. The pharmacokinetic parameters showed that NPs could enhance the DOX retention in the serum compared to the Free-DOX. Altogether, we aimed to produce a powerful delivery nanosystem for its potential in dual therapeutic and diagnostic applications which are called theranostic agents.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Rezaee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Nazeran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frarhad Eisvand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, North Khorasan, Iran
| | - Elnaz Khordad
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, P.O. Box 9516915169, Torbat Heydariyeh, Iran.
| |
Collapse
|
31
|
Buchalska B, Kamińska K, Kowara M, Sobiborowicz-Sadowska A, Cudnoch-Jędrzejewska A. Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity. Cardiovasc Toxicol 2025; 25:248-268. [PMID: 39810066 DOI: 10.1007/s12012-024-09952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents. Development of DIC is associated with many pathological phenomena - increased oxidative stress, as well as upregulation of ferroptosis, apoptosis, necrosis, and autophagy. In DIC expression of many microRNAs is also deregulated. In order to avoid cardiotoxicity and still use DOX effectively DOX derivatives such as epirubicin were synthesized. Nowadays a new liposomal form of DOX (L-DOX) appeared as an alternative to conventional treatment with greatly reduced cardiotoxicity. L-DOX can be divided into two groups of substances - pegylated (PLD) with increased solubility and stability, and non-pegylated (NLPD). Many metaanalyses, clinical along with preclinical studies have shown L-DOX treatment is associated with a smaller decrease of left ventricular ejection fraction (LVEF) and other heart functions, but efficacy of this treatment is comparable to the use of convenctional DOX.
Collapse
Affiliation(s)
- Barbara Buchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Aleksandra Sobiborowicz-Sadowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
32
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
33
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
34
|
Chen Y, Qin H, Li N, Wei Y, Lin Y, Deng R, Ding H, Lv Y, Ma T, Li R, Xiong C, Zheng G, Chen H, Shi J, Zhao Y, Zhao R, Nie G. Neoadjuvant chemotherapy by liposomal doxorubicin boosts immune protection of tumor membrane antigens-based nanovaccine. Cell Rep Med 2025; 6:101877. [PMID: 39708812 PMCID: PMC11866438 DOI: 10.1016/j.xcrm.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Autologous tumor cell membrane antigen-based vaccines (TMVs) have garnered extensive attention as personalized immunotherapy. However, patients who take TMVs therapy usually undergo various treatments prior to surgery, and these processes modulate the immunogenicity of the tumor membrane and the tumor immune microenvironment. Herein, we investigate the impact of preoperative chemotherapy on the efficacy of TMVs. Liposomal doxorubicin ameliorates the immunosuppressive tumor microenvironment and enhances immunological molecule expression on the tumor membrane. This has driven TMVs to elicit a more robust immune response than doxorubicin, resulting in more effective immune protection. The TMVs formulated from liposomal doxorubicin-treated tumors induce superior dendritic cell maturation and T cell activation compared to doxorubicin, thus demonstrating better efficacy in preventing recurrence and metastasis in the postoperative murine model. Collectively, our study suggests that chemotherapy can induce immunomodulatory changes that augment the therapeutic potential of immunotherapy and provides valuable insights into the clinical utilization of TMVs.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Nan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yixuan Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ronghui Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Hao Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuanyuan Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Tianyu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Rong Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Changhao Xiong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Guyu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hanqing Chen
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
35
|
Gabizon AA, Gabizon-Peretz S, Modaresahmadi S, La-Beck NM. Thirty years from FDA approval of pegylated liposomal doxorubicin (Doxil/Caelyx): an updated analysis and future perspective. BMJ ONCOLOGY 2025; 4:e000573. [PMID: 39885941 PMCID: PMC11751825 DOI: 10.1136/bmjonc-2024-000573] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025]
Abstract
In 2025, it will be 30 years since the initial clinical approval of pegylated liposomal doxorubicin (PLD) by the Food and Drug Administration. PLD predated the field of nanomedicine and became a model nanomedicine setting key pharmacological principles (prolonged circulation, slow drug release and the enhanced permeability and retention (EPR) effect) for clinical application of other nano-drugs in cancer therapy. The impressive reduction of cardiotoxicity conferred by PLD is the most valuable clinical asset. While PLD has gained a strong foothold in relapsed ovarian cancer and metastatic breast cancer, it has not been extensively tested in primary (neoadjuvant) and adjuvant therapy and has not fulfilled the expectations from the results in animal models efficacy-wise. This discrepancy may be due to the large dose gap between mice and humans and the apparent variability of the EPR effect in human cancer. PLD is a complex product and we are still in a learning curve regarding a number of factors such as its interaction with the complement system and its immune modulatory properties, as well as its integration in multimodality therapy that may potentiate its value and role in cancer therapy.
Collapse
Affiliation(s)
- Alberto A Gabizon
- The Leah and Jakub Susskind Nano-Oncology Research Laboratory, Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
- Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Shira Gabizon-Peretz
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Central, Israel
- Tel Aviv University, Faculty of Medicine, Tel Aviv, Israel
| | - Shadan Modaresahmadi
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H Hodge School of Pharmacy, Abilene, Texas, USA
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H Hodge School of Pharmacy, Abilene, Texas, USA
| |
Collapse
|
36
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
37
|
Haghighat ZA, Safekordi A, Ardjmand M, Akbarzadeh A. Exploring the Antitumor Efficacy of PEGylated Liposomes Loaded with Licorice Extract for Cancer Therapy. Curr Cancer Drug Targets 2025; 25:357-369. [PMID: 38685810 DOI: 10.2174/0115680096292153240416115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Glycyrrhizic Acid (GA), a compound derived from licorice, has exhibited promising anticancer properties against several cancer types, including Prostate Cancer (PCa) and Gastric Cancer (GCa). OBJECTIVE This study has introduced a novel approach involving the encapsulation of GA and Licorice extract (Lic) into Polyethylene Glycol Liposomes (PEG-Lip) and assessed their efficacy against AGS (human gastric cancer) and PC-3 (human prostate cancer) cells, marking the first report of this endeavor. METHODS We synthesized GA-loaded PEG-Lip (GA PEG-Lip) and Lic-loaded PEG-Lip (Lic PEG-Lip) through the reverse-phase evaporation method. RESULTS Characterization of these liposomal formulations revealed their size, drug encapsulation, and loading efficiencies to be 110 ± 2.05 nm, 117 ± 1.24 nm; 61 ± 0.81%, 34 ± 0.47%; and 8 ± 0.41% and 4.6 ± 0.21%, respectively. Importantly, the process has retained the chemical structure of both GA and Lic. Furthermore, GA and Lic have been released from the PEG-Lip formulations in a controlled manner. In our experiments, both nanoformulations exhibited enhanced cytotoxic effects against AGS and PC-3 cells. Notably, GA PEG-Lip outperformed Lic PEG-Lip, reducing the viability of PC-3 and AGS cells by 12.5% and 15.9%, respectively. CONCLUSION These results have been corroborated by apoptosis assays, which have demonstrated GA PEG-Lip and Lic PEG-Lip to induce stronger apoptotic effects compared to free GA and Lic on both PC-3 and AGS cells. This study has underscored the potential of encapsulating GA and Lic in PEG-Lip as a promising strategy to augment their anticancer efficacy against prostate and gastric cancers.
Collapse
Affiliation(s)
- Zeinab Azizi Haghighat
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Safekordi
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
Luo B, Tan X, Zhang Y, Hu X, Zeng H, Xiao H, Lou S, Zhou K. Pegylated Liposomal Doxorubicin Combined with Cytarabine and Granulocyte Colony-Stimulating Factor for Treating Newly Diagnosed Older and Unfit Acute Myeloid Leukemia Patients: A Prospective, Single-Center, Single-arm, Phase II Study. Technol Cancer Res Treat 2025; 24:15330338241312436. [PMID: 40147876 PMCID: PMC11952034 DOI: 10.1177/15330338241312436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
BackgroundEffective treatment options are limited for elderly patients with acute myeloid leukemia (AML). A prospective phase II study was conducted to investigate the safety and efficacy of pegylated liposomal doxorubicin (PLD) combined with low-dose cytarabine (LDAC) and granulocyte colony-stimulating factor (G-CSF) in newly diagnosed older and unfit AML patients.MethodsTwenty-two patients were enrolled and deemed evaluable. The study included one cycle of induction and four cycles of consolidation, followed by maintenance therapy.ResultsThe median age of enrolled patients was 71.5 years (range, 63 to 82 years), and 16 patients (72.7%) were over 70 years of age. The overall response rate (ORR) was 77.3% (n = 17) and the complete remission (CR)/complete remission with incomplete recovery (CRi) rate was 63.6% (n = 14) after the first induction cycle. With a median follow-up of 12.4 months, eight patients (57.1%) relapsed, with a median time to relapse of 12.3 months. The median duration of response (DOR) was 11.9 months (95% CI, 6.4 to NA months), the median overall survival (OS) was 15 months (95% CI, 8.4 to 21.6 months), and the median progression-free survival (PFS) was 7.5 months (95% CI, 4.6 to 15.1 months). Common grade 3 or greater adverse events included febrile neutropenia (77.8%) and infection (63.6%), with pneumonia being the most common (10, 45.5%). There was one death (4.5%) within 30 days.ConclusionThe combination of PLD, LDAC, and G-CSF is well-tolerated and exhibits high rates of CR/CRi and low early mortality, providing an attractive treatment option for newly diagnosed elderly and unfit AML patients.
Collapse
Affiliation(s)
- Bingqing Luo
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Xiaoyan Tan
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Yanfang Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Xiao Hu
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Hongbo Xiao
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| | - Kang Zhou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, 400000, China
| |
Collapse
|
39
|
Meng X, Yao J, Gu J. Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems. J Pharm Anal 2025; 15:101070. [PMID: 39885973 PMCID: PMC11780097 DOI: 10.1016/j.jpha.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 02/01/2025] Open
Abstract
Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of in vivo processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks. However, the complexity of Nano-DDSs has impeded thorough and systematic pharmacokinetic studies. Key components of pharmacokinetic investigations on Nano-DDSs include the analysis of the released drug, the encapsulated drug, and the nanomaterial, which present a higher level of complexity compared to traditional small-molecule drugs. Establishing an appropriate approach for monitoring the pharmacokinetics of Nano-DDSs is crucial for facilitating the clinical translation of nanomedicines. This review provides an overview of advanced bioanalytical methodologies employed in studying the pharmacokinetics of anticancer organic Nano-DDSs over the past five years. We hope that this review will enhance the understanding of the pharmacokinetics of Nano-DDSs and support the advancement of nanomedicines.
Collapse
Affiliation(s)
- Xiangjun Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiayi Yao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jingkai Gu
- Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
40
|
Muhammad FA, Altalbawy FMA, Mandaliya V, Saraswat SK, Rekha MM, Aulakh D, Chahar M, Mahdi MS, Jaber MA, Alhadrawi M. Targeting breast tumor extracellular matrix and stroma utilizing nanoparticles. Clin Transl Oncol 2024:10.1007/s12094-024-03793-x. [PMID: 39692807 DOI: 10.1007/s12094-024-03793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Breast cancer is a complicated malignancy and is known as the most common cancer in women. Considerable experiments have been devoted to explore the basic impacts of the tumor stroma, particularly the extracellular matrix (ECM) and stromal components, on tumor growth and resistance to treatment. ECM is made up of an intricate system of proteins, glycosaminoglycans, and proteoglycans, and maintains structural support and controls key signaling pathways involved in breast tumors. ECM can block different drugs such as chemotherapy and immunotherapy drugs from entering the tumor stroma. Furthermore, the stromal elements, such as cancer-associated fibroblasts (CAFs), immune cells, and blood vessels, have crucial impacts on tumor development and therapeutic resistance. Recently, promising outcomes have been achieved in using nanotechnology for delivering drugs to tumor stroma and crossing ECM in breast malignancies. Nanoparticles have various benefits for targeting the breast tumor stroma, such as improved permeability and retention, extended circulation time, and the ability to actively target the area. This review covers the latest developments in nanoparticle therapies that focus on breast tumor ECM and stroma. We will explore different approaches using nanoparticles to target the delivery of anticancer drugs like chemotherapy, small molecule drugs, various antitumor products, and other specific synthetic therapeutic agents to the breast tumor stroma. Furthermore, we will investigate the utilization of nanoparticles in altering the stromal elements, such as reprogramming CAFs and immune cells, and also remodeling ECM.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Viralkumar Mandaliya
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Damanjeet Aulakh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology Chitkara University, Rajpura, Punjab, 140401, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering and Technology, NIMS University Rajasthan, Jaipur, India
| | | | | | - Merwa Alhadrawi
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Refrigeration and air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
41
|
Oliveira FD, Cavaco M, Figueira TN, Napoleão P, Valle J, Neves V, Andreu D, Castanho MA. vCPP2319 interacts with metastatic breast cancer extracellular vesicles (EVs) and transposes a human blood-brain barrier model. Heliyon 2024; 10:e40907. [PMID: 39717586 PMCID: PMC11664409 DOI: 10.1016/j.heliyon.2024.e40907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Brain metastases (BM) are frequently found in cancer patients and, though their precise incidence is difficult to estimate, there is evidence for a correlation between BM and specific primary cancers, such as lung, breast, and skin (melanoma). Among all these, breast cancer is the most frequently diagnosed among women and, in this case, BM cause a critical reduction of the overall survival (OS), especially in triple negative breast cancer (TNBC) patients. The main challenge of BM treatment is the impermeable nature of the blood-brain barrier (BBB), which shields the central nervous systems (CNS) from chemotherapeutic drugs. Extracellular vesicles (EVs) have been proposed as ideal natural drug carriers and these may exhibit some advantages over synthetic nanoparticles (NPs). In this work, we isolate breast cancer-derived EVs and study their ability to carry vCPP2319, a peptide with dual cell-penetration and anticancer activities. The selective cytotoxicity of anticancer peptide-loaded EVs towards breast cancer cells and their ability to translocate an in vitro BBB model are also addressed. Overall, it was possible to conclude that vCPP2319 naturally interacts with breast cancer-derived EVs, being retained at the surface of these vesicles. Moreover, the results revealed a cytotoxic activity for peptide-loaded EVs similar to that obtained with the peptide alone and the ability of peptide-loaded EVs to translocate an in vitro BBB model, which contrasts with the results obtained with the peptide alone. In conclusion, this work supports the use of EVs in the development of biological drug-delivery systems (DDS) capable of translocating the BBB.
Collapse
Affiliation(s)
- Filipa D. Oliveira
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Marco Cavaco
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Tiago N. Figueira
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Patrícia Napoleão
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - Javier Valle
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003, Barcelona, Spain
| | - Vera Neves
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| | - David Andreu
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003, Barcelona, Spain
| | - Miguel A.R.B. Castanho
- Gulbenkian Institute for Molecular Medicine, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, 1649-028, Portugal
| |
Collapse
|
42
|
Baby B, Sam N, M P N, Anjaneyan G, M P R. Therapy-related hand-foot syndrome: a review. J Chemother 2024:1-12. [PMID: 39651796 DOI: 10.1080/1120009x.2024.2437336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Anti-tumor drugs cause hand-foot syndrome through a variety of pathogenic mechanisms. Some chemotherapeutic medications that can cause HFS include 5FU, doxorubicin, capecitabine, high dose cytarabine, and others. These medications each have a unique mechanism resulting in HFS. The histopathological characteristics, clinical manifestations, and variations in gender, ethnicity, or genetic makeup might also impact the development of HFS as an adverse drug reaction. Even though the disease might not become life-threatening, it is nevertheless vital to manage it with therapeutic interventions or by withholding the medication in order to enhance the patient's outcome. Current developments in pharmacological and non-pharmacological therapeutic approaches for managing symptoms also emphasis the same.
Collapse
Affiliation(s)
- Bilha Baby
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Nevin Sam
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Narmadha M P
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Gopikrishnan Anjaneyan
- Department of Dermatology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Rakesh M P
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
43
|
Fei Y, Yan X, Liang M, Zhou S, Xu D, Li L, Xu W, Song Y, Zhu Z, Zhang J. Lysosomal gene ATP6AP1 promotes doxorubicin resistance via up-regulating autophagic flux in breast cancer. Cancer Cell Int 2024; 24:394. [PMID: 39627767 PMCID: PMC11616228 DOI: 10.1186/s12935-024-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Breast cancer remains the most prevalent malignancy in women. Chemotherapy is the primary systemic treatment modality, and the effectiveness of treatment is often hampered by chemoresistance. Autophagy has been implicated in promoting chemoresistance, as elevated autophagic flux supports tumor cell survival under therapeutic stress. Since lysosomes are essential for the completion of autophagy, their role in autophagy-related chemoresistance has been insufficiently studied. This study aims to elucidate the role of the lysosomal gene ATP6AP1 in promoting chemoresistance in breast cancer by upregulating autophagic flux. METHODS Doxorubicin-induced cell death was assessed by cytotoxicity, flow cytometry, lactate dehydrogenase (LDH) release assays in various breast cancer cell lines. Autophagic flux was assessed with western blot and the mRFP-GFP-LC3 fluorescence imaging. Breast cancer cells were infected with shRNA lentivirus targeting ATP6AP1, allowing investigation its tole in doxorubicin-induced cell death. ATP6AP1 expression and its association with prognosis were evaluated using public databases and immunohistochemistry. RESULTS Doxorubicin-induced cell death in breast cancer cells is negatively correlated with increased autophagic flux and lysosomal acidification. The lysosomal gene ATP6AP1, which plays a role in autophagic processes, is upregulated in breast cancer tissues. Knocking down ATP6AP1 reduces autophagy-mediated doxorubicin resistance by inhibiting autophagic flux and lysosomal acidification in breast cancer cells. Data analysis from public databases and our cohort indicate that elevated ATP6AP1 expression correlates with poor response to doxorubicin-based neoadjuvant chemotherapy (NAC) and worse prognosis. CONCLUSIONS Doxorubicin-induced cytotoxicity is associated with autophagy flux in breast cancer. The lysosomal gene ATP6AP1 facilitates autolysosome acidification and contributes to doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Yinjiao Fei
- Department of Radiation Therapy, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Xueqin Yan
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Mingxing Liang
- Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Shu Zhou
- Department of Radiation Therapy, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Di Xu
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Lei Li
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Weilin Xu
- Department of Radiation Therapy, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Yuxin Song
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Zhen Zhu
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Jian Zhang
- Department of General Surgery, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
44
|
Yang L, Wang Y, Ye X, Liu Q, Qu D, Chen Y. Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies. Chin J Nat Med 2024; 22:1177-1192. [PMID: 39725515 DOI: 10.1016/s1875-5364(24)60746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Indexed: 12/28/2024]
Abstract
The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions. Despite this potential, TCM-derived compounds are commonly limited by poor water solubility, low bioavailability, and suboptimal targeting. Currently, it is believed that advances in nanotechnology could address these limitations. Nanoparticles (NPs), which possess properties such as enhanced bioavailability, controlled release and precise targeting, have been used to improve the therapeutic efficacy of TCM components in cancer therapy. This review discusses the use of NPs for the delivery of active TCM compounds via organic-inorganic nanocarriers, highlighting innovative strategies that enhance the effectiveness of TCM-based anti-tumor components to provide insights into improving clinical outcomes while advancing the modernization and global application of TCM in oncology.
Collapse
Affiliation(s)
- Ling Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yani Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaoming Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
45
|
Hung JT, Chiou SP, Tang YH, Huang JR, Lo FY, Yu AL. Bioactivities and Anti-Cancer Activities of NKT-Stimulatory Phenyl-Glycolipid Formulated with a PEGylated Lipid Nanocarrier. Drug Des Devel Ther 2024; 18:5323-5332. [PMID: 39583633 PMCID: PMC11586003 DOI: 10.2147/dddt.s484130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose The glycolipid α-galactosylceramide (α-GalCer), when presented by CD1d, can modulate the immune system through the activation of natural killer T (NKT) cells. Previously, we synthesized over 30 analogs of α-GalCer and identified a compound, C34, which features two phenyl rings on the acyl chain. C34 exhibited the most potent NKT-stimulating activities, characterized by strong Th1-biased cytokines and potent anti-tumor effects in several murine tumor models. Importantly, unlike α-GalCer, C34 did not induce NKT cell anergy. Despite these promising results, the clinical application of C34 is limited by its poor aqueous solubility. PEGylation enhances the solubility of hydrophobic drugs, and numerous PEGylated drugs have received clinical approval. Consequently, we assessed the biological activity of PEGylated C34 in this study. Methods Murine NK1.2 cells were cultured with A20-CD1d cells in the presence of either PEGylated lipid nanocarriers encapsulating C34 (PLN-C34) or C34 dissolved in DMSO to determine IL-2 production via ELISA. C57BL/6 mice were i.v. injected with C34 or PLN-C34 to examine cytokine profiles and immune cell populations using luminex and flow cytometry, respectively. The anticancer effects of C34 and PLN-C34 were evaluated in mice bearing TC-1 lung cancer and B16 melanoma tumors. Additionally, human PBMCs were cultured with C34 or PLN-C34 to measure cytokine production through luminex. Results PLN-C34 demonstrated a comparable capacity to C34 in activating the NKT cell line in vitro and inducing various cytokines in vivo. Furthermore, treatment with either PLN-C34 or C34 significantly prolonged the survival of TC-1- and B16F10-bearing mice to a similar extent. Additionally, PLN-C34 effectively stimulated cytokine responses in human NKT cells, comparable to those induced by C34. Conclusion These findings demonstrate that the newly formulated PLN-C34 retains NKT-stimulatory activity and anti-cancer efficacy of C34, supporting the potential of PLN as a solvent for C34 for further development in cancer therapy.
Collapse
Affiliation(s)
- Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Pin Chiou
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Jing-Rong Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Fei-Yun Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, California, USA
| |
Collapse
|
46
|
Gonçalves J, Caliceti P. Optimizing Pharmacological and Immunological Properties of Therapeutic Proteins Through PEGylation: Investigating Key Parameters and Their Impact. Drug Des Devel Ther 2024; 18:5041-5062. [PMID: 39529843 PMCID: PMC11552514 DOI: 10.2147/dddt.s481420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Protein PEGylation represents a significant technological advancement in the development of protein-based therapeutics and is widely used to reduce immunogenicity, enhance pharmacokinetics, and/or improve stability. The improved pharmacokinetic profile of PEGylated proteins compared with the native protein results in sustained versus fluctuating plasma concentrations and carries the potential of less frequent administration. However, attachment of PEG to therapeutic proteins can alter their structural conformation, which exposes new epitopes to the immune system. The design of PEGylated proteins thus needs to balance the intended benefits with the potential risks associated with the immunogenicity of the PEG moiety itself or resulting from alterations in the conformation of the therapeutic protein. In recent years, advancements in protein PEGylation chemistry have offered the capability to target PEG attachment to specific amino acids to create more stable and bioactive therapies. The biophysical and biopharmaceutical features of PEGylated proteins can vary based on polymer size, shape, density, and conjugation site, and the immunogenicity of the conjugate can be further impacted by the properties of the therapeutic protein itself and the characteristics of the patient. It is important to note that not all patients will develop an immune response toward the PEG moiety, and not all immune responses are clinically meaningful. A comprehensive understanding of the factors that influence immunogenic responses to PEGylated proteins is important to optimize their therapeutic benefits. This article reviews the design and optimization of PEGylation strategies to enhance the clinical performance of protein-based therapeutics while minimizing immunogenic responses to the PEG moiety or PEGylated proteins.
Collapse
Affiliation(s)
- João Gonçalves
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Bannigan P, Hickman RJ, Aspuru‐Guzik A, Allen C. The Dawn of a New Pharmaceutical Epoch: Can AI and Robotics Reshape Drug Formulation? Adv Healthc Mater 2024; 13:e2401312. [PMID: 39155417 PMCID: PMC11582498 DOI: 10.1002/adhm.202401312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Over the last four decades, pharmaceutical companies' expenditures on research and development have increased 51-fold. During this same time, clinical success rates for new drugs have remained unchanged at about 10 percent, predominantly due to lack of efficacy and/or safety concerns. This persistent problem underscores the need to innovate across the entire drug development process, particularly in drug formulation, which is often deprioritized and under-resourced.
Collapse
Affiliation(s)
- Pauric Bannigan
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
| | - Riley J. Hickman
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
| | - Alán Aspuru‐Guzik
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoONM5S 3E5Canada
- Acceleration ConsortiumUniversity of TorontoTorontoONM5S 3H6Canada
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Christine Allen
- Intrepid Labs Inc.MaRS CentreWest Tower661 University Avenue Suite 1300TorontoONM5G 0B7Canada
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoONM5S 3E5Canada
- Acceleration ConsortiumUniversity of TorontoTorontoONM5S 3H6Canada
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONM5S 3M2Canada
| |
Collapse
|
48
|
Cedrone E, Ishaq A, Grabarnik E, Edmondson E, Skoczen S, Neun BW, Freer M, Shuttleworth S, Sviland L, Dickinson A, Dobrovolskaia MA. In vitro assessment of nanomedicines' propensity to cause palmar-plantar erythrodysesthesia: A Doxil vs. doxorubicin case study. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102780. [PMID: 39181221 PMCID: PMC11513236 DOI: 10.1016/j.nano.2024.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Palmar-plantar erythrodysesthesia (PPE), also known as hand and foot syndrome, is a condition characterized by inflammation-mediated damage to the skin on the palms and soles of the hands and feet. PPE limits the successful therapeutic applications of anticancer drugs. However, identifying this toxicity during preclinical studies is challenging due to the lack of accurate in vitro and in vivo animal-based models. Therefore, there is a need for reliable models that would allow the detection of this toxicity early during the drug development process. Herein, we describe the use of an in vitro skin explant assay to assess traditional DXR, Doxil reference listed drug (RLD) and two generic PEGylated liposomal DXR formulations for their abilities to cause inflammation and skin damage. We demonstrate that the results obtained with the in vitro skin explant assay model for traditional DXR and Doxil correlate with the clinical data.
Collapse
Affiliation(s)
- Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Abbas Ishaq
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Emma Grabarnik
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Elijah Edmondson
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Sarah Skoczen
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Barry W Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA
| | - Matthew Freer
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Siannah Shuttleworth
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | - Lisbet Sviland
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Norway
| | - Anne Dickinson
- Alcyomics Ltd., Biosphere Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, 8560 Progress Drive, Frederick, MD 21701, USA.
| |
Collapse
|
49
|
Tonbul H, Şahin A, Öztürk SC, Ultav G, Tavukçuoğlu E, Akbaş S, Aktaş Y, Esendağlı G, Çapan Y. An all-in-one nanoparticle for overcoming drug resistance: doxorubicin and elacridar co-loaded folate receptor targeted PLGA/MSN hybrid nanoparticles. J Drug Target 2024; 32:1101-1110. [PMID: 38946465 DOI: 10.1080/1061186x.2024.2374034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Overexpression of permeability-glycoprotein (P-gp) transporter leads to multidrug resistance (MDR) through cellular exclusion of chemotherapeutics. Co-administration of P-gp inhibitors and chemotherapeutics is a promising approach for improving the efficacy of therapy. Nevertheless, problems in pharmacokinetics, toxicity and solubility limit the application of P-gp inhibitors. Herein, we developed a novel all-in-one hybrid nanoparticle system to overcome MDR in doxorubicin (DOX)-resistant breast cancer. First, folic acid-modified DOX-loaded mesoporous silica nanoparticles (MSNs) were prepared and then loaded into PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles along with a P-gp inhibitor, elacridar. This hybrid nanoparticle system had high drug loading capacity, enabled both passive and active targeting of tumour tissues, and exhibited sequential and pH-triggered release of drugs. In vitro and in vivo studies in DOX-resistant breast cancer demonstrated the ability of the hybrid nanoparticles to reverse P-gp-mediated drug resistance. The nanoparticles were efficiently taken up by the breast cancer cells and delivered elacridar, in vitro. Biodistribution studies demonstrated substantial accumulation of the folate receptor-targeted PLGA/MSN hybrid nanoparticles in tumour-bearing mice. Moreover, deceleration of the tumour growth was remarkable in the animals administered with the DOX and elacridar co-loaded hybrid nanoparticles when compared to those treated with the marketed liposomal DOX (Caelyx®) or its combination with elacridar.
Collapse
MESH Headings
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Doxorubicin/pharmacokinetics
- Drug Resistance, Neoplasm/drug effects
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Animals
- Humans
- Nanoparticles/chemistry
- Female
- Mice
- Tetrahydroisoquinolines/pharmacology
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacokinetics
- Lactic Acid/chemistry
- Acridines/pharmacology
- Acridines/administration & dosage
- Acridines/chemistry
- Cell Line, Tumor
- Folic Acid/chemistry
- Drug Resistance, Multiple/drug effects
- Silicon Dioxide/chemistry
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Drug Carriers/chemistry
- Polyglycolic Acid/chemistry
- Mice, Nude
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Mice, Inbred BALB C
- Folic Acid Transporters/metabolism
Collapse
Affiliation(s)
- Hayrettin Tonbul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Adem Şahin
- Department of Pharmacy Service, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Süleyman Can Öztürk
- Laboratory Animals Research and Application Center (HUDHAM), Hacettepe University, Ankara, Turkey
| | - Gözde Ultav
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sedenay Akbaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yılmaz Çapan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
50
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|